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MULTI-INDEX TRANSPORTATION PROB-
LEMS, MITP

An ordinary transportation problem has vari-
ables with two indices, typically corresponding to
sources (or origins, or supply points) and desti-
nations (or demand points). A multi-indez trans-
portation problem (MITP) has variables with three
or more indices, corresponding to as many differ-
ent types of points or resources or other factors.
Multi-index transportation problems were consid-
ered by T. Motzkin [22] in 1952; an application in-
volving the distribution of different types of soap
was presented by E. Schell [35] in 1955. MITPs
are also known as multidimensional transportation

problems [4]. There are several versions and special
cases of MITPs:

¢ The number k of dimensions may be fixed to
a small value; the resulting MITP is called a
k-indez transportation problem, kITP. Quite
naturally, the best studied cases are the
three-indez transportation problems (3ITPs),
also known as three-dimensional, or 3D
transportation problems.

¢ The type of constraints is determined by an
integer m with 0 < m < &, defining m-fold
kITPs (called symmetric MITPs in [16]; see
also [41, Chapt. 8]). The most common cases
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are azial MITPs, when m = k—1; and planar
MITPs, when m = 1; see below for details.

o Integer solutions may or may not be re-
quired. Integrality requirements, which give
rise to integer MITPs, may be necessary
since MITPs lack the integrality property en-
Joyed by ordinary transportation problems
(but see [22] for an exception).

¢ Unit right-hand sides, in conjunction with
integrality requirements, give rise to multi-
index assignment problems (MIAPs). (Some
authors use this term for integer MITPs
with integer right-hand sides; the present
terminology, consistent with that for ordi-
nary assignment and transportation prob-
lems, seems preferable.) MIAPs are hard to
solve: the 3IAP is already NP-hard by reduc-
tion from the 3-dimensional matching prob-
lem [17]. Even worse [6]: no polynomial time
algorithm for the 3IAP can achieve a con-
stant performance ratio, unless P = NP.

* The objective function is usually a simple lin-
ear combination of the variables, normally a
total cost to be minimized as in equation (1)
below. Alternatives, not considered in this ar-
ticle, may include bottleneck objectives ([36],
[11]), more general nonlinear objectives such
as in [34], or multicriteria problems [38).

¢ There may be additional constraints, such as
upper bounds on the variables, (capacitated
MITPs), variables fixed to the value zero
(MITPs with forbidden cells), or constraints
on certain partial sums of variables (MITPs
with generalized capacity constraints).

MITPs with linear objectives and without inte-
grality restrictions are linear programming prob-
lems with a special structure. The most extensively
studied integer MITPs are three-indez assignment
problems (3IAPs); see also Three-index assign-
ment problem.

Formulations. The following compact notation
([34], [31]) avoids multiple summations and multi-
ple layers of subindices. Let k > 3 denote the num-
ber of dimensions or indices, and K = {1,...,k}.
For i € K let A; denote the set of values of the
ith index. Let 4 = ®ickdi = A1 X -+ x A de-
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note the Cartesian product of these index sets,
that is, the set of all joint indices (k-tuples) a =
(a(1),...,a(k)) with a(i) € A; for all ¢ € K.
One variable z, is associated with each joint index
a € A. Thus, for example in a 3ITP with index sets
I, J and L, the variable z, stands for z;;¢ when
the joint index is a = (4, j, £)-

Given unit costs ¢, € R for all @ € A, a linear
objective function is

min Z CaZq (1)
acA
and the variables are usually restricted to be non-
negative:

za >0 foralla€ A (2)

Given the integer m with 0 < m < k, the de-
mand constraints of the m-fold kITP are defined

as follows. Let (kfm) denote the set of all (k—m)-
element subsets of K; an F € ( k _}_{m) is interpreted
as a set of k — m ‘fixed indices’. Given such an F
and a (k —m)-tuple g € Ap = ®crAy of ‘fixed
values’, let

A(F,g) = {a € A: a(f) = g(f), Vf € F}

be the set of k-tuples which coincide with g on the
fixed indices. The m-fold demand constraints are

> za=dry (3)

acA(F.9)

forallFE( ),geAF,

where the right-hand sides dpy are given positive
demands associated with the values g for fixed in-
dex subset F. These ‘demands’ may also denote
supplies or capacities when the indices represent
sources or some other resource type. When some
of these resources are in excess, the equality in
constraints (3) may be replaced with inequalities.
Problem (1)-(3) is a kKITP. Adding the integrality
restrictions

k—m

z, € N for alla € A, (4)

yields an integer MITP.

As mentioned above, the most common cases
are m = k — 1, defining axial MITPs; and m = 1,
defining planar MITPs. For the axial problems, the
notation may simplified by letting dig = dpg When
F = {i}. Note that each variable z, appears in
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the same number k of axial and planar demand
constraints; however there are only > ;i |4i| ax-
ial constraints, versus 3 ;cx [\ (iy |4#| planar
constraints. Of course, it is possible to combine
demand constraints with different values of m, so
as to formulate different types of restrictions (e.g.,
see [5] and [16]).

Reductions between MITPs are presented in
[16], where it is shown in particular that an m-fold
KITP can be reduced to a 1-fold kKITP for any m
(with 0 < m < k), thereby generalizing a result in
[14]. Thus, an algorithm that solves planar kITPs
is in principle capable of solving m-fold kITPs for
any m (with 0 < m < k).

Notice that any MITP with arbitrary right hand
sides can be transformed to a MITP with right
hand sides 1. This is a (pseudopolynomial) trans-
formation and simply involves duplicating a re-
source with a supply of ¢ units by ¢ unit-supply
resources. There seems to be little advantage in
doing so, except perhaps in converting an integer
MITP into one with 0-1 variables.

Another issue is the existence of feasible solu-
tions. For an axial MITP the requirement of equal
total demands Y, dig = >, djg for alli,j € K
is a necessary and sufficient condition for the ex-
istence of feasible solutions. Feasibility conditions
are more complicated for nonaxial problems; see
[40] for a review of results for planar problems.
See also [41, Chapt. 8] for properties of polytopes
associated with (integer) MITPs, including issues
of degeneracy.

Applications.

Transportation and Logistics. MITPs are used to
model transportation problems that may involve
different goods; such resources as vehicles, crews,
specialized equipment; and other factors such as
alternative routes or transshipment points. Thus
index sets A; and A; may represent destina-
tions and sources, respectively, and the other sets
As, Ay, ... these additional factors. The type of
‘demand’ constraints used will reflect the availabil-
ity of these factors and their interactions. Thus,
for example, an axial demand constraint (3) with
right-hand side d3; will be used for a vehicle type
i € As of which d3; units are globally available
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(at identical cost) to all sources and destinations,
while a constraint with F = {2, 3} will be used if
there are dpgy vehicles of type g(3) available at the
different sources g(2).

Interesting cases arise when each resource or fac-
tor £ € A; corresponds to a point P, in a metric
space, i.e., a set with a distance §, and the unit
costs ¢, are ‘decomposable’ as defined below. Each
joint index a € A may be interpreted as a cluster
of points among which transportation and other
activities are conducted. The unit cost ¢, reflects
the within-cluster transportation costs associated
with these activities; it is decomposable if it can
be expressed as a function of the distances be-
tween pairs of points in the cluster a. Examples
include the diameter max; ; 6(P; 4(;), Pj q(j)), when
all these activities are performed simultaneously;
the sum costs } _; ; 6(P; o(i), Pj,a(j)) When all activi-
ties are performed sequentially; and the Hamsilton-
1an path or path costs, when all points Pj, in the
cluster have to be visited in a shortest sequence.

Other interesting cases arise when one of the
indices denotes time. A simple dynamic location
problem [27] may be modeled as an axial kITP,
where index set A; may denote the set of facilities
(say, warehouses) to be located; A, that of candi-
date locations; and A3 that of time periods. The
costs ¢;;¢ may include discounted construction and
operating costs of these facilities. See [38] and [33]
for other applications of this type.

Twmetabling. Other problems involving time and
which can be formulated as MITPs arise in
timetabling or staffing applications. To illustrate,
consider the following generic situation. Given are
N employees (index i), each of which can be as-
signed to one of M tasks (index j) during each of
T time periods (index k). Moreover, for each pair
consisting of a task and a time period a number
Tk is given denoting the number of employees re-
quired for task j in period k. Also, a number r;;
is given denoting the number of periods that task
J requires employee i. An employee can only be
assigned to one task during each time period. Fi-
nally, there is a cost-coefficient ¢;;x which gives the
cost of employee ¢ performing task j in period k.
This problem is called the multiperiod assignment
problem in [21] (see also the references contained
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therein). To model this as a planar 3ITP, let 4,
be the set of employees; As the set of tasks; Az the
set of time periods;

Tk for F = {2>3}’ Vg = (],k),
drg=1q1 for F ={1,3}, Vg=(k);
Tij for F = {172}7 Vg = (37.7);

and require the decision variables to be in {0,1}.
A special case arises when r;; = 1 for all j,k and
N = M. The polyhedral structure of the resulting
planar 3ITP is investigated in [7]. Other references
dealing with timetabling problems formulated as
MITPs are [15], [10] and [12].

Multitarget Tracking. Consider the following (ide-
alized) situation. N objects move along straight
lines in the plane. At each of T time instants a scan
has been made, and the approximate position of
each object is observed and recorded. From such a
scan it is not possible to deduce which object gen-
erated which observation. Also, a small error may
be associated with each observation. A track is de-
fined as a T-tuple of observations, one from each
scan. For each possible track a cost is computed
based on a least squares criterion associated with
the observations in the track. The problem is now
to identify N tracks while minimizing the sum of
the costs of these tracks. This problem is called the
data-association problem in [25]. It can be modeled
as an axial integer TTAP as follows: let A; be the
set of observations in scan 7,7 = 1,...,T, and let
dig=114i=1,...,T,g =1,...,N. Not surpris-
ingly, this problem is NP-hard already for T = 3
(see [37]; notice however that this does not follow
from the NP-hardness of 3IAP due to the struc-
ture present in the cost-coefficients in the objective
function of multitarget tracking problems). Other
references dealing with target tracking problems
formulated as axial MIAPs are [23] and [24]; see
also [20]. -

Tables with Given Marginals. Other statistical
applications of MITPs require finding multidi-
mensional tables with given sums across rows
or higher-dimensional planes, as specified in con-
straints (3). The right-hand sides dry of such con-
straints are often known as marginals. In a simple
application [3] arising in the integration of surveys




and controlled selection, each index set represents
a population from which a sample is to be drawn.
A (joint) sample is a k-tuple, one from each popu-
lation. The marginals are specified marginal prob-
ability distributions over each population, giving
rise to axial demand constraints. Given sample
costs c,, the problem is to find a joint probability
distribution, defined by (z,), of all the samples,
consistent with these marginal distributions and
of minimum expected cost (1).

In contrast, problems of updating input-output
matrices (see [34] and references therein) typically
have nonlinear objectives. In such problems, given
are a k-dimensional array B of data (for exam-
ple, past input-output coefficients) and arrays d
of marginals (for example, forecast aggregate co-
efficients) with appropriate dimensions. The prob-
lem is to determine values z,, the updated array
entries, satisfying the demand constraints corre-
sponding to the given marginals, and such that the
resulting updated array X = (z,) differs as little
as possible from the given array B, as specified by
an appropriate (nonlinear) objective function. A
(nonlinear) MITP arises when the values z, are
constrained to be nonnegative, a natural require-
ment in many contexts.

Other Applications. include an axial integer 3ITP
model for planning the launching of weather satel-
lites [27], and an axial integer S5IAP arising in rout-
ing meshes in circuit design [9].

Solution Methods. As noted above, MITPs are
linear programming problems with a special struc-
ture. There are several proposals for extensions
of LP (transportation) algorithms to MITPs (e.g.,
[13], [4] for 3ITPs and [1] for a 4ITP).

As also mentioned earlier, integer MITPS are
hard to solve. Exact algorithms have been pro-
posed for the axial integer 3IAP (see Three-index
assignment problem) and for the planar integer
3IAP (see [39] and [19]). Other exact approaches
for integer MITPs rely on structure that is present
in the particular application considered (see, e.g.,
[12)).

Several methods have been proposed to obtain
good approximate solutions to integer MITPs. In
[21] results are reported for a rounding heuristic on
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some medium-sized planar integer 3ITPs. A tabu
search algorithm for this problem is described in
[18]. Heuristic solution approaches based on La-
grangian relazation are proposed in [26], [28] and
[29] for multitarget tracking problems.

One major difficulty with these exact or ap-
proximate solution methods may be the sheer
size of MITP formulations; if, for example, all
|A;] = n then an m-fold KITP has n* variables
and (:1) nk—™ constraints. In contrast, the two ap-
proaches sketched below yield feasible solutions to
azial MITPs much more quickly than simply writ-
ing down all the cost coefficients. In particular,
these algorithms only produce the nonzero vari-
ables z, and their values; all other variables are
zero in the solution. In addition, this solution is
integral if all demands are integral. Of course, the
effectiveness of these methods relies on some as-
sumptions on the cost coefficients ¢,, assumptions
which are verified in several applications.

A Greedy Algorithm for Azial MITPs. The greedy
algorithm below (a multi-index extension of the
North-West corner rule) finds a feasible solution
to axial MITPs in O(k Y, |A;|) time, which is (for
fixed k) linear in the size of the demand data d;,.
This solution is in fact optimal if the cost coeffi-
cients are known to satisfy a ‘Monge property’ {3],
[31], [32] defined below. (For k = 3, this greedy
algorithm is already described in [4] to obtain a
basic feasible solution).

Consider the axial kITP with equality con-
straints (3) and assume that each A; =
{1,...,|4;|}. Recalling that the demands are de-
noted d;g, assume that 3° ¢ 4. dig = 3 c 4, d1g for
all i € K, a necessary and sufficient condition for
the problem to be feasible.

PROCEDURE greedy MITP algorithm
WHILE (3, 4, dig >0 foralli € K) DO
let a(i) = min{g € A;: dig > 0};
let A = min{d.-,a(,-): i€ K};
let o = A;
FOR i€ K DO let d;_a(.') = d.',a(,') —A;
RETURN z
END

A greedy algorithm for axial MITPs.

A Monge Property. The join a Vb and meet a Ab
of a,b € A are
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(a V b); = max{a(i), b(i)},
(a A b); = min{a(i),b(i)} for alli € K.

The cost coefficients (c,) satisfy the Monge prop-
erty if

Cavb + Canp < ¢y +¢p foralla,be A,

Note that this is just the submodularity of the func-
tion ¢: A — R defined on the product lattice A,
see [3], [31], [32]. These references show that the
above greedy algorithm returns an optimal solu-
tion for all feasible demands if and only if the cost
function satisfies the Monge property. The latter
two references also extend the greedy algorithm

i) to the case of forbidden cells when the non-
forbidden cells form a sublattice of A; and

il) so that it returns an optimal dual solution.

They also show that optimizing a linear function
over a submodular polyhedron is special case of the
dual problem. It is shown in [32] that the primal
problems are equivalent to the ‘submodular linear
programs on forests’ of [8].

Cost functions ¢ with the Monge property
include typical decomposable costs (as defined
above) when all the points are located on a same
line or on parallel lines (one line for each factor
type A;). For these problems, the greedy algorithm
above amounts to a ‘left to right sweep’ across the
points.

Hub Heuristics for Axial MITPs. The basic idea
([30], extending earlier work on axial 3IAPS [6] and
MIAPs [2] with decomposable costs) is to solve a
small number of ordinary transportation problems
and to expand their solutions into a feasible solu-
tion to the original MITP. For a large collection of
decomposable costs arising from applications, the
objective value of this feasible solution is provably
within a constant factor of the optimum.

Given an index h, called the Aub, determine,
for each index ¢ # h, a feasible solution to the
ordinary transportation problem defined by sup-
plies (dij)j,eA(i) and (dhg)geA(h)~ The Expand pro-
cedure below then takes as inputs these solutions
y = (¥*)izn and expands them into a feasible
solution (™ to the axial MITP. Its running time

is O(|An| Xsz 14il)-
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PROCEDURE Expand(h, y™)
FOR g :=1 TO ny DO
q:=0
a(i):=1fori € K\ h;
WHILE (g < da,q) DO
let £ be such that
yﬁ(z),g =min{y;)4: T # h};
zah = yi(l).g;
Ya(r)g °= Ya(r)hg — o) for all r € K \h;
a(f) :=a()+1;

¢:=q+al;
RETURN z®
END

The Expand procedure for axial MITPs.

In the hub heuristics for decomposable costs, the
ordinary transportation problems use as cost coef-
ficients the distances 0(F;;, Prg) between the cor-
responding points P;; and Py, in the metric space.
The expanded MITP solution z® would be opti-
mum if the cost function was that of the star with
center h, namely if cg = 3,5 6(Pia(), Pha(h))-
The triangle-inequality property of the distance &
allows one to bound the cost penalty from using
this h-star cost function instead of the actual de-
composable cost function.

In the single hub heuristic, one chooses a hub
h € K; solves these k — 1 transportation problems;
inputs their solutions y{*) to Expand; and simply
outputs the resulting MITP solution z(»). If the
distance ¢ satisfies the triangle inequality, the cost
of this solution z(® is no more than k — 1 times
the optimal cost, in the worst case, for many com-
mon decomposable cost functions. The multiple-
hub heuristic is an obvious extension whereby one
performs the single-hub heuristic k times, once for
each h € K, and retains the best solution. This
amounts to solving (¥) ordinary transportation
problems. Under the same assumptions as above
and for many common decomposable cost func-
tions, the cost of the resulting solution is less than
twice the optimum cost in the worst case.

See also: Motzkin transposition theorem,;
Minimum concave transportation prob-
lems; Stochastic transportation and location
problems.
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MULTI-OBJECTIVE COMBINATORIAL OP-
TIMIZATION, MOCO

It is well known that, on the one hand, combina-
torial optimization (CO) provides a powerful tool
to formulate and model many optimization prob-
lems,]:n the other hand, a multi-objective (MO)
approach is often a realistic and efficient way to
treat many real world applications. Nevertheless,
until recently, Multi-objective combinatorial opti-
mization (MOCO) did not receive much attention
in spite of its potential applications. One of the
reason is probably due to specific difficulties of
MOCO models. We can distinguish three main dif-
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ficulties. The first two are the same as those exist-
ing for multi-objective integer linear programming
(MOILP) problem (cf. Multi-objective integer
linear programming), i.e.

o the number of efficient solutions may be very
large;

¢ the nonconvex character of the feasible set re-
quires to device specific techniques to gener-
ate the so-called ‘nonsupported’ efficient so-
lutions (cf. Multi-objective integer linear
programming).

A particular single CO problem is characterized by
some specificities of the problem, generally a spe-
cial form of the constraints; the existing methods
for such problem use these specificities to define
efficient ways to obtain an optimal solution. For
MOCO problem, it appears interesting to do the
same to obtain the set of efficient solutions. Con-
sequently, and contrary to what is often done in
MOLP and MOILP methods, a third difficulty is
to elaborate methods avoiding to introduce addi-
tional constraints so that we preserve during all the
procedure the particular form of the constraints.
The general form of a MOCO problem is

"glrlég' 2e(X) = e X,
k=1,...,K,
(P)  where S=DnB"
with  X(n x 1),
y B ={0,1}

and D is a specific polytope characterizing the CO
problem: assignment problem, knapsack problem,
traveling salesman problem, etc.

There exists several surveys on MOCO; some
are devoted to specific problems (i.e., the partic-
ular form of D): the shortest path problem [§],
transportation networks [2], and the scheduling
problem (6], [7]; the survey [9] is more general
examining successively the literature on MO as-
signment problems, knapsack problems, network
flow problems, traveling salesman problems, loca-
tion problems, set covering problems.

In the present article we put our attention on
the existing methodologies for MOCO. First we
examine how to determine the set E(P) of all
the efficient solutions and we distinguish three ap-
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