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Abstract
In Kidney Exchange Games, agents (e.g. hospitals or national organizations) have
control over a number of incompatible recipient-donor pairs whose recipients are in
need of a transplant. Each agent has the opportunity to join a collaborative effort which
aims to maximize the total number of transplants that can be realized. However, the
individual agent is only interested in maximizing the number of transplants within the
set of recipients under its control. Then, the question becomes: which recipient-donor
pairs to submit to the collaborative effort? We model this situation by introducing the
Stackelberg Kidney Exchange Game, a game where an agent, having perfect informa-
tion, needs to identify a strategy, i.e., to decide which recipient-donor pairs to submit.
We show that even in this simplified setting, identifying an optimal strategy is Σ

p
2 -

complete, whenever we allow exchanges involving at most a fixed number K ≥ 3
pairs. However, when we restrict ourselves to pairwise exchanges only, the problem
becomes solvable in polynomial time.
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1 Introduction

KidneyExchange Programmes (KEPs) play a growing role in the improvement of lives
of many patients suffering from end stage renal disease. Given the absence of artificial
kidneys, given the lack of kidneys coming from deceased donors, and the fact that it
is possible to lead a normal life with a single kidney, donation from living donors is
an increasingly popular option (see [19]). For this option to succeed, compatibility of
donor and recipient (in terms of blood type and immunological properties) is crucial.
Recipientswho have awilling, but incompatible, donor can be helped through aKidney
Exchange Program. In such a program, recipient-donor couples, referred to as pairs,
are present; the donor of a pair is willing to donate her/his kidney to some recipient,
provided that the corresponding recipient receives a kidney from some other donor.
Such programmes have been established around the world; we refer to [7] for a recent
overview of this practice in Europe.

The organization of collaboration between different transplant centres, organiza-
tions or countries (we use the term agent for an entity in control of a set of pairs)
is a delicate matter. Such collaborations face many challenges, varying from legal
considerations to the alignment of medical procedures. On one hand, it is clear that
collaboration increases the possibilities for matching donors with recipients, and thus
leads to more transplants and better overall recipient outcomes. On the other hand,
these benefits of cooperation may be shared unequally, and in some cases individual
agents may even lose transplants when combining pools.

Consider as an illustration the example from [4], depicted in Fig. 1. Each node in
this graph corresponds to a patient-donor couple, and an arc from one node to another
means that the donor of the first node is compatible with the patient from the second
node. A set of node-disjoint cycles in this graph corresponds to a set of realizable
transplants. In Fig. 1, two agents, red and blue, each have a private pool consisting
of two pairs. Red can transplant two patients internally, while blue has no internal
matches. However, if both agents combine their pools, three transplants are possible,
two for blue patients and one for red. It is thus in red’s best interest not to participate
in the collaboration.

The example above illustrates an important result: no mechanism exists guarantee-
ing a solution that is both socially optimal (meaning delivering a maximum number of
transplants) and individually rational (meaning that each agent acts solely in its own

Fig. 1 An example illustrating
that there does not exist a
mechanism guaranteeing a
social welfare optimum that is
individually rational
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interest). Indeed, to give red an incentive to contribute any of its pairs, red must be
guaranteed at least two transplants in the overall solution. However, any solution in
which red receives two transplants is not socially optimal.

In case multiple agents can collaborate in a KEP, each agent is thus faced with the
question whether to participate and if so, which of its pairs to submit to the common
pool. This is a kidney exchange game.

Issues surrounding collaboration in KEPs have been studied in the literature. Ash-
lagi and Roth [4] and Toulis and Parkes [21] study cooperation in large random graphs,
where blood-type compatibility is the sole limiting factor; they find that individually
rational solutions exist that are close to socially optimal. Blum et al. [11] obtain similar
results for arbitrary graphs. They show that with high probability, individually ratio-
nal solutions are socially optimal. Additionally, they show that any socially optimal
solution is with high probability close to individually rational.

Strategy-proof mechanisms for multi-agent kidney exchange are studied in [5].
They show that even for two players and a maximum cycle length of 2, no strategy-
proof socially optimal mechanism can exist. They furthermore prove approximation
bounds for deterministic and randomized mechanisms and propose a strategy-proof
randomized mechanism that guarantees half of the optimal social welfare in the worst
case. Caragiannis et al. [12] strengthen the bounds for randomized mechanisms and
propose a strategy-proof randomized mechanism guaranteeing two-thirds of the max-
imum social welfare.

Recently, much attention has gone to mechanisms for multi-period settings.
Through various credit systems, agents are incentivized to contribute pairs to a com-
mon pool. Credits are earned through contributing pairs, and agents with the most
credits are advantaged in the common pool. In this way, full cooperation is stimulated,
as lost transplants in a matching run will be offset later on through the credit system.
Examples of such credit systems can be found in [15], who describe a strategy-proof
and socially optimal mechanism based on a credit system depending upon the number
of contributed pairs. However, this mechanism requires knowledge of the expected
arrival rate of pairs for each agent. Agarwal et al. [2] describe a credit system where
agents are rewarded for adding pairs based on the expected marginal added transplants
of adding that pair to a common pool. The credit systems of [17] and [9] depend on
the complete set of contributed nodes of a player. Klimentova [17] consider the max-
imum achievable number of transplants for an agent, as well as a system based on
their marginal contribution to maximum transplants in the common pool. Biró et al.
[9] investigate a credit system based on Shapley-values. Biró et al. [8] investigate the
computational complexity of computing KEP solutions where agents receive trans-
plants as close as possible to some target value while maximizing the overall number
of transplants.

Carvalho et al. [13] and [14] study collaboration in KEPs as a non-cooperative
game. They show that, when the cycle length equals 2, there exists a socially optimal
Nash-equilibrium, and that this equilibrium can be computed in polynomial time. This
problem is closely related to our setting, and we will elaborate on the similarities and
differences in Sect. 2.

In this paper, we study the problem faced by an individual agent in a collaborative
KEP. How easy, or how hard, is it for an agent to determine its individual rational
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strategy? Specifically, we consider the situation where an agent must decide which of
its pairs to match internally, and which pairs to add to a common pool. In this common
pool, the number of transplants is then maximized. The agent’s goal is to maximize
the number of its own pairs that are transplanted. Such cooperations exist in practice.
For example, Italy, Portugal and Spain run a joint KEP where pairs unmatched in
national programs are then matched through a common pool [10,22]. These countries
could decide not to match internally if they believe sending pairs to the common pools
allows for new solutions benefiting themselves. Similar situations exist in the United
States, where a variety of hospital, regional and national KEPs co-exist. Clearly, the
computational complexity of the agent’s goal of maximizing its own transplants is
a relevant issue. Indeed, if an agent is not able to efficiently compute strategies that
maximize its number of transplants, the design ofmechanisms that guide collaboration
in KEPs can be affected. For instance, such amechanism can safely assume that agents
are not able to efficiently identify such strategies.

The paper is organized as follows. In the next section, we formally define the prob-
lem. In Sect. 3 we describe our main result. We will show that, even if an agent knows
exactly which pairs of other agents are present in the common pool, together with
their respective compatibilities, the problem of deciding which pairs to contribute and
which to match internally, to guarantee a given number of its pairs are transplanted,
is Σ

p
2 -complete. The class Σ

p
2 is a complexity class of decision problems that gen-

eralizes the traditional classes P and NP to a setting with two decision makers (or
players/agents). It contains problems that can be expressed by a logical formula using
two consecutive quantifiers, where the first quantifier is of the type “does there exist”,
while the second quantifier is of the type “for all”. We refer to [3] for an introduc-
tion into computational complexity including the polynomial hierarchy. One practical
implication of a problem beingΣ

p
2 -complete is that the existence of a compact Integer

Program modelling the problem is unlikely, see [18] and [23]. Our result implies that
it is computationally very hard for an agent who is solely interested in maximizing the
number of transplants among its own recipients, to determine which recipient-donor
pairs to submit to the common pool, andwhich not. Nevertheless, whenever we restrict
ourselves to a maximum cycle length of two, we prove in Sect. 4 that the problem
becomes polynomially solvable. We conclude in Sect. 5.

2 The problem

We consider simple directed graphsG = (V , A). A cycle inG is a set of distinct nodes
{v1, v2, . . . , vq} such that vi ∈ V for i = 1, . . . , q, (vi , vi+1) ∈ A for i = 1, . . . , q−1,
and (vq , v1) ∈ A; the length of the cycle is its number of nodes q. A K -cycle packing
in G is a set of node-disjoint cycles each of which has length at most K ; the size of
a K -cycle packing is the total number of nodes contained in its cycles. We use the
phrase cycle packingwhen the length of the cycles in the cycle packing is not explicitly
specified. We say a node v ∈ V is covered by a cycle packing if that cycle packing
contains a cycle which includes node v. We denote by G[W ] = (W , E ∩ (W × W ))

the subgraph of G induced by the node subset W ⊆ V . When given subsets of nodes
U ,W ⊆ V , we use wU

K (G[W ]) to denote the minimum number of nodes inU that are
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covered in a maximum size K -cycle packing in G[W ]. In caseU = W ,wU
K (G[W ]) is

just the maximum size of a K -cycle packing in G[W ]. For ease of notation, we denote
this by wK (G[W ]).

In our formulation of the problem, we distinguish between the leader on the one
hand, and the follower on the other hand.Here, the leader stands for the individual agent
(i.e., country or hospital), whereas the follower stands for the organisation responsible
for running the larger Kidney Exchange Programme.

Initially, the leader controls a set of nodes (recall that each node refers to a recipient-
donor pair), denoted by L , and the follower controls a set of nodes, denoted by F ,
such that L ∩ F = ∅. The leader has two options for each node in L . One option is to
withhold the node from the follower, and perhaps use the node, if possible, in a cycle
packing that is internal to the leader, i.e., a cycle packing containing only nodes in L .
The other option is to submit the node, thereby adding the node to the set of nodes
under control of the follower, called the global pool. In the latter option it is no longer
in the control of the leader which cycle packing will be selected for nodes in the global
pool. However, the follower will select a maximum size cycle packing in the global
pool of nodes. The question is whether the leader can guarantee that a given number
of its nodes will be covered by a cycle packing. We will refer to the node set S chosen
by the leader to withhold from the follower, as the leader’s strategy S.

Definition 1 (Stackelberg KEP game) We define a Stackelberg KEP game as fol-
lows.

Given: A directed graph G = (V = L ∪ F, A) with L ∩ F = ∅ and an integer K .
Rules: In the first phase, the leader selects a strategy S ⊆ L of nodes to withhold,

and calculates a maximum size K -cycle packing on G[S]. In the second phase, the
follower calculates a maximum size K -cycle packing on G[V \ S].

We now define the problem faced by the leader, who has to choose a strategy in the
Stackelberg KEP game to maximize the number of transplants for its pool. We refer
to the corresponding decision problem as DEC-S-KEP.

Definition 2 (DEC-S-KEP) Given: A Stackelberg KEP game with directed graph
G = (V = L ∪ F, A) with L ∩ F = ∅ and two integers, K and t .

Question: Is there a strategy S ⊆ L , such that wK (G[S]) + wL
K (G[V \ S]) ≥ t?

Given the definition of wL
K (G), it follows that by considering the quantity

wK (G[S])+wL
K (G[V \ S]), we are considering the worst-case scenario for the leader.

Indeed, this assumes that among all possible maximum size packings the follower can
choose, the follower chooses the one covering the minimum number of nodes of the
leader. This objective is reasonable for a risk-averse agent when the follower’s tie-
breaking rules are unknown.

Stackelberg KEP is closely related to, yet different from, a game considered by
[14] and [13]. They consider a game with maximum cycle length K = 2 and N ≥ 2
players in which each player i simultaneously chooses a (restricted) set of nodes Si ,
for 1 ≤ i ≤ N . Each player i then computes a maximum size cycle packing on G[Si ]
(1 ≤ i ≤ N ), and an independent agent (comparable to the follower in our setting)
computes a maximum size cycle packing on G[V \ ⋃N

i=1 S
i ]. The goal for every

player i is to maximize wK (G[Si ]) + wV i

K (G[V \ ⋃N
i=1 S

i ]), (1 ≤ i ≤ N ); this game
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Fig. 2 AStackelbergKEPgamewith leader (red circles) and follower nodes (green diamonds, blue squares).
Notice that the leader cannot internally match recipient-donor pairs and that withholding the middle red
node leads to more transplants involving red recipients

is referred to as N -KEG. Carvalho et al. [14] give a polynomial-time algorithm for
finding a socially optimal Nash equilibrium in this game if the cycle length is limited
to at most two.

Apart from the fact that [13] consider an arbitrary number of players, there are two
main differences between a StackelbergKEP game and N -KEG. First, in a Stackelberg
KEP game there are no restrictions on the strategy S, whereas in N -KEG each node
in Si must be covered by a cycle packing internal to player i , 1 ≤ i ≤ N . This
is relevant as, for K ≥ 3, it can be a dominant strategy for the leader to not submit
nodes, even when such a node is not contained in a cycle packing internal to the leader.
We demonstrate this phenomenon in Fig. 2. Second, in a Stackelberg KEP game, the
follower is allowed to use any cycle in its solution, while in N -KEG the independent
agent is not allowed to use cycles containing only nodes of a single player.

3 The Stackelberg KEP gamewith K ≥ 3

In this section, we prove that DEC-S-KEP is Σ
p
2 -complete. First, we prove its mem-

bership in the class Σ
p
2 . Next, through a reduction from Adversarial (2,2)-SAT, we

will prove that DEC-S-KEP is Σ
p
2 -complete.

Lemma 1 DEC-S-KEP is in Σ
p
2 .

Proof Recall that Σ
p
2 is defined as the set of decision problems solvable in non-

deterministic polynomial-time when given access to an oracle for an NP-complete
problem [3,16]; such an oracle accepts as input an instance of a decision problem in
NP, and outputs the correct answer.

Thus, let us be given as a certificate a leader strategy S ⊆ L for which we must
check whether wK (G[S]) + wL

K (G[V \ S]) ≥ t . Furthermore, we are given an oracle
for solving the NP-complete weighted K -cycle packing problem [1]. We can use this
oracle to check the certificate in the following way.

First, we determinewK (G[S]). This is done by determining themaximum value for
which the oracle returns Yes, given the graph G[S]. Using binary search, this requires
O(log |V |) calls to the oracle. Likewise, we can determine the value wK (G[V \ S]).
To determine the minimum number of leader nodes covered in this maximum size
K -cycle packing, we call the oracle for a weighted graph. Specifically, every follower
node receives a weight of |V |, while every leader node receives a weight of |V |−1. By
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binary search over the range of values [(|V | − 1)wK (G[V \ S]), |V |wK (G[V \ S])],
we can determine the optimal value of this weighted problem, and thus the minimum
number of leader nodes in the packing, wL

K (G[V \ S]). We can now check whether
wK (G[S]) + wL

K (G[V \ S]) ≥ t . In total, this procedure requires O(log |V |) calls to
the oracle, and we can check in polynomial time whether S is indeed a valid certificate
for this decision problem. Hence, DEC-S-KEP is in Σ

p
2 . 	


Having established membership of DEC-S-KEP in Σ
p
2 , we now turn to its com-

pleteness for this class. We do so through a reduction from a decision problem known
as Adversarial (2,2)-SAT. Adversarial problems are problems that can be formulated
using variables that are partitioned into two disjoint sets. Control of each set of vari-
ables is given to a different player. The question is whether there exist values for the
first player’s variables such that, for any values of the second player’s variables, the
resulting instance is a no-instance [16]. In this particular case, we proceed by defining
(2,2)-SAT, and its corresponding adversarial problem Adversarial (2,2)-SAT.

Definition 3 ((2,2)-SAT) Given: A set Y of variables, and a Boolean expression E in
conjunctive normal form, consisting of a set of clausesC over Y . Each variable occurs
exactly four times in E : two times in negated form and two times in unnegated form.
Question: Does there exist a truth assignment for Y satisfying E?

Definition 4 (Adversarial (2,2)-SAT) Given: Disjoint sets X and Y of variables, and
a Boolean expression E in conjunctive normal form, consisting of a set of clauses C ,
over X and Y . Each variable occurs exactly four times in E : two times in negated form
and two times in unnegated form.
Question: Does there exist a truth assignment for X such that there does not exist a
truth assignment for Y satisfying E?

Johannes [16] shows that the existence of a reduction from 3-SAT to some non-
adversarial decision problem NON-ADV that satisfies certain conditions, implies that
the corresponding adversarial problem (ADV) is Σ

p
2 -complete. We define 3-SAT and

state the result of Johannes below.

Definition 5 (3-SAT) Given: A set Y of variables, and a Boolean expression E in
conjunctive normal form, consisting of a set of clauses C over Y . Each clause consists
of exactly 3 variables.
Question: Does there exist a truth assignment for Y satisfying E?

Theorem 1 [16] Let (ADV) be an adversarial problem. Let (NON-ADV) denote the
corresponding non-adversarial problem. We assume that (NON-ADV) is in NP. Let f
be a polynomial transformation from 3-SAT to (NON-ADV) that satisfies the following
property. If U is the set of binary variables of an instance I(3SAT ) of 3-SAT and Z is
the set of binary variables of the instance f (I(3SAT )) of (NON-ADV), then there is a
subset Z ′ of Z and a bijective function g : U → Z ′ such that:

1. If SU is a satisfying solution of I(3SAT ), then the 0-1 assignment SZ ′ to the variables
in Z ′ with SZ ′(z) = SU (g−1(z)) for all z ∈ Z ′ can be extended to a 0-1 assignment
S of all variables in Z such that SZ is a satisfying solution.
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2. If SZ is a satisfying solution of f (I(3SAT )), then the 0-1 assignment SU with
SU (x) = SZ (g(x)) for all x ∈ U represents a satisfying solution to I(3SAT ).

Then (ADV) is Σ
p
2 -complete.

We now show that Adversarial (2,2)-SAT isΣ
p
2 -complete through a reduction from

3-SAT to (2,2)-SAT that satisfies the requirements of Theorem 1.

Theorem 2 Adversarial (2,2)-SAT is Σ
p
2 -complete.

Proof Given an instance of 3-SAT (specified by a set of variables U = {u1, . . . , un}
and a set of clauses C), let us now construct a (2,2)-SAT instance. Let ui ∈ U
be a variable in the 3-SAT instance occurring ki times (1 ≤ i ≤ n). We then
construct variables z1i , . . . , z

ki
i ∈ Z (1 ≤ i ≤ n). We furthermore construct the

clauses {(z1i ,¬z2i ), . . . , (z
ki−1
i ,¬zkii ), (zkii ,¬z1i )} (1 ≤ i ≤ n). We refer to these as

the consistency clauses. Note immediately that for every satisfying truth assignment
in the (2,2)-SAT instance, all variables z1i , . . . , z

ki
i must have the same truth value

(1 ≤ i ≤ n). Furthermore, for each clause c ∈ C in the 3-SAT instance, we construct a
clause c′ in the (2,2)-SAT instance. Let the occurrence of ui in c be the j-th occurrence
(negated and unnegated combined) of ui (1 ≤ j ≤ ki ), then z ji ∈ c′ if ui appears
unnegated or ¬z ji ∈ c′ if ui appears negated. Note that each variable z ji ∈ Z now

occurs exactly three times; once negated and once unnegated in the clauses (z ji ,¬z j+1
i )

and once negated OR unnegated in the other clauses (1 ≤ i ≤ n, 1 ≤ j ≤ ki ). Given
that we are constructing an instance of (2,2)-SAT, each variable must occur exactly
twice unnegated and twice negated. We construct one more clause, the rest clause,
which contains all these other occurrences. As we can assume that there is at least one
variable in the 3-SAT instance that occurs at least once unnegated and at least once
negated, this additional clause is automatically satisfied if the consistency clauses are
satisfied.

Now, let Z ′ = {z11, z12, . . . z1n} and let g be such that z1i has the same truth value
as ui . It now easily follows that this specification of Z ′ and g satisfies the conditions
from Theorem 1 [16]. We extend the truth assignment from Z ′ to Z by setting the
truth assignment of z ji equal to that of z1i for all i = 1, . . . , n and j = 2, . . . , ki .
The consistency clauses and the rest clause are then satisfied. Given the identical truth
values for all z ji for a fixed i, (1 ≤ i ≤ n), and because these truth values are equal
to that of ui , the construction of the remaining clauses also ensures these clauses are
satisfied. We thus have a satisfying solution for the (2,2)-SAT instance. The other
direction can be argued in a similar fashion. As this reduction satisfies the conditions
from Theorem 1 [16], the proof of Theorem 2 is complete. 	


We are now in a position to prove our main result.

Theorem 3 DEC-S-KEP is a Σ
p
2 -complete problem, for K = 3.

Proof Lemma1 establishesmembership ofDEC-S-KEP inΣ
p
2 . It remains to be shown

that DEC-S-KEP is Σ
p
2 -hard. Given an instance (X ,Y ,C, E) of Adversarial (2,2)-

SAT, we construct an instance G = (L ∪ F, A) of DEC-S-KEP. To clearly distinguish
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Fig. 3 The gadget corresponding
to a variable x ∈ X βx,t,1 βx,t,2tx,1 tx,2

βx,f,1 βx,f,2fx,1 fx,2

αx,1 αx,2

between nodes belonging to the leader (i.e., the set L) and nodes belonging to the
follower (i.e., the set F), we use Latin letters to denote the former, and Greek letters
to denote the latter.

For each variable x ∈ X , we construct a gadget as depicted in Fig. 3. The gad-
get contains four leader nodes, {tx,1, tx,2, fx,1, fx,2} ∈ L and six follower nodes,
{αx,1, αx,2, βx,t,1, βx,t,2, βx, f ,1, βx,t,2} ∈ F . We denote the arcs between nodes in
the gadget corresponding to x ∈ X , by the set Ax :

Ax = {(αx,i , βx,t,i ), (βx,t,i , tx,i ), (tx,i , αx,i )| i = 1, 2}
∪{(αx,i , βx, f ,i ), (βx, f ,i , fx,i ), ( fx,i , αx,i )| i = 1, 2}
∪{(tx,1, tx,2), (tx,2, tx,1), ( fx,1, fx,2), ( fx,2, fx,1)}.

For each variable y ∈ Y , we have an identical gadget, except that all of its ten nodes are
in F ; to followour naming convention, instead of nodes tx,i and fx,i , the corresponding
nodes in this gadget are called τy,i and φy,i , i = 1, 2. The set of arcs between nodes
of a gadget corresponding to y ∈ Y is denoted by Ay .

For reasons of convenience, we define a set B containing all so-called β nodes as:

B = {{βx,t,i , βx, f ,i }| x ∈ X , i = 1, 2} ∪ {{βy,t,i , βy, f ,i }| y ∈ Y , i = 1, 2}.

The construction per clause is relatively simple. For each clause c ∈ C , there exists
one node, called the clause node, δc ∈ F . Additionally, there is one node d ∈ L in
total. We have now specified the node sets L and F ; notice that |L| = 4|X | + 1, and
|F | = 6|X | + 10|Y | + |C |.

For each clause c ∈ C , there exist arcs (δc, d), (d, δc) in A. The clause nodes are
connected to the nodes in the variable gadgets as follows. For each variable x ∈ X
(y ∈ Y ), there are arcs (βx,t,1, δc) ((βy,t,1, δc)) and (δc, βx,t,1) ((δc, βy,t,1)) whenever
c is the first clause in which x (y) occurs unnegated, with respect to a lexicographical
ordering of the clauses in the setC . Analogously, the nodeβx,t,2 (βy,t,2) is connected to
the clause node that corresponds to the second clause in which x (y) occurs unnegated.
Similarly, the nodes βx, f ,i (βy, f ,i ), are connected to the clause node of the i-th clause
where x (y) occurs negated, i = 1, 2, through the arcs (βx, f ,i , δc) and (δc, βx, f ,i )

((βy, f ,i , δc) and (δc, βy, f ,i )).
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Summarizing the construction, we have specified the graph G = (L ∪ F, A) by
choosing:

L =
{
{tx,i , fx,i }| x ∈ X , i = 1, 2

}
∪ {d},

F =
{
{αx,i , αy,i }| x ∈ X , y ∈ Y , i = 1, 2

}
∪ B ∪

{
{τy,i , φy,i }| y ∈ Y , i = 1, 2

}

∪
{
δc| c ∈ C

}
,

A =
⋃

x∈X
Ax ∪

⋃

y∈Y
Ay ∪ {(δc, d), (d, δc)| c ∈ C}

∪ {(βx,t,i , δc), (δc, βx,t,i )| c ∈ C is the i-th clause containing x, x ∈ X , i = 1, 2}
∪ {(βx, f ,i , δc), (δc, βx, f ,i )| c ∈ C is the i-th clause containing ¬x, x ∈ X , i = 1, 2}
∪ {(βy,t,i , δc), (δc, βy,t,i )| c ∈ C is the i-th clause containing y, y ∈ Y , i = 1, 2}
∪ {(βy, f ,i , δc), (δc, βy, f ,i )| c ∈ C is the i-th clause containing ¬y, y ∈ Y , i = 1, 2}.

We set K = 3, meaning that the length of a cycle present in a solution cannot
exceed 3. Finally, we set t = 4|X | + 1. This completes the description of an instance
of DEC-S-KEP.

⇒ Given a truth assignment for X such that no truth assignment exists for Y that
satisfies E , we now show the existence of a strategy S ⊆ L such that wK (G[S]) +
wL

K (G[V \ S]) ≥ 4|X | + 1 = t .
Given such a truth assignment for X , we propose the following strategy S:

S =
{
{tx,1, tx,2}| x ∈ X is true

}
∪

{
{ fx,1, fx,2}| x ∈ X is false

}
. (1)

In words: for each variable x ∈ X that is TRUE, tx,i ∈ S for i = 1, 2 and for each
variable x ∈ X that is FALSE, fx,i ∈ S for i = 1, 2.

Recall that |L| = 4|X | + 1 = t . Hence, we need to show that given this strategy
S, each node of the leader is contained in a maximum size 3-cycle packing of the
leader (i.e., a maximum size 3-cycle packing on G[S]), or in each maximum size
3-cycle packing of the follower (i.e., a maximum 3-cycle packing on G[V \ S]). By
the choice of S, there are 2|X | nodes in S, all of which are contained in a maximum
size 3-cycle packing of the leader. Indeed, such a maximum size 3-cycle packing of
the leader consists of |X | cycles of length 2, each containing a pair of t-nodes or a
pair of f -nodes of the corresponding variable gadget. It remains to show that every
maximum size 3-cycle packing for G[V \ S] contains all t and f -nodes not in S, as
well as the d-node.

To do so, we now analyze the possible 3-cycle packings in G[V \ S]. Notice that
any cycle inG[V \ S] that contains nodes of different variable gadgets has length more
than 3, and hence cannot be present in a 3-cycle packing. It follows that each cycle in
the follower’s 3-cycle packing

– consists of nodes all within a single variable gadget (called a cycle of Type 1), or
– consists of the nodes {β, δc} for some β ∈ B, c ∈ C (called a cycle of Type 2), or
– consists of the nodes {δc, d} for some c ∈ C (called a cycle of Type 3).

We now classify the variable gadgets with respect to the possible cycles of Type 1
contained in the variable gadget. The classification of these gadgets is illustrated in
Fig. 4.
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βx,t,1 βx,t,2τx,1 τx,2

βx,f,1 βx,f,2φx,1 φx,2

αx,1 αx,2

(a) Consistent gadget (y ∈ Y )

βx,t,1 βx,t,2

βx,f,1 βx,f,2fx,1 fx,2

αx,1 αx,2

(b) Consistent gadget  x ∈ X)

βx,t,1 βx,t,2τx,1 τx,2

βx,f,1 βx,f,2φx,1 φx,2

αx,1 αx,2

(c) Cheating gadget (y ∈ Y )

βx,t,1 βx,t,2

βx,f,1 βx,f,2fx,1 fx,2

αx,1 αx,2

(d) Cheating gadget (x ∈ X)

βx,t,1 βx,t,2τx,1 τx,2

βx,f,1 βx,f,2φx,1 φx,2

αx,1 αx,2

(e) Zigzag gadget (y ∈ Y )

(

Fig. 4 Classification of cycle packings on variable gadgets in the follower’s solution

Definition 6 Given a solution to the follower’s cycle packing problem,we call a gadget
corresponding to variable x ∈ X

– consistent if either the two node-sets {αx,i , βx, f ,i , fx,i }, i = 1, 2, or the two node-
sets {αx,i , βx,t,i , tx,i }, i = 1, 2 each correspond to a cycle in the solution (Fig.
4b),

– cheating if the node-set { fx,1, fx,2} or {tx,1, tx,2} corresponds to a cycle in the
solution (Fig. 4d).

Given a solution to the follower’s cycle packing problem, we call a gadget corre-
sponding to variable y ∈ Y

– consistent if either the node-sets {αy,i , βy, f ,i , φy,i }, i = 1, 2 as well as the node-
set {τy,1, τy,2} each correspond to a cycle in the solution, or if the node-sets
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{αy,i , βy,t,i , τy,i }, i = 1, 2 as well as the node-set {φy,1, φy,2} each correspond to
a cycle in the solution (Fig. 4a),

– cheating if the two node-sets {τy,1, τy,2} and {φy,1, φy,2} each correspond to a
cycle in the solution (Fig. 4c),

– zigzag if the node-sets {αy,1, βy,t,1, τy,1} and {αy,2, βy, f ,2, φy,2} each correspond
to a cycle in the solution (Fig. 4e), or alternatively, the node-sets {αy,2, βy,t,2, τy,2}
and {αy,1, βy, f ,1, φy,1}.
Note that these classifications concern only cycles of Type 1. Cycles of Type 2 can

be added, covering any of the β nodes in the gadget not yet covered by a cycle of Type
1, without affecting the packing classification.

Consistent gadgets will be used to reflect the truth value of the corresponding
variables. We say the gadget is consistent with a TRUE value if the two node-sets
{αx,i , βx, f ,i , fx,i } for i = 1, 2 each correspond to a cycle in the follower’s cycle pack-
ing solution. Analogously, if in the follower’s solution the node-sets {αx,i , βx,t,i , tx,i }
for i = 1, 2, each correspond to a cycle, we say the gadget is consistent with FALSE.

We use these definitions to characterize an optimal 3-cycle packing of the follower,
as witnessed by the following lemma.

Lemma 2 Let S be defined by (1). In each optimal 3-cycle packing on G[V \ S], each
variable gadget is either consistent, cheating or zigzag.

Proof Weargue as follows. Consider a feasible solution to the follower’s cycle packing
problem such that there is a variable gadget which is neither consistent, nor cheating,
nor zigzag. We show that that solution is not of maximum size by exhibiting the
existence of a strictly better solution.

We first consider variable gadgets corresponding to variables x ∈ X . Without loss
of generality, we assume that tx,1, tx,2 ∈ S, as depicted in Fig. 4b and d. There are two
cases.

Case 1: Consider a solution such that for some variable gadget corresponding to x ∈
X , at most one of {βx, f ,1, βx, f ,2} is covered by a cycle of Type 2. Since, by
assumption, the gadget is not consistent, at most three of its nodes are covered
by a cycle of Type 1. By removing at most one cycle of Type 2 (thereby
“freeing” a β node), and introducing a cycle of Type 1, we have changed
the state of this gadget to consistent. Moreover, the size of the packing has
increased by at least −2 + 3 = 1.

Case 2: Consider a solution such that for some variable gadget corresponding to
x ∈ X , both βx, f ,i , i = 1, 2 are covered by cycles of Type 2. Since, by
assumption, the gadget is not cheating, it follows that no other nodes of the
gadget are contained in a cycle. By simply adding the cycle consisting of the
nodes { fx,1, fx,2}, the size of the packing increases by 2.

Now we consider variable gadgets corresponding to variables y ∈ Y . For ease of
exposition, we assume that for such a gadget in the current solution, at least as many
βy,t,i as βy, f ,i (i = 1, 2) are covered by cycles of Type 2. The same arguments hold,
mutatis mutandis, if more βy, f ,i than βy,t,i nodes are covered by Type 2 cycles. We
consider the four β nodes of the gadget, and make a case distinction based on whether
these β nodes are covered by cycles of Type 2.
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Case 1: All four β nodes of the gadget are covered by cycles of Type 2. Since, by
assumption, the gadget is not cheating, one easily verifies that the size of the
packing improves when the solution is changed such that the gadget becomes
a cheating gadget.

Case 2: Three of the four β nodes of the gadget are covered by cycles of Type 2.
Hence, a single β node is not covered by a cycle of Type 2, say βy, f ,2. It
also follows that αy,1 is not covered. If φy,1 is not covered, we remove the
cycle of Type 2 covering βy, f ,1, and add the cycle of Type 1 containing nodes
βy, f ,1, φy,1 and αy,1, thereby increasing the size of the packing. If φy,1 is
covered, it is in a cycle with φy,2, meaning that αy,2 is not covered. Then,
we remove the cycle of Type 1 covering φy,1 and φy,2, as well as the cycle
of Type 2 covering βy, f ,1, and we add the two cycles of Type 1 containing
nodes βy, f ,i , φy,i and αy,i , i = 1, 2, again increasing the size of the packing.

Case 3: Two of the four β nodes are covered by cycles of Type 2. If these two nodes
are βy,t,i , i = 1, 2, then it is easy to see that modifying the solution such that
the gadget becomes consistent (in fact, consistent with a TRUE value) is the
only possibility since all nodes of the gadget are then covered. If βy,t,1 and
βy, f ,1 are covered by cycles of Type 2, it follows that at most 5 nodes of the
gadget can be covered by cycles of Type 1. By removing one cycle of Type
2, this solution can be improved such that the gadget becomes consistent.
The number of nodes covered by cycles of Type 1 rises to 8 and one of the
cycles of Type 2 covering βy,t,1, βy, f ,1 can still be used. If βy,t,1 and βy, f ,2
are covered by cycles of Type 2, and since, by assumption, the gadget is not
zigzag, at most 5 nodes of the gadget are covered by cycles of Type 1. By
switching to a zigzag packing, 6 nodes are covered by cycles of Type 1, and
no existing cycles of Type 2 are impacted. The size of the packing increases.

Case 4: At most one β node is covered by a cycle of Type 2. Since, by assumption,
the gadget is not consistent, we can improve the solution by modifying this
gadget to be consistent.

As we have covered all cases, the proof of Lemma 2 is now complete. 	

Thus, we have proven that in any optimum 3-cycle packing of the follower, each

gadget is either consistent, cheating or zigzag. Given this structure of any optimal
solution of the follower, we will now argue that the leader’s strategy S ensures that all
4|X | + 1 leader nodes will be covered (if the truth assignment on X is such that there
exists no truth assignment on Y satisfying E). Observe that, given the two possible
packings on variable gadgets corresponding to variables x ∈ X , all leader nodeswithin
the variable gadgets are covered. Thus, we have covered already 4|X | nodes of the
leader. We must now show that the d node will also be covered in any maximum size
cycle packing of the follower.

By Lemma 2, we know that an optimal solution of the follower either contains a
variable gadget that is cheating or zigzag, or all variable gadgets are consistent. We
proceed to argue that in each of these two cases, any optimal solution of the follower
covers node d.

Lemma 3 Let S be defined by (1). In each optimal 3-cycle packing on G[V \ S], node
d is covered.
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Proof We distinguish two cases. In both cases, we argue by contradiction, i.e., we
argue that if node d is not covered in a 3-cycle packing, that 3-cycle packing is not of
maximum size.

Case 1: The follower’s solution uses a gadget that is either cheating or zigzag. Let us
further suppose that this follower’s solution is such that node d is not covered.

– Cheating gadget: the cheating gadget covers 4 nodes by cycles of Type 1 (2
if the gadget corresponds to x ∈ X ), compared to 8 (6) nodes in a consistent
gadget. Switching to a consistent packing is thus strictly better unless we need
to break two cycles of Type 2 to perform this switch. This can only be the case
if all four β-nodes are covered by cycles of Type 2 in the cheating gadget.
Indeed, if less than four are covered, the packing can be made consistent by
breaking at most one cycle of Type 2. However, even if all four β-nodes are
covered by cycles of Type 2, this still only leads to parity between the consistent
and cheating packing (since they both cover 12 (10) nodes over the variable
and linked clause gadgets combined). Thus, if the d node is uncovered, one
of the cycles of Type 2 can be replaced by the cycle (δc, d) of Type 3, and
the consistent packing achieves 14 (12) nodes covered over the variable and
linked clause gadgets.

– Zigzag gadget: by an analogous argument, it can be shown that if d is uncov-
ered, switching from a zigzag to a consistent packing increases the number of
covered nodes by two.

Case 2: The follower’s solution uses only consistent gadgets. Let us further suppose
that this follower’s solution is such that node d is not covered. Recall that the
truth assignment on X used to build the strategy S is such that there does not
exist any truth assignment on Y satisfying E .

Since node d is not covered, it follows immediately that in this cycle packing,
each δc is covered by a cycle of Type 2. If this were not the case, the cycle
(δc, d) would strictly increase the size of the packing. Now let us build a
truth assignment for the (2,2)-SAT instance based on the packing. If the
packing restricted to a variable gadget is consistent with TRUE (FALSE), set
that variable to TRUE (FALSE). Clearly, for each variable x ∈ X this truth
assignment is the same as the original truth assignment used to construct the
strategy S. We claim that this truth assignment satisfies each clause. Indeed,
for a given clause c let there be (wlog) the cycle (δc, βy,t,i ). By construction
of the DEC-S-KEP instance these arcs only exist if the clause is satisfied by
a value of TRUE for y. Furthermore, by construction of the truth assignment,
we have set y to TRUE. Thus, the truth assignment is such that every clause
is satisfied. Thus, we have arrived at a contradiction.

SinceLemma2 implies there are no other cases, the proof of Lemma3 is nowcomplete.
	


Summarizing, if there exists a truth assignment to X such that there does not exist a
truth assignment to Y satisfying E , the leader can construct a strategy S. This strategy
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is such that if the follower’s solution uses only consistent gadgets, there is at least
one δc-node that cannot be covered by a cycle of Type 2, and will thus be covered by
a cycle with node d, i.e., a cycle of Type 3. Alternatively, if the follower’s solution
contains a cheating or a zigzag gadget then it must also be the case that node d is
covered. The leader is thus guaranteed that the strategy S implies that all its 4|X | + 1
nodes are covered.
⇐ Suppose that there exists a strategy S such that the leader can guarantee that all its
4|X |+1 nodes are covered. We will show that the existence of such a strategy implies
that there exists a truth assignment for X such that there is no truth assignment for Y
satisfying the expression E .

We first analyze the structure of any strategy S that guarantees covering all 4|X |+1
nodes of the leader; we use S to denote the collection of strategies that guarantee that
all nodes of the leader are covered, i.e., the set of optimal strategies.

Observe that for each S ∈ S it must hold that either both tx,1 and tx,2, or none of
tx,1 and tx,2 are in S for each x ∈ X . Indeed, if S contains exactly one node from
{tx,1, tx,2} for some gadget corresponding to x ∈ X , it is impossible to cover that node
of the leader. Thus, S contains only strategies S for which either both tx,1 and tx,2, or
none of tx,1 and tx,2 are in S for each x ∈ X . The same statement holds for the nodes
fx,1 and fx,2, for some x ∈ X : either both nodes fx,1, fx,2 are in S or none of them,
for each x ∈ X .

Further, we call a strategy S nice if, for each x ∈ X , either tx,1, tx,2 ∈ S, or
fx,1, fx,2 ∈ S but not both.
The following lemma describes the presence of this property in optimal strategies.

Lemma 4 There exists an optimal strategy S ∈ S that is nice.

Proof First, remark that we can generalize the statement of Lemma 2 for all nice
strategies S, since the proof does not use any particular property of (1) except that it
is nice. Therefore, it follows that any nice strategy guarantees that 4|X | leader nodes
are covered, either in the leader’s or the follower’s cycle packing; an optimal 3-cycle
packing on G[V \S] guarantees a consistent or cheating packing on every X -gadget,
covering all 4|X | leader nodes in these gadgets. This also immediately implies that, in
case a nice strategy S does not guarantee 4|X | + 1 covered leader nodes, there must
exist an optimal 3-cycle packing on G[V \S] that does not cover the final leader node
d.

Wenowargue by contradiction.Assume, that each S ∈ S is not nice. Since each nice
strategy guarantees 4|X | covered leader nodes, the strategies S ∈ S should guarantee
4|X | + 1 covered leader nodes. We will show this cannot be the case.

Let S ∈ S be a strategy that is not nice. It follows that there exists a set of gadgets
corresponding to W = W1 ∪ W2 ⊆ X such that

1. W1 := {x ∈ X | tx,1, tx,2, fx,1, fx,2 /∈ S}, and
2. W2 := {x ∈ X | tx,1, tx,2, fx,1, fx,2 ∈ S}.

Let strategy S′ be identical to S except that, for each x ∈ W , we set tx,1, tx,2 ∈ S′
and fx,1, fx,2 /∈ S′. Clearly, it follows that S′ is nice. The strategy S′ being nice, and
the cycle packing on G[V \ S′] being of maximum size while not covering d, imply
the following:
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1. Each clause node δc (c ∈ C) is in a cycle of Type 2 with a β-node, and
2. each gadget is consistent; this follows from Lemma 2, and the proof of Lemma 3,

case 1, as the arguments used to prove both apply to any nice strategy.

Given the cycle packing on G[V \ S′], we now construct a maximum size cycle
packingonG[V \S]which also does not coverd. First, these packings are identicalwith
respect to the cycles of Type 2, and the cycles of Type 1 in the gadgets corresponding
to y ∈ Y and x ∈ X \ W . Note that these gadgets are all consistent. Next, for gadgets
corresponding to a variable x ∈ W1, choose cycles such that the gadget is consistent
with TRUE. For the gadgets of variables x ∈ W2, the follower cannot choose any
cycle of Type 1 in the gadget.

The size of the cycle packing onG[V \S] as just described is 2|C |+8|Y |+8|W1|+
6|X \ W |. This is also an upper bound on the size of any maximum cycle packing on
G[V \ S]. Indeed, since each cycle of Type 2 or Type 3 has a length of 2 and covers
one node δc, c ∈ C , their combined size is at most 2|C |. The size of cycles of Type 1
per gadget is similarly bounded by 8 for gadgets corresponding to y ∈ Y and x ∈ W1,
6 for gadgets corresponding to x ∈ X \ W , and no cycles can be chosen in gadgets
corresponding to x ∈ W2. Since the size of the constructed cycle packing on G[V \ S]
matches the upper bound, it is a maximum size cycle packing. Note that this cycle
packing does not cover the node d. Since there is a maximum size cycle packing not
covering d, the strategy S does not guarantee 4|X |+1 covered leader nodes and either
we have S /∈ S, or an optimal strategy can at most guarantee 4|X | covered leader
nodes and each nice strategy S′ ∈ S. Either way, we obtain a contradiction, and the
proof of Lemma 4 is complete. 	


By Lemma 4, we are ensured that there is a nice strategy S within the class S. Given
a nice strategy S, we formulate the solution to Adversarial (2,2)-SAT accordingly: if
tx,1, tx,2 ∈ S and fx,1, fx,2 /∈ S, set x ∈ X to TRUE, and conversely, if tx,1, tx,2 /∈ S
and fx,1, fx,2 ∈ S, set x ∈ X to FALSE. We claim that this truth assignment for X is
such that there does not exist a truth assignment for Y satisfying E . We will now argue
by contradiction, and show that if there exists a truth assignment for Y satisfying E ,
then the strategy S only guarantees 4|X | covered leader nodes.

Given a truth assignment for Y satisfying E , we construct a maximum size cycle
packing only covering 4|X | leader nodes as follows. In each variable gadget, select
a packing consistent with the truth value of the corresponding variable. This adds
8|Y | + 6|X | to the size of the cycle packing. For each clause, select a cycle of Type
2. This requires that for each clause, there is at least one uncovered β node connected
through a 2-cycle. This is guaranteed in the followingway.Let x be a variable satisfying
clause c in the truth assignment. Without loss of generality, we assume it occurs in c
unnegated, and that it is the first unnegated occurrence. Thenwe have chosen a packing
consistent with TRUE for the variable gadget of x , and βx,t,1 remains uncovered. The
cycle between δc and βx,t,1 can be added to the cycle packing. In this way, we add
2|C | to the size of the packing. Note that d is left uncovered in this cycle packing.
The cycle packing is also of maximum size, 8|Y | + 6|X | + 2|C |, since it reaches the
upper bound on packing size. This can be easily checked, since the upper bound of the
cycle packing restricted to cycles of Type 1 is 8|Y | + 6|X |, i.e. consistent packings in
every gadget. The upper bound of the packing restricted to cycles of Type 2 and 3 is
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βx,t,1 βx,t,2tx,1 tx,2

βx,f,1 βx,f,2fx,1 fx,2

αx,1,1 αx,2,1αx,1,K−2 αx,2,K−2

αx,1,2αx,1,K−3 αx,2,2 αx,2,K−3

· · · · · ·

Fig. 5 The modified gadget corresponding to a variable x ∈ X for some fixed K ≥ 3

2|C |, since each cycle of these types is of length 2 and requires a node δc, of which
there are exactly |C |. The existence of a truth assignment for Y satisfying E thus
means the strategy S did not guarantee 4|X |+1 covered leader nodes, a contradiction.
We conclude that a truth assignment on Y satisfying E does not exist, i.e., that the
existence of a strategy S guaranteeing 4|X | + 1 covered leader nodes guarantees the
existence of a solution X to Adversarial (2,2)-SAT. 	


The result of Theorem 3 can actually be generalized through a slight modification
of the variable gadgets.

Corollary 1 DEC-S-KEP is Σ P
2 -complete for each fixed K ≥ 3.

Proof Fix some maximum cycle length K ≥ 3 and a variable x ∈ X ∪ Y . We modify
the variable gadget as follows: for i = 1, 2, we replace the node αx,i by K − 2 nodes
αx,i, j with j = 1, . . . , K − 2. All arcs with endpoint αx,i in the case of K = 3 now
have endpoint αx,i,1. All arcs with origin αx,i in the case of K = 3 now have origin
αx,i,K−2. Additionally, in case K ≥ 4, there is a path of length K − 3 consisting of
arcs (αx,i, j , αx,i, j+1) for j = 1, . . . , K − 3. Figure 5 illustrates the modified variable
gadget. Notice that for K = 3 we indeed return to our original variable gadget Gx .
The proof of the corollary for arbitrary fixed K ≥ 3, with the same target t = 4|X |+1,
is almost completely analogous to the proof of Theorem 3. The path between αx,i,1
and αx,i,K−2 ensures that each cycle satisfying the maximum cycle length is either of
Type 1, Type 2 or Type 3. The proof thus goes through unchanged, except for presence
of cycles of length K within the variable gadgets. In case K ≥ 4, cheating packings
are now strictly dominated by consistent packings, hence, in this case, the proof of
Lemma 3 reduces to a smaller number of cases. 	


4 The Stackelberg KEP gamewith K = 2

In this section, we consider the Stackelberg KEP game for K = 2. We will show that
DEC-S-KEP for K = 2 is polynomially solvable, i.e., we can compute an optimal
strategy S for the leader in polynomial time.

The proof of this claim heavily relies on the results by [14] and [13]. We will
show that the leader’s optimal strategy can be determined by solving the problem of
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computing a player’s best reaction in an N -KEG game, whenever the strategies of the
other N −1 players are considered fixed. Note that in an N -KEG game, the players are
restricted to play a strategy in which they contribute all internally unmatched pairs to
the common pool. This stands in contrast to the setting of the Stackelberg KEP game,
where the leader is allowed to withhold unmatched nodes from the follower.

In the following lemma, we show that contributing an extra node to the common
pool never decreases the minimum number of leader nodes matched in a maximum
size matching. As a result, strategies where the leader does not contribute one or more
nodes not covered by the internal packing are (weakly) dominated by the strategy
with an identical internal packing where the leader contributes all nodes that are not
covered. Thus, there always exists an optimal strategy where the leader contributes all
nodes that are not covered to the common pool.

For ease of notation, we reduce the directed compatibility graph to an undirected
graph G = (V , E), where E consists of edges {u, v} for which the arc set of the
directed counterpart contains both (u, v) and (v, u).

Lemma 5 Let G = (V = L ∪ F, E) be an undirected graph, S ⊆ L a strategy of the
leader and u ∈ S a node. Then:

wL
K (G[V \ S]) ≤ wL

K (G[(V \ S) ∪ {u}]).

Proof Clearly, as wK (G[V \ S]) ≤ wK (G[(V \ S) ∪ {u}]) ≤ wK (G[V \ S]) + 1, we
can restrict ourselves to a case distinction with two cases:

Case 1: wK (G[(V \ S) ∪ {u})]) = wK (G[V \ S]) + 1. In this case, any maximum
matching ofG[(V \S)∪{u}]matches u. Take an arbitrarymaximummatching
Mu of G[(V \ S) ∪ {u}], let e = {u, v} ∈ Mu for some v ∈ V \ S be
the edge that matches u. The matching Mu \ e is a maximum matching of
G[V \S]with fewer leader nodes (as u is a leader node). Thus, anymaximum
matching ofG[(V \S)∪{u}] corresponds to amaximummatching ofG[V \S]
covering fewer leader nodes. In particular, this implies wL

K (G[V \ S]) <

wL
K (G[(V \ S)∪{u}]), meaning that we actually increase our objective value

by submitting u.
Case 2: wK (G[(V \ S) ∪ {u}]) = wK (G[V \ S]). Clearly, we have that wL

K (G[V \
S]) ≥ wL

K (G[(V \ S) ∪ {u}]): any maximum matching of G[V \ S] is also
a feasible maximum matching for G[(V \ S) ∪ {u}]. We will now show by
contradiction that also wL

K (G[V \ S]) ≤ wL
K (G[(V \ S) ∪ {u}]) must hold.

Suppose that

wL
K (G[(V \ S) ∪ {u}]) < wL

K (G[V \ S]). (2)

In that case, let us consider a maximum matching Mu of G[(V \ S) ∪ {u}] covering
wL

K (G[(V \ S)∪{u}]) leader nodes. Then u is matched in Mu , as otherwise Mu would
be a maximum matching on G[V \ S] with fewer than wL

K (G[V \ S]) covered leader
nodes. Let e = {u, v} ∈ M for some v ∈ V \ S. The matching M ′ = Mu \ e is
a (wK (G[V \ S]) − 1)-cardinality matching in G[V \ S], thus non-maximum. This
implies that there exists an M ′-augmenting path in G[V \ S] due to [6].
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Weclaim that anyM ′-augmenting path starts in v; if not, let P be anM ′-augmenting
path inG[V \S] not starting in v. Then:M ′⊕P is awK (G[V \S])-cardinalitymatching
in G, where A ⊕ B := (A \ B) ∪ (B \ A) denotes the symmetric difference of A and
B. Then, the nodes u and v are still both unmatched, as we assumed P does not contain
v. This implies that

(
M ′ ⊕ P

)∪{{u, v}} is a (wK (G[V \S])+1)-cardinality matching
in G[(V \ S) ∪ {u}]. This contradicts our assumption that adding u to the graph does
not increase the size of a maximum matching.

Therefore, any M ′-augmenting path P = {v = v0, v1, . . . , vk = w} in G[V \ S]
must start in v. The set of matched nodes in the wK (G[V \ S])-cardinality matching
M ′ ⊕ P is almost the same as the set of matched nodes in Mu , except u in Mu is
exchanged for node w (the endnode of P unequal to v). This means M ′ ⊕ P is a
maximum matching on G[V \ S] and covers either wL

K (G[(V \ S) ∪ {u}]) (when
w ∈ L) or wL

K (G[(V \ S) ∪ {u}]) − 1 (when w ∈ F) leader nodes, which gives a
contradiction with the assumption made in Inequality (2).

Thus, in both cases, we obtain wL
K (G[V \ S]) ≤ wL

K (G[(V \ S) ∪ {u}]), which
finishes the proof. 	


Lemma 5 shows that whenever strategy S ⊆ L is chosen and u ∈ S is unmatched
with respect to a maximum matching on G[S], there is no incentive for the leader to
hide node u from the follower. Therefore, the leader can restrict itself to strategies
S ⊆ L for which G[S] allows a perfect matching.

Furthermore, we notice that in contrast to the setting of the N -KEG problem in
[13] where the independent agent is not allowed to use edges between nodes of the
same player (internal edges) the Stackelberg KEP game does not have this restriction.
Once again, we claim that for any strategy S′ ⊆ L for which the follower will choose
an internal edge {u, v} ⊆ L in the second phase of the Stackelberg KEP game, there
exists aweakly dominating strategy S ⊆ L forwhich the followerwill not pick internal
leader edges on the maximum size matching on G[V \ S].
Lemma 6 Let G = (V = L ∪ F, E) be an undirected graph. There exists an optimal
strategy S ⊆ L such that the follower chooses a maximum size matching on G[V \ S]
with no internal leader edges.

Proof Let S′ ⊆ L be an arbitrary feasible leader strategy. Let M be a maximum
size matching on G[V \ S′] covering exactly wL

K (G[V \ S′]) leader nodes. Let N =
M∩E(G[L])be the submatchingofM consistingof the internal leader edges.Consider
now the feasible strategy S = S′∪V (N ). Strategy S has the same guaranteed objective
value as S′, but now the follower does not pick any internal leader edges anymore.
This shows that there exists an optimal strategy for the leader in which the follower
will not pick any internal leader edges. 	


Notice that whenever we impose the hard constraint that the follower is not allowed
to use internal leader edges, the minimum number of covered leader nodes in a max-
imum size follower matching can never increase. Therefore, it also follows that the
strategic options of the follower are equivalent to those of an independent agent in
a suitably constructed N -KEG game. Together with this observation, we now have
all the necessary tools to derive the complexity of DEC-S-KEP restricted to pairwise
exchanges only.
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Theorem 4 DEC-S-KEP is polynomially solvable if the maximum cycle length K = 2.

Proof We consider a Stackelberg KEP game on the graph G = (V = L ∪ F, A) with
maximum cycle length K = 2. We now construct a (|F | + 1)-KEG with maximum
cycle length K = 2 as follows: let player 1 have the control over the leader node set
L , while the remaining |F | players each have control over a unique node from F .
We show that finding an optimal strategy in DEC-S-KEP corresponds to player 1’s
strategy in an arbitrary Nash equilibrium on (|F | + 1)-KEG.

Notice that the |F | players with only one node in the (|F | + 1)-KEG only have
one feasible strategy, namely to contribute their only node. Therefore, finding a Nash
equilibrium in (|F | + 1)-KEG reduces to finding a best response for player 1 in
(|F | + 1)-KEG. As a result, each equilibrium yields the same number of transplants
involving donor-recipient pairs of player 1.

Let us compute an arbitrary Nash equilibrium of (|F | + 1)-KEG. [13] show that
such an equilibrium exists, and can be computed in polynomial time. We show that
the strategy of player 1 in this equilibrium is an optimal strategy for DEC-S-KEP. In
DEC-S-KEP, the leader can deploy a strategy S ⊆ L where internal nodes are hidden
and unmatched, and the independent agent is allowed to use all edges in G[V \S] for
its global cycle packing. However, it follows from Lemma 5 and Lemma 6 that for
DEC-S-KEPwith K = 2, there exists an optimal leader strategy S ⊆ L such thatG[S]
allows a perfect matching, i.e. no nodes are kept internally while being unmatched,
and such that the follower can choose a maximum matching in G[V \S] covering the
fewest nodes from L while using only edges between nodes from different players.
The strategy of player 1 in the Nash equilibrium on (|F |+1)-KEG is therefore also an
optimal strategy for DEC-S-KEP. Thus, the optimal strategy for the leader in DEC-S-
KEP with K = 2 can be computed in polynomial time by using the results from [13].

	


5 Conclusion

Collaboration between countries, aswell as cooperation amonghospitals (both referred
to as agents), has the potential to improve the lives of patients in need of a kidney
transplant. Indeed, both the number of realized transplants and the quality of the
matches found, can be increased. However, when joining a collaborative effort, an
agent, in control of a number of recipient-donor pairs, faces the choice which pairs
to contribute, and which pairs to withhold. Different properties (strategy-proofness,
rationality) of various mechanisms have been investigated in the literature; here, we
have shown that for an individual agent the problem can be modelled as a Stackelberg
KEP game. We proved that in case the maximum cycle length is bounded by K ≥ 3,
the corresponding problem is Σ

p
2 -complete, while for K = 2 the problem is solvable

in polynomial time. Thus, we have shown that, in general, for an individual agent,
the problem of maximizing the number of their own transplants can be very complex
computationally. This result holds even in the absence of relevant real-life issues in
KEPs, such as non-directed donor chains (taking into account the presence of altruistic
donors), the lackof informationon the compatibilities present in thepool, and strategies
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of other agents.Analyzing the implications of these issues in StackelbergKEPgames is
interesting. Our result has the potential to weaken the need for deploying mechanisms
that are strategy-proof, as individual agents will find it challenging to identify their
own optimal strategy if K ≥ 3. So far, in our setting with a single leader and a single
follower, the case of K = 2 is easy, implying that a player can efficiently choose an
optimal strategy if the strategies of all other players are fixed. However, interesting
questions for multi-player settings remain. For instance, when the strategies of other
agents are unknown (and may depend on the first agent’s strategy), can the first agent
identify a strategy yielding the first agent a given number of transplants?

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10107-021-01748-6.
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