Mathematical Programming 72 (1996) 207-227

Scheduling jobs of equal length: complexity, facets
and computational results '

Yves Crama 2, Frits C.R. Spieksma >*

* Ecole d’Administration des Affaires, Université de Liége, 4000 Liége, Belgium
b Department of Mathematics, University of Limburg, P.O. Box 616, 6200 MD Maastricht, The Netherlands

Received 15 November 1991; revised manuscript received 15 September 1995

Abstract

The following problem was originally motivated by a question arising in the automated
assembly of printed circuit boards. Given are n jobs, which have to be performed on a single
machine within a fixed timespan [0, T'], subdivided into 7 unit-length subperiods. The processing
time (or length) of each job equals p, p € N. The processing cost of each job is an arbitrary
function of its start-time. The problem is to schedule all jobs so as to minimize the sum of the
processing costs.

This problem is proved to be NP-hard, already for p =2 and 0-1 processing costs. On the
other hand, when T = np + ¢, with ¢ constant, the problem can be solved in polynomial time. A
partial polyhedral description of the set of feasible solutions is presented. In particular, two classes
of facet-defining inequalities are described, for which the separation problem is polynomially
solvable. Also, we exhibit a class of objective functions for which the inequalities in the
LP-relaxation guarantee integral solutions. e

Finally, we present a simple cutting plane algorithm and report on its performance on randomly
generated problem instances.

Keywords: Scheduling; Computational complexity; Polyhedral description

1. Introduction

The following problem is studied in this paper. Given are n jobs, which have to be
processed on a single machine within the timespan [0, T]. In our formulation, we
assume 7 to be an integer, and the timespan is discretized into T time periods (or

* Corresponding author. e-mail: spieksma@math.rulimburg.nl.
' An extended abstract of this paper appeared in the Proceedings of the fourth IPCO Conference.

0025-5610 © 1996 — The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-5610(95)00046-1

208 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227

periods) of length one, viz. [0, 1], [1, 2],...,[T — 1, T]. Thus, period ¢ refers to the time

slot [t—1,¢t], t=1,...,T. The machine can handle at most one job at a time. The

processing time, or length, of each job equals p, p € N. The processing cost of each

job is an arbitrary function of its start-time: we denote by c;, the cost of starting job j in

period ¢. The problem is to schedule all jobs so as to minimize the sum of the processing

costs. We refer to this problem as problem SEL (Scheduling jobs of Equal Length).
Mathematically, SEL can be formulated as follows:

n
min Z Z Cir Xy
j=1 =1
T—-p+1
subject to xp=1; forj=L,....n, (1.1)
=1
n s+tp—1
Y X x,<1, fors=1,....,T=2p+2, (1.2)
j=1 t=s
x,—,E{O,l}, forj=1,...,n,t=1,...,T—p+1, (1.3)

where x;, = 1 if job j starts in period ¢, and x;, = 0 otherwise.

Constraints (1.1) ensure that each job must start in some period, and constraints (1.2)
imply that no more than one job can be scheduled in p consecutive periods. Obviously,
the requirement that each job must be finished before 7' implies that the latest possible
period for any job to start (its starting period) is period T — p + 1. Constraints (1.3) are
the integrality constraints.

In Section 2, this problem is shown to be strongly NP-hard, even when all jobs have
length p=2. In Section 3, we show that the inequalities in the LP-relaxation of
(1.1)—(1.3) define facets and we focus on objective functions for which these inequali-
ties are in some sense sufficient. Section 4 presents more facet-defining and valid
inequalities for the solution set of (1.1)—(1.3). Finally, we report in Section 5 on
computational experiments with a simple cutting-plane algorithm.

Notice that the input of SEL consists of the numbers n, T, p and (9
I,...,n,t=1,...,T—p+ 1. Thus, since we can assume that p <7, the size of the
input is O(nT log(max ,c;,)). It follows that an algorithm polynomial in n, T, p is a
polynomial algorithm for SEL. This observation will allow us to conclude that two
separation algorithms presented in Section 4 are polynomial-time algorithms.

Notice further that SEL is a special case of a scheduling problem (say, problem S)
considered by Sousa and Wolsey (1992). In problem S, the jobs may have general
processing times. Sousa and Wolsey propose several classes of facets and valid
inequalities for S. It is an easy observation that, if {1,..., n} is any subset of the jobs
occurring in S, and all the jobs in {1,..., n} have the same length p, then any valid
inequality for (1.1)—(1.3) is also valid for S. This suggests that the polyhedral descrip-
tion presented in Sections 3 and 4 may prove useful, not only when all jobs strictly have
equal length, but also in situations where the number of distinct lengths is small, or
where most of the jobs have the same length. We now proceed to describe an interesting

for j=

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 209

application in which the latter assumptions are fulfilled, and which originally motivated
our study.

The electronics industry relies on numerically controlled machines for the automated
assembly of printed circuit boards (PCBs). Prior to the start of operations, a number n of
feeders, containing the electronic components to be mounted on the PCBs, are posi-
tioned alongside the machine, in some available slots 1, 2,...,7. A slot can accomodate
at most one feeder. Each feeder j requires a certain number of slots, say p;, depending
on the feeder type; usually, p; only takes a small number of values, say p; € {1,2,3} In
order to minimize the production makespan, it is desirable to position the feeders
““close’” to the locations where the corresponding components must be inserted. More
precisely, for each combination of feeder j and slot 7, a coefficient ¢;, can be computed
which captures the cost of assigning feeder j to slots #, 1+ 1,...,7+ p, — 1. It should
now be clear that finding a minimum-cost assignment of feeders to slots is equivalent to
solving a scheduling problem with ‘‘small number of distinct processing times’” (see,
e.g., Ball and Magazine (1988) for a description of this model with p; =1 for all j, and
Abhmadi et al. (1995), Crama et al. (1990), and Van Laarhoven and Zijm (1993) for a
more general discussion).

Let us finally mention that SEL may be regarded as a discrete analogue of scheduling
problems with unit-length tasks and arbitrary rational start-times (see, e.g., Garey et al.
(1981) where minimizing the makespan is the objective considered). SEL is also
superficially related to an assignment problem with side constraints investigated by
Aboudi and Nemhauser (1990, 1991).

2. Complexity of SEL

It is obvious that, when each job has length 1 (the case p = 1), SEL reduces to an
assignment problem, and hence is solvable in polynomial time. The following theorem
shows that SEL is already strongly NP-hard for p = 2:

Theorem 2.1. SEL is NP-hard, even for p=2 and c;, € {0, 1} for all j, t.

Proof. An instance of SEL, with p =2 and processing costs equal to O or 1, can be
described by a bipartite graph G = (V, U V,, E). Each job is represented by a vertex in
V,, each period is represented by a vertex in V,, and there is an edge (j, 1) € E, with
JEV, and 1 €V,, if and only if starting job j at period ¢ has processing cost c;, = 0.
The instance of SEL admits a schedule with zero cost if and only if there exists a set of
edges A C E such that
(i) each vertex in V, is incident to precisely one edge in A,
(ii) each vertex in V, is incident to at most one edge in A, and
(iii) if vertex t € V, is incident to an edge in A, then vertex ¢+ 1 is not incident to
any edge in A, forall r=1,...,|V,|—1.

210 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227

i o — o de(r—1)+1
k2 de(r—1)+2
k2
de(r—1)+3
ay
Am—n dG(r—1)+4
b1
de(r—1)+5
bm—n ° d6(r—1)+6

Fig. 1.

We use a reduction from the NP-hard three-dimensional matching problem (see
Garey and Johnson (1979)). An instance I of three-dimensional matching is specified by
three mutually disjoint sets K, K, and K; with | K, | =n, for i=1, 2, 3, and a set
QO CK, XK, XKj,, with | Q| = m. The instance is feasible if there exists a set Q' C Q
such that every element of K, U K, U K occurs in exactly one element of Q'.

With I, we associate an instance of SEL as follows. Let

V=K UK; UK {ay,. a3 Wl by, o Baenks
V,={d,,...,d,}.
In order to define the edge-set E, denote by Q, = {k!, k?, k’} the rth triple in Q, where

ky€K,, k’€K, and k€K, (r=1,...,m).

Now, let E consist of the following edges:

(ki, d6(r—l)+l)’ (kf, dﬁ(r~1)+3) and (kf, d6(r—l)+5)

for r=1,..., m and

(as’dG(r—l)+2) and (bx’dé(r—l)+4)

fors=1,....m—nand r=1,...,m.

A typical piece of the graph is shown in Fig. 1.

When the instance I of three-dimensional matching has a feasible solution, it is
straightforward to find a set of edges A CE which defines a zero-cost schedule.
Conversely, assume that SEL has a feasible solution specified by an edge set A. Define

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 211

D, = {dﬁ(,_l)ﬂ,...,dﬁr} for r=1,..., m. Notice that, for each r=1,..., m, at most
three vertices of D, are incident to some edge of A. Moreover, when there are exactly
three such vertices, then these vertices are matched to Q, by A. Let now

R, = {r: exactly three vertices of D, are incident to some edge of A},

R, = {r: at most two vertices of D, are incident to some edge of A}.
Since | A| = |V, | =2m + n, we get

2m+n<3|R;|+2|R,| =3|Rs|+2(m— |Ry|)=2m+ | R;].

From this, it directly follows that Q' ={Q,: r € R,} contains exactly n triples, and thus
Q' defines a feasible solution of the three-dimensional matching problem. O

In fact, it can be proven that SEL remains NP-hard when each job can be processed at
zero cost during three periods only (Spieksma and Crama, 1992).

Notice that the proof of Theorem 2.1 is easily adapted to show that a related problem,
in which n, jobs have length 1, n, jobs have length 2, and T = n, + 2 - n, (the minimal
value of T allowing a feasible solution), is NP-hard too. This is to be contrasted with the
following statement.

Theorem 2.2. If T=n-p + ¢, where ¢ €N denotes a given constant not part of the
input, then SEL is polynomially solvable .

Proof. Simply notice that, in this case, it is sufficient to solve ("} ¢) = O(n®) assignment
problems, where each assignment problem corresponds to a set of starting periods
allowing a feasible solution to SEL. Indeed, the feasible sets of starting periods are in
1-1 correspondence with 0—1 sequences of length n + ¢ containing exactly n ones and
¢ zeros (with the zeros denoting idle periods between successive jobs). 0O

3. The LP-relaxation of SEL

Let us first recall some fundamental definitions from polyhedral theory (for a
thorough introduction, the reader is referred to Nemhauser and Wolsey (1988)). Con-
sider a polyhedron P = {x € R*: Ax < b}. The equality set of (A, b) is the set of rows
of (A, b), say (A~, b~), such that: A=x="5b" for all x in P. The dimension of P is
given by: dim(P) =k —rank(A~, b7). The inequality ax < «, is valid for P if it is
satisfied by all points in P. For a valid inequality ax < «,, the set F={x€P:
ax=ay} is called a facet of P if dim (F)=dim(P)— 1. Equivalently, when
@ + F+ P, F is a facet if and only if the following condition holds: if all points in F
satisfy 7x = 7, for some (7, 7,) € R**!, then (7, m,) is a linear combination of
(A=, b7) and (a, a,) (see Nemhauser and Wolsey, 1988, p. 91).

Consider now the formulation in Section 1, and let P denote the convex hull of the
feasible solutions to constraints (1.1)—(1.3). Furthermore, assume from now on that

212 Y. Crama, F.C.R. Spiecksma / Mathematical Programming 72 (1996) 207-227

T>p-(n+1). (Notice that dim(P)<n- (T—p+1)—n=n-(T—p). If T<p-(n+
1), then it is easy to see that dim(P) <n-(T—p); for instance X 2\ XF x;, =1 is
implied by (1.1) and (1.2)). To avoid trivialities, assume also n>2, p > 2.

Sousa and Wolsey (1992) established the dimension of P. For the sake of complete-
ness, we also include a proof of this result.

Theorem 3.1. dim(P) =n - (T — p).

Proof. We just noticed that dim(P) < n - (T — p). Suppose L/_, Z1-0*'m, x;, = m, for
all x € P; we want to show that this equality is implied by constraints (1.1).

To see this, fix j and ¢, t< T — p, and consider a solution with job j starting at
period t, while the other jobs start arbitrarily at periods in [1, t —p]U[t+p+1,T—p
+ 1]. Note that this is always possible; e.g., let t=k-p + g, with 1 < g < p; then, a

feasible schedule can be found using only starting periods in
S,={j-p+q:j=0,...k}U{j-p+q+1:j=k+1,...,m},

where m is the largest index such that m-p +¢q+1<T—p+ 1. Indeed, since T>p -
(n+1), S, contains at least n periods.

Consider now a second schedule, obtained by starting job j at period ¢z + 1, while all
other jobs remain untouched. Comparing the two schedules, it follows easily that
M= T4 for all j=1,...,n,t=1,...,T— p. (This construction will be used in
subsequent proofs.) Thus, with T, = T; forall j=1,...,n,t=1,....,T—p+1, we
get X7\ X2 " 'm, x;, =X} \mX]2{ "' x;, = m,, which is a linear combination of the

equalities (1.1). O

With the dimension of P established, we now can proceed to show that some
inequalities define facets of P. First, we prove that the inequalities in the LP-relaxation
of (1.1)—(1.3) are facet-defining.

Theorem 3.2. The inequalities x;, >0 define facets of P, for all j=1,....n, t=
Ly 5 T 2= p e 1

Proof. Let F={x€P: x,, =0} for any i, s with 1<i<n, 1<s<T—-p+1 and
suppose L0_ | EI_f* ', x;, = m, forall xEF.

To prove m; =, for all j=1,...,n, j#i, t=1,...,T—p+1, we refer to the
construction used in the proof of Theorem 3.1 (it is obvious that it is always possible to
ensure that job i is not placed at s, for any s). Moreover, we can use this construction
for job i and starting period ¢ for all 7<s—2 and ¢t > s+ 1, proving that 7, = 7, =

=m,yandm, g, =m ,= - =m_,.. Thus,fors=lors=T—p+1,
it follows that 7, = 7, for all ¢+ s.

If s#1and s# T —p+ 1, consider a solution with job i at period 1 and the other
jobs atperiods 1 +p, 1 +2p,...,1 +(n—1) - p, and a solution with job i at T— p + 1,
and all other jobs at the same periods as before (again, note that this is always possible,

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 213

since we assumed 7 > p-(n+ 1)). Comparing these solutions, it follows that 7, =
7 r—p+1 and thus 7, = 7, for all ## s. So,
n T—p+1 n T-p+1
Z Z Trjl'xj!_ Z 7Tj Z xj1+pxis’
j=1 =1 j=1 =1
which shows that the equality X7_, X2/ "7, x;, = 7, is a linear combination of (1.1)
and of x;;=0. O

Theorem 3.3. The inequalities (1.2) define facets of P.

Proof. Let F={x€P: XJ_ | X;*#"'x; =1}, forany 1 <s <T—2p +2, and suppose
XX X, =, for all xe F For any j and any ¢, consider a schedule using
only starting periods in S, (as in Theorem 3.1) and with x;, = 1. There is always such a
schedule corresponding to a point in F, unless ¢t = s — 1. Also, the schedule obtained by

delaying the starting period of job j until £+ 1 is in F, unless ¢t = s + p — 1. From this,

one easily concludes that, for all j=1,...,n,
Tpn=Tp= """ T 71T %
Tis = Tis+1= """ = Tjs4p-1 =ij (3-1)
Tjs+p = Tis+p+1= "7 T Tir—p+1 = Y}
If 2< s < T — p, then one can also show as in Theorem 3.2 that 7;; = 7, ,_ ., for all
j=1,...,n, or, more generally:
yj=a; foral j=1,...,n (3.2)
Furthermore, simple interchange arguments yield:
B+ a;=a;+pB;, forall i,je{1,2,...,n}, (3.3)

or equivalently 8=, — «; for all j=1,..., n. So, (3.1)—(3.3) together imply

n T—p+1 (x_l T—p+1) n s+p—1

2 5 my=La|Lo+ T oxn|rLa X

j=1 =1 j=1 t=1 t=s+p
n T—-p+1 n stp—1

Z Zx+622x

j=1 t=1 j=1 t=s

which proves the theorem. O

Theorems 3.2 and 3.3 state that the inequalities in the LP-relaxation of (1.1)—(1.3)
define facets of (1.1)—(1.3). In view of the NP-hardness of SEL, we obviously cannot
hope that these inequalities alone suffice to describe P (as a matter of fact, they do not).
However, it is conceivable that, by restricting ourselves to a certain class of objective
functions, the inequalities in the LP-relaxation are in some sense sufficient. In the
following we will explore this issue. Define

Q={xeR": x satisfies (1.1) and (1.2)}.

214 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227

Notice that Q is the polytope defined by the inequalities in the LP-relaxation. Let us
now address the following question: which restrictions on the objective function
guarantee either that (i) all optimal vertices of Q are integral?, or — less demanding —
that (ii) there exists an optimal vertex of Q that is integral?

If, for some c¢, condition (i) holds, we will say that Q is integral with respect to c. If,
for some c, condition (ii) holds, we will say that Q is weakly integral with respect to c.

Notice that if Q is integral with respect to c, then any simplex-based LP-solver, when
optimizing ¢ over Q, will find an optimal integral solution to SEL. If Q is weakly
integral with respect to ¢, the value found by the LP-solver will be equal to the cost of
an optimal solution to SEL.

Consider the following restriction on the objective function c.

Restriction 1. For all j=1,..., n, there exists a 1 with 1 < 1< T — p + 1 such that

< €81 fort=1,. semaly=1;

> Cippy TOr P=tp...;T—p.

Theorem 3.4. If c satisfies Restriction 1, then Q is integral with respect to c.

Proof. Let us call each element of Q a feasible LP-solution, and let us call each x € Q
such that cx < cy for all y € Q, an optimal LP-solution. It will sometimes be useful to
think of x € Q as of a matrix with elements x;,.

Consider an optimal LP-solution x*. Let us refer to X.7_, x;, as the weight of column
t, t=1,...,T—p+ 1. We claim that any optimal LP-solution satisfies the following
property: there exists r € {0, ..., n} such that
— columns 1, 1 +p, 1 +2p,...,1+(r—1)p have weight 1;

— column 1 + rp has weight 1 —e<[0, 1];
— column T—(n —r)p + 1 has weight ¢;
—columns T—(n—r—Dp+1,T—(n—r—2)p+1,...,T—p+ 1 have weight 1.

Intuitively, one can explain this as follows. Con51der a feasible LP-solution y. If
some fraction y;, > 0 with #<t; (> 1) can be “‘shifted”” to a smaller (greater) period,
a solution with lower cost arises due to Restriction 1. Thus, such a shift cannot be
possible in an optimal LP-solution, and this results in the property described.

Let us now establish the validity of the property in a more formal way. First, observe
that there cannot be two jobs jj, j, and two time periods s, ¢ such that t; <s <t<t;,
xj’;', >0 and x j*;‘x > 0. Otherwise, indeed, we could construct a feasible LP-solution y
with lower cost than x* by setting y,, =x; for all j, t except:

- * py— * -
Yiva = Xj0 ™ Bs Yips = Xjs ~ B>

— * — * *
Vi =%t B, Yigt =Xj 4T B, where 8= mm(le . sz,s)'

Next, consider the first index r €{0,..., n} such that column 1 + rp has weight 1 — €
with €> 0. Suppose that there exists a time period ¢ such that, for some job j,

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 215

1+rp<t<t; and x;,> 0. Choose t as small as possible with these properties. Then
s

again, we could define a solution y with smaller cost than x* by setting y; = x; for

all j, t, except:

Wi i =y 5 min(e, xj’:,,), Yid+rp =%Xj 14rp T min(e, xj’:',).
The solution y clearly satisfies constraints (1.1). It is also straightforward that y
satisfies (1.2) if 1< (r+ 1) p. Moreover, if t> (r+ 1)p, then the choice of ¢ implies
that x’ =y, ;=0 for all 1 +rp <s<(r+1p and for all j,{l1,...,n} (else we
would have x; > 0, x s> 0and 1; <s<t<t;, which contradicts our first observa-
tion); hence (1.2) is satisfied in this case, too.

From the previous discussion we conclude that x; >0 implies 7>¢; for all
t>1+rp and for all jobs j. In view of Restriction 1, it is now easy to argue that the
weight of columns T—p+ 1, T—2p+1,...,T—(n—r—1)p + 1 must be exactly 1,
and that the weight of column T—(n—r)p + 1is €.

Now we will demonstrate that if x* is fractional, it can be written as a convex
combination of integral solutions, and therefore cannot be an extreme vertex of Q. This
implies that Q is integral with respect to c.

Let us construct from the solution x* a matrix M with n rows and n columns as
follows. First, ‘‘merge’” columns 1+ rp and T—(n—r)p + 1 (with weights € and
1 — € respectively) into one column by summing the corresponding entries. Let M now
consist of all columns in the solution x* which have weight 1 (including the ‘‘merged”’
column). Obviously, M has n columns and n rows each with weight 1. Thus, we can
apply Birkhoff’s result (Birkhoff, 1946) on doubly stochastic matrices to show that M is
a convex combination of some {0, 1}-matrices, which have the property that each
column and each row contain precisely one 1. The solution to SEL corresponding to
such a {0, 1}-matrix can be found straightforwardly: if an entry (i, j) is 1, then job i is
scheduled at the period corresponding to the j-th column. Notice that if in x* a job has
positive fractions in both merged columns, this can be handled by ‘‘splitting’’ the
corresponding {0, 1}-solution with multipliers according to those fractions. O

The reader will have no difficulty in verifying that, if we relax in Restriction 1 the
“<and ““> " signto ‘<’ and ‘> " (let us call this relaxed Restriction 1), we can
deduce the following corollary.

Corollary. If ¢ satisfies relaxed Restriction 1, then Q is weakly integral with respect to
c.

Notice also that, under relaxed Restriction 1, Q is not integral with respect to ¢, since
even for a constant objective function (which certainly satisfies relaxed Restriction 1) all
vertices of Q, including the nonintegral ones, are optimal.

The fact that we consider here a problem where all jobs have equal length is crucial
for Theorem 3.4, as witnessed by the following example.

216 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227

Example 3.1. Let n =2, p, = 1, p, =2 (where p;, j =1, 2 denotes the processing time
of job j), and let

_[024
%~ loas
In order to accommodate jobs of different length in our formulation, we reformulate
constraints (1.2) as follows:

X 5 x,<1, forr=1,2,3. (34)

n t
J=1 s=max(1,1—p;+1)

Now, a feasible solution to the model defined by constraints (1.1), (3.4) and the
nonnegativity constraints is: X;; =X, =X, = X3 = 3, X;3 =X, = 0. This solution has
cost 34, whereas any optimal integral solution has cost 4.

Obviously, Restriction 1 subsumes the case where the cost-coefficient of each job is
simply its starting period. Adding job-dependent release dates to this case translates into
the following restriction on the objective function.

Restriction 2. For all j, there exist T with 1 < < T — np + 1 such that, for all ¢:

t—rj, ift;rj,
Cyu= 5
i M, 1ft<rj,

where M is a sufficiently large number.
Theorem 3.5. If ¢ satisfies Restriction 2, then Q is integral with respect to c.

Proof. Observe that in an optimal LP-solution x*, x; = 0if ¢;, = M for all j, ¢. This is
due to the fact that we assumed that r; <7 —np + 1 for all j, which allows enough
room to accommodate all weight on cost-coefficients whose value is not M.

Assume, without loss of generality, r; <r, < --- <r,. Further, define s; as follows,
fori=1,...,n:

We claim that in an optimal LP-solution x*, columns s; have weight 1 for
i=1,...,n. The proof of this claim is by contradiction. Consider the minimal i € 1,..., n
for which column s; has weight <1. Let us refer to this column as column s, .
Obviously, there must exist a job, say job j;, which is fractionally scheduled on a period
7, <s; and has positive weight on a period , > s, , thatis x; > 0and x;, >0. We
will now construct a feasible LP-solution y with lower cost than x*, thereby contradict-
ing the optimality of x*.

The solution y can be constructed in the following way. Let us ‘‘transfer’’ a quantity
. To be precise, set y;, = x;, for all j, t, except:

— . * » *
€=ming, .. g X from x;, to x; | i
*

= _ -
Yivy = Xty — € yjh-‘i, x]|-5i,+6’

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 217

This solution y has gained (¢, — s,l)e in cost, however, it may not satisfy constraints
(1.2): constraint X7_ IZ;‘;;’I’_'){/, <1 may be violated, since we added € to the
left-hand side. This can be repaired in the following way. Pick the first column #, with
s;, <t<s; +p—1, such that y, > 0 for some job j, and set:

Vit =Y T € Yi, = Yj, T €

Notice first that this yields a feasible LP-solution, and secondly, this deteriorates the
cost of the previous solution y by at most (z, — 8;, — De. Thus, the solution y
constructed here achieves a net gain of at least €. This contradicts the optimality of x*
and therefore columns s; have weight 1 for i=1,...,n.

It follows that the optimal LP-solution contains r columns and n rows each with
weight 1. Thus, we can use Birkhoff’s result (1946) as we did in Theorem 3.4, to show

that, if x* is fractional, it can be written as convex combination of {0, 1}-solutions. O

Finally, consider the following restriction, which models a common release date and
job-dependent due dates.

Restriction 3. For all j, 1, ¢;, € {0, 1}; also, there exists r{1,...,T— p + 1} and for
all j, there exist d; € {r,...,T— p+ 1} such that

0, fort=r,...,dj,
€= 1, fort=1,...,r—1andfort=dj+l,...T—p+1.

Theorem 3.6. If c satisfies Restriction 3, then Q is weakly integral with respect to c.

Proof. Consider some optimal LP-solution x *, and assume it is fractional. We prove the
theorem by manipulating this solution so that an integral solution arises whose cost does
not exceed the cost of the optimal LP-solution. First, we apply the following procedure.
If the weight of column r is smaller than 1, find the earliest positive fraction after r
(breaking ties arbitrarily) and shift it (or part of it) to period r. More formally, let the
weight of column r equal 1 — €, for some €> 0, and let ¢ denote the smallest ¢t > r
such that the weight of column 7 is positive. For some job j with x;; >0, we now set

Xj =X —min(e, xj*,), X, ==xj*,+min(e, xj’;).
Repeat this step until column r has weight 1. Next, repeat this procedure for each of the
columns r+ ap, a=1,...,n—1.If, forsome a€{1,...,n— 1}, r+ ap>T—p+1,
the procedure is continued for columns 1, 1 + p, ..., until we obtain a solution in which
n columns have weight 1. Due to the fact that ‘T is large enough’ (we assumed
T>p-(n+ 1)) the solution constructed by repetition of the described procedure yields
a feasible LP-solution. Also, it is easy to see that the cost of the solution constructed has
not increased. Now, assume, without loss of generality that d, <d, < --- <d,.
Suppose x,, # 1. Then there exists a job, say job j, such that x; >0, j+# 1, and there

exists a column, say column ¢ (# r), such that x;, > 0. Let y=min(x,, x;,). Set

B o * + - _
X =X, T xjr'—‘xjr Y

* * _ * L, *
X=X, — Y, Xy =X, + .

218 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227

Notice that this solution is still a feasible LP-solution whose value is not worse than the
original solution (since if ¢;,=0 then ¢, =0 by the ordering we assumed). By
repeating this step until x,, = 1, and next by deleting columns r, r+1,...,r+p—1
and jobs i with d; <r+p—1, and repeating this procedure again, we finally find a
{0, 1}-solution with the same cost as the cost of the LP-relaxation. [

Notice that under Restriction 3, even with d;=d for all j, Q is not integral with
respect to c. This can be derived from the fact that, with r=1and d;=T—p+ 1 for
all j, a constant objective function appears for which, as mentioned earlier, all vertices
of Q are optimal.

In case we relax Restriction 3 to allow for job-dependent release times r;, we lose the
weak integrality of Q as witnessed by the following example.

Example 3.2. Let n =2, p=2 and let

C‘=(1011
o 0o o 1)

The solution x, = x4 = x,; = X3 = 1 /2, and all other x;, = 0, is a feasible LP-solution
with cost 1 /2. However, the optimal integral solution has cost 1.
4. More facet-defining and valid inequalities for SEL

In this section we will exhibit more facet-defining and valid inequalities for SEL. To
start with, let us consider the following inequalities:

stp+i—1 n st+tp-—1
E xir+ Z Z Xj,Sl
t=g5 j=1 t=s5+1)
forl<i<n, l<i<p-land1<s<T-2p—1+2. (4.1)

These inequalities are introduced in Sousa and Wolsey (1992). Notice that the inequali-
ties (1.2) are the special case of (4.1) for [= 0. However, for reasons of convenience,
we maintain the distinction between these two classes. It is not difficult to see that the
inequalities (4.1) are valid, but they are also facet-defining, as witnessed by the next
theorem (due to Sousa and Wolsey, 1992).

Theorem 4.1. The inequalities (4.1) define facets of P.

The validity of this theorem will also follow from the validity of the more general
Theorem 4.3.

Observe that all (in)equalities (1.1), (1.2) and (4.1) are of the set-packing type, i.e.,
they only involve coefficients O or 1, and their right-hand side equals 1. In fact, the
following holds.

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 219

Theorem 4.2. All facets of P defined by set-packing inequalities are given by (1.2) and
4.1).

Proof. Consider an arbitrary valid set-packing inequality / and define

t* = max max {t, —#;: x

j., and x; - occur with coefficient 1 in 7}.
J n=n o '

Let i be the job which realizes t*. We will make use of the following observation: no
two variables x;, and x,,, with k#j, and | s —¢| > p, can simultaneously occur with
coefficient 1 in 1.

Let us first consider the case ™ > 2 p — 1. Then, it is easy to verify that no variable,
X, i # J, for any ¢, can occur in the inequality; thus I is implied by equalities (1.1), and
cannot represent a facet.

Next, suppose p<t*<2p—2,ie., t"=p+1—1 for some 1 <I<p— 1. More
specifically, suppose that x;; and x; ,,,,,_, have coefficient 1 in /. From our previous
observation, it easily follows that, for any j#i, x; cannot occur in [if either
t<s+I1—1ort>s+p. Hence, I is implied by (4.1).

Finally, when t* <p—1, let s be the smallest index such that, for some k, x,,
occurs in [with coefficient 1. It follows again from our observation that, for all j and
for all > s+ p, x;, does not occur in /. Hence, I is implied by (12). O

(Van den Akker et al. (1993) have independently established that, for the more
general scheduling problem S mentioned in Section 1, all facet-defining set-packing
inequalities are given by Sousa and Wolsey (1992) (see also van den Akker (1994)).)

In the following we investigate generalizations of (4.1). To start with, (4.1) can be
generalized to the following inequalities:

s+kp+i—1 k—1s+p—1
Z Z xj,+ E Z Z Xj‘,+,p<k,
jel t=s JEl r=0 t=s+1
for Jc{1,...,n} with | J| =k> 0,
I<i<p—land1<s<T—(k+1)-p—1+2. (4.2)

Notice that for J = {i}, (4.2) is equivalent to (4.1). The inequalities (4.2) are valid and
even facet-defining as witnessed by the following theorem.

Theorem 4.3. The inequalities (4.3) define facets of P.

Proof. To facilitate the proof, we define subsets of periods which occur in (4.2). Let
A=[s, s+k-p+i1—-1],
B={t+r-p:r=0,....k—1;t=s5+1,...,s+p—1}

=[s+L,s+p—1]U[s+p+I,s+2p—1]
U---Uls+(k=1)p+1,s+k-p—1].

220 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207227

| Il | | I | | | |] | | | |
I ! I I T I I I T I T T { { i 1 !

s s+l s+p-—-1 s+p+ls+2p—1 s+2p+1s+3p—1 s+kp+i-1
| S| | ——
B
Fig. 2.

(see Fig. 2 for an illustration of the case p =5, k=3, [=2.) With these notations, (4.2)
can be rewritten as
Yo L ti A, sy sk, (4.3)
JEJtEA JEJ tEB
First we show that these inequalities are valid. Suppose that k+ 1 jobs start in the
interval [s, s + k- p + [— 1]. The only way to achieve this is to start exactly one job in
each of the intervals [s, s+1— 1], [s+p, s+p+I1—1],....[s+k-p, s+k-p+1—
1] (this is easily checked by induction on k), i.e., to start the jobs in A\ B. However,
the periods in A\ B only occur in (4.3) for the k jobs in J. This implies that (4.3) is
valid. Let us show now that (4.3) is facet-defining.
Let F={xeP: E;c;Z,cax;+ L;¢;E,cp%;, =k} and suppose
f it x;, =7, forall x€F.

Now, let j€J and t € A\{s +k-p +[— 1}. Consider a solution with job j started
at period ¢, and other jobs started at t —p, t—2p,... and t+p+1,t+2p+1,..., in
such a way that jobs in J are started in A (thus ensuring that x € F). Shifting job j one
period towards ¢+ 1 proves

m,=m" forall j€J, forall tEA. ' (4.4)

J J

Let now i&J and t€[s+r-p+1, s+(r+1)-p—2], where r{0,...,k— 1}
(this is assuming [< p — 2; else this step of the proof is not required). Consider the
following solution: start job i at time ¢, start kK — 1 jobs from J in A, at periods t — p,
t—2p,...,and t+p+1,t+2p+1,..., and start all other jobs outside A. Shifting
job i one period proves

m,=m), foralli¢J,t€[s+r-p+l,s+(r+1)-p—1],
re{0,...,k—1}. (4.5)
Also, interchanging job i & J and j € J proves (for any [€{1,..., p— 1}):
m+mt=a+ a2, forall r, r,€{0,....,k—1}. (4.6)
(4.5) and (4.6) together imply
m,=m", forall i¢J, forall t€B. (4.7)

i 2

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 221

Now, a similar reasoning as in Theorem 3.3 ensures that

m,=m™, forall igJ, forall t&A. (4.8)

17

Furthermore, consider a solution with the jobs from Jat s, s+p,...,s+(k—1)-p

and job i, i &J at s+ k- p. Simple interchange arguments imply, together with (4.3)
and (4.8),

m,=m", forall i¢J, t&B. (49)
Also, similar arguments imply

m,=m, forall jEJ, t&A. (4.10)
Moreover, it is easy to see that

) + =4 g, forall i, je{l,2,...,n}, (4.11)

or equivalently B =" — 7/ forall j=1,...,n.

Now (4.3), (4.7), (4.9)-(4.11) imply

n T—p+1
ETE
j=1 1=
= ¥ Y 7rji“xj,+ Z Y 11']-"“'xj,+ Y Z wji“xj,—i- E Z 7rj°“‘xj,
JEJ €A JEJ €A jEJ t€B JE€J t¢B
n T-p+1
) xj,+;a.(z Yx+ Y zx,,),

j=1 =1 JEJ tEA jE&€J t€B

proving the theorem. O

Even though there is an exponential number of inequalities of type (4.2), the
separation problem for this class of inequalities is polynomially solvable. Indeed, notice
that (4.2) can be rewritten as

k—1s+p—1

n kE s+il-
EL L 5t DL L fu<k (+12)

0 t=s+1 t=s

We want to check whether a given x* violates one of these inequalities. Fix s, [and &
(there are only O(pnT) choices for these three values). Then, the first term of (4.12) is a
constant. Pick the £ values of j which maximize the second term and put them in a set
J*.If x* violates (4.12) for any J, then it does so for J *.

Another way of generalizing the inequalities (4.1) is the following. Choose a
nonempty set JC{l,...,n} and a nonempty set SC{l,...,T—2p+2}. For each
s€{l,...,T—p+ 1}, define g, = 1 if s €S and g, = 0 otherwise. Then, by adding the

222 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227

constraints (1.1) for j € J and the constraints (1.2) for s € S, each with coefficient 1/2,
we obtain the following valid inequality:

20 bl (m- Y q”

JEJ 1=1 s=t—p+1
T—-p+1 t
+L X |z X afx<[z(171+1sD] (4.13)
Jj€J =1 s=t—p+1

We refer to these inequalities as (J, S) inequalities. The inequalities (4.1) are the special
case of (4.13) obtained for J={i} and S={s, s +}. Of course, a more sophisticated
choice for S could lead to other valid inequalities. Indeed, it is possible to generalize
inequalities (4.1) by choosing S as k couples of periods in the following way: for some
k>2and [€{1,...,p— 1},

S={s,s+Ls+p, s¥p+li..s%(k—1):p, st{k—1)p+i}

However, the resulting (J, S) inequalities do not define facets of P. In fact, (when
k> 2 of course), they can be strengthened by lifting certain coefficients to 2. The
following inequalities result:

s+k-p—1 s+kptl=1 k=1 s#1-1
Z E xj1+ Z xir+ Z Z xi,t+r-p<k’
J#EI t=s+1 t=s r=1 1t=s

fori, k, I, s with1<i<n,1<k<n,1<I<p-1and
I<s<T=(k+1)-p—1+2: (4.14)

(Observe that, when k > 2, then some variables occur with coefficient 2 in (4.14).) The
following holds.

Theorem 4.4. The inequalities (4.14) define facets of P.

Proof. We first introduce some notation. With i, k, [, s as in (4.14), let
A=[s, s+k-p+1—1],
C=[s+1l,s+k-p—1],
D={t+r-p:r=1,....k—1;t=s5,...,5+1—1}
=[s+p,s+p+I1—-1]U[s+2p, s+2p+1-1]
U---U[s+(k=1)-p,s+(k—1)-p+I1—1].
We can rewrite (4.14) as

2oL Xt Y X, 2 X x5k (4.15)
j*iteC teA\D teD
Let us first show that (4.15) is valid for P. Consider any feasible schedule. It is easy to
see that the only way to start k jobs in C is to start them in C\D=[s+1[, s +p—1]
U---Ul[s+(k—=1)-p+1, s+k-p— 1] (one job in each subinterval). But, if this is

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 223

the case, then there is no room left to start job i in A, and hence (4.15) is satisfied. So,
the only way to violate (4.15) is to start k — 1 jobs in C, and job i in D. Let us suppose
jobistartsat s+r-p+gq, ref{l,...,k—1}, g<{0,...,1— 1}. Then two intervals of
consecutive periods remain for placing & — 1 jobs in C:

[s+1,s+(r—1)-p+q] and [s+(r+1)-p+gq,s+k-p—1].

But it is easy to check that no k — 1 jobs can start in these intervals. This establishes the
validity of (4.15). Let us show now that (4.15) is facet-defining. Let

F={xEP: Y ij,+ Y x,-,+22x,-,=k},

j*iteC t€ A\D teD
and suppose X7_ \ LI_0*'m;, x;, = m, forall xEF.
Consider a solution with job j, j # i, starting at period t € C\{s + k- p — 1}. Let the
other jobs startat t—p, t—2p,..., and at t+p+ 1, t+2p+1,..., while ensuring
that x € F (this is always possible). Shifting job j towards period ¢ + 1 proves that

., =" for all j#1i, forall t€C. 4.16
Jt j

Now, consider a solution with job i placed at ¢, with t €[s, s+ — 1], and all other
jobsat t—p, t—2p,..., and t+p+1,t+2p+1,.... This can be done in such a
way that x€ F, since t+p+1,t+2p+1,..., t+(k—1)-p+ 1 are k— 1 periods
in C. Now, shifting job i from ¢ to ¢+ 1 proves that

m, =™, forall t€[s, s+1]. (4.17)

i i

A similar argument shows:

m,=m", forallte[s+k-p,s+k-p+I1—1]. (4.18)

i

Consider next a schedule x with job i starting at t, t€[s+r-p+1[, s+(r+1)-p
— 2], for some 0<r<k—1, and k— 1 other jobs starting at t—r-p, t—(r—1)-
proost—p,t+p+1,...,t+(k—r—1)-p+ 1. Notice that the latter periods are all
in C\ D, and hence x € F. Comparing x with another schedule in which job i starts at
t+ 1 shows that 7, =, , forall t€[s+r-p+l, s+(r—1)-p—2] Also ex-
changing job i with one of the other jobs which start in C\ D shows, in combination
with our previous observations (4.16)—(4.18) that
m,=mM=gi2=gl forall t€ A\D. (4.19)

1 1 i

Now, consider a solution with job i starting at ¢, t € D and place the other jobs at
t—p,t—2p,... and t+p, t+2p,..., ensuring that the solution is in F (notice that
exactly k— 2 of these periods are in D, and hence in C). Interchanging job i and job
Jj # i leads easily to

m,=m} forall t€D. (4.20)

it i

224 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227

To prove m;, = m" for all j, for all & C, we refer to the construction used in
Theorem 3.3. Moreover, simple interchange arguments imply:

out
ar.

in _ __in out . > 4
Gty =t et forall gy, j, # 1,

al +aM =g+, forall j#i,
w+ = min+ ", forall j+i.

With these last equalities established and together with (4.16), (4.19) and (4.20) the
theorem follows easily. O

Notice that there are O(pn®T') inequalities in the class (4.14). Hence, the separation
problem for this class of inequalities can be solved in polynomial time.

5. A cutting-plane algorithm for SEL

In this section, we describe an unsophisticated cutting-plane algorithm for SEL, based
on the results of Sections 3 and 4, and we report on its performance on randomly
generated problem instances. We are mainly interested in the question whether the
inequalities derived in Section 4 are of any practical relevance, that is whether they are
able to cut off fractional solutions of the problems we generated and whether they are
able to improve the LP lower bound. Therefore, no attempts were made to minimize or
even record running times of the algorithm for the various problem instances. Concern-
ing this topic of running times, we will restrict ourselves to some general remarks later
in this section.

The cutting-plane algorithm works as follows. We start with a model consisting
solely of the constraints (1.1). This model is solved to optimality (we used the
LP-package LINDO). Then the following six classes.of inequalities are searched
successively in order to find violated inequalities (where R denotes the following set of
periods (see Section 4):

R={s,s+1l,s+p,s+p+l....,s+(k=1)-p,s+(k—1)-p+1}):

Class 1: constraints (1.2),

Class 2: constraints (4.1),

Class 3: constraints (4.2) with k> 1,

Class 4: constraints (4.14) with k> 1,

Class 5: constraints (4.13) with |J| =2, and S=RU{s,} with s, such that

l1<s;<s—pors+(k—1)-p<s,<T—2p+2,

Class 6: constraints (4.13) with | J | =3, and S=R U {s,, s5,} with s,, s, such that

I<s,s,<s—pors+(k—1D-p<s, s, <T—2p+2and 5s,<s,—p.
When violated inequalities are found, they are added to the model, the extended model
is solved to optimality and the whole process is repeated. When no violated inequalities
are detected or if an integral solution is found, the algorithm stops.

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 225

Table 1

LP CPA OPT LP CPA OPT
p=2 1 4@ 4@ p=3 1 14.25 14.40 15
n=20 2 7@ 7@ n=30 2 14.00 14.47 15
T=46 3 6.50 7 @) T =102 3 1521 15.60 17
¢; in 4 12.33 133 cj, in 4 9@ 9@

[0-25] 5 9() 9 (i) [0-40] 5 10.00 10.67 11
p=2 1 7 7 (i) p=4 1 15.00 15.81 17
n=30 2 10.5 11 G) n=20 2 19.50 22 (i)

T =66 3 9 9.5 10 T=93 3 20.08 2133 22
¢j, in 4 11.11 11.38 12 ¢; in 4 23.00 24.40 26

[0-25] 5 7.33 8 (1) [0-60] 5 23.43 25 (i)
p=3 1 4.88 5@ p=>5 1 12.62 14.5 16
n=20 2 8.17 9() n=20 2 11.00 11 G)

T =67 3 11.27 11.43 12 T=114 3 21.17 22.88 23
¢j, in 4 8 (i) 8 () ¢je in 4 22.14 24.24 26
[0-25] 5 9.67 10 (i) [0-60] 5 15.90 16 (i)

A few implementation issues are worth mentioning. First, if violated inequalities in
one of the six classes are found, then subsequent classes are not checked. Secondly, at
each iteration, only those inequalities are maintained whose slack is smaller than 0.1; all
other inequalities are removed from the model. Observe also that, for all classes of valid
inequalities used in this algorithm, the separation problem is polynomially solvable.

The cutting-plane algorithm was tested on sixty problem instances divided over two
types. We generated thirty problem instances from Type 1, distributed over six cate-
gories, where a category is determined by a specific choice of p and n (see Table 1 for
the problem instances of Type 1). Problem instances of this type are such that each
cost-coefficient ¢;, is drawn from a uniform distribution whose range can also be found
in Table 1.

Problem instances from Type 2 (see Table 2) represent the case of weighted
start-times with job-dependent release dates and deadlines. Here, for each job j, the
release date r; is an integer drawn uniformly between 1 and 1/2 pn; the deadline d; is
an integer drawn uniformly between r; and 0.6 pn, and a weight w; is drawn from the
uniform distribution between 1 and 10. The cost-coefficients of job j are now defined as
follows:
w(t=r), if ;<t<d,,
oM, otherwise (where M denotes a large integer).

Similar cost functions are considered by Sousa and Wolsey (1992) and van den Akker
(1994) for jobs having arbitrary lengths.

In Tables 1 and 2, LP denotes the value of the LP-relaxation of model (1.1)—(1.3).
CPA denotes the value found by the cutting-plane algorithm described earlier, and OPT
denotes the value of an optimal solution, which was found by applying the branch-and-
bound algorithm implemented in LINDO (where only those variables which were

226 Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227

Table 2
LP CPA LP CPA

p=2 1 9016 9018 (i) p=3 1 12258 12258 (i)
n=20 2 9039 9039 (i) n=30 2 13110 13110 (i)
T=46 3 9007.5 9008 (i) T=102 3 12221 12221 (i)
5 out 4 9048 9049 (i) 5 out 4 12142 12143 (i)

of 33 5 8048 8048 (i) of 11 5 12112 12112 ()
p=2 1 13035 13035 (i) p=4 1 8597.5 9046 (i)
n=30 2 13037.5 13041 (i) n=20 2 9098 9098 (i)
T=66 3 12081 12081 (i) T=93 3 8035 8035 (i)
5 out 4 14034 14034 (i) 5 out 4 9030 9033 (i)

of 20 5 12145 12145 (i) of 8 5 8062 8062 (i)
p=3 1 8071 8071 (i) p=>5 1 8307 8307 (i)
n=20 2 9026 9026 (i) n=20 2 10103 10103 (i)
T=67 3 8079 8079 (i) T=114 3 9116 9116 (i)
5 out 4 8052.5 8053 (i) 5 out 4 8127 8127 (i)

of 29 5 8050 8050 (i) of 14 5 9063 9063 (i)

fractional in the solution of the LP-relaxation are forced to be 0 or 1). The symbol (i)’
denotes that the solution found is integral. Notice that all cost-coefficients are integral,
so that all lower bounds computed can validly be rounded-up to the next integer.

Let us first comment on the results depicted in Table 1. Regarding the choice of T,
preliminary experiments indicated that for relatively large values of 7(T>(p + 1) - n)
as well as for minimal values of T(T=p-(n+ 1)), the LP-relaxation of model
(1.1)—(1.3) almost always has an integral optimal solution. So, we tried to choose T in
such a way that fractional LP-relaxations arise.

For the thirty instances considered in Table 1, the cutting-plane algorithm finds
seventeen times an integral solution (compared to five times for the LP-relaxation of
(1.1)=(1.3)) and, for the remaining instances, it improves the lower bound nine times.
Not surprisingly, the results indicate that the problems get harder when p and/or n
increase. For the ‘‘easier’’ problems (p=2, n=20,30 and p=3, n=20), the
cutting-plane algorithm often finds integral optimal solutions. For the ‘‘harder’’ prob-
lems (p=3, n=30, and p=4,5, n=20) the algorithm usually improves the lower
bound obtained from the LP-relaxation of (1.1)-(1.3). In case the cutting-plane algo-
rithm terminated with a fractional solution, it had used inequalities from all six classes.
So, for this type of problems, it appears that the inequalities derived in Section 4 are
quite useful. The running time of the cutting-plane algorithm largely depends on the
number of LP’s which have to be solved. Generally speaking, this number increases
from 10-20 for the easy problems to 80—120 for the hard problems. Of course, one can
influence this number by the strategy one employs in adding valid inequalities.

Consider now the problem instances of Type 2. For this type, the LP-solutions very
often turned out to be integral. We employed the following strategy in order to get
instances whose LP-solution was not integral. For each of the categories, we continued
generating random problem instances until five problems were available whose LP-solu-

Y. Crama, F.C.R. Spieksma / Mathematical Programming 72 (1996) 207-227 227

tion was fractional. The total number of instances we had to generate for each category
to find those five instances can be found in Table 2. Next, we ran the cutting-plane
algorithm on the thirty instances we had selected in this way.

The results summarized in Table 2 show that the algorithm works quite satisfactorily
for this type of problem instances. In all cases, the algorithm finds an integral solution.
The LP lower bound is improved eight times. For fourteen problem instances, inequali-
ties from class 2 were used; six times inequalities from class 3 were used, and twice
inequalities from class 4 and 5 were used. Except for two problem instances, the number
of iterations was below twenty.

Acknowledgements

We are grateful to Antoon Kolen for pointing out the inequalities (4.13) to us, and to
Hans-Jirgen Bandelt for his comments on an earlier version of this paper. The first
author has been partially supported in the course of this research by ONR (grants
N00014-92-J-1375 and N00014-92-J-4083) and by NATO (grant CRG 931531).

References

R. Aboudi and G.L. Nemhauser, ‘‘An assignment problem with side constraints: strong cutting planes and
separation,”” in: J.J. Gabszewicz, J.-F. Richard and L.A. Wolsey, eds., Economic Decision-Making:
Games, Econometrics and Optimisation (Elsevier, Amsterdam, 1990) pp. 457-471.

R. Aboudi and G.L. Nemhauser, ‘‘Some facets for an assignment problem with side constraints,”” Operations
Research 39 (1991) 244-250.

J. Ahmadi, R. Ahmadi, H. Matsuo and D. Tirupati, ‘‘Component fixture positioning-sequencing for printed
circuit board assembly with concurrent operations,”” Operations Research 43 (1995) 444-457.

M.O. Ball and M.J. Magazine, ‘‘Sequencing of insertions in printed circuit board assembly,”” Operations
Research 36 (1988) 192-201.

G. Birkhoff, ““Tres observaciones sobre el algebra lineal,”” Revista Universidad Nacional de Tucuman, Series
A 5 (1946) 147-151.

Y. Crama, A'W.J. Kolen, A.G. Oerlemans and F.C.R. Spieksma, ‘‘Throughput rate optimization in the
automated assembly of printed circuit boards,”” Annals of Operations Research 26 (1990) 455-480.

MR. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness
(Freeman, New York, 1979).

MR. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan, ‘‘Scheduling unit-time tasks with arbitrary release
times and deadlines,”” SIAM Journal on Computing 10 (1981) 256-269.

G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization (Wiley, New York, 1988).

J.P. Sousa and L.A. Wolsey, ‘‘A time-indexed formulation of non-preemptive single-machine scheduling
problems,”” Mathematical Programming 54 (1992) 353-367.

F.C.R. Spieksma and Y. Crama, ‘‘The complexity of scheduling short tasks with few starting times,”” Report
M92-06, University of Limburg, The Netherlands (1992).

JM. van den Akker, ‘‘LP-based solution methods for single-machine scheduling problems’’, Ph.D. Thesis,
Eindhoven University of Technology, The Netherlands (1994).

J.M. van den Akker, C.P.M. van Hoesel and M.W.P. Savelsbergh, ‘‘Facet inducing inequalities for single-
machine scheduling problems,”” Memorandum COSOR 93-27, Eindhoven University of Technology, The
Netherlands (1993).

P.J.M. van Laarhoven and W.H.M. Zijm, ‘‘Production preparation and numerical control in PCB assembly,”
International Journal of Flexible Manufacturing Systems 5 (1993) 187-207.

