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a b s t r a c t

We consider the simultaneous scheduling of multiple sport leagues, with interdependencies arising
from teams in different leagues belonging to the same club. Teams from the same club share the same
venue with limited capacity. We minimize the total capacity violation in polynomial time when each
league has the same, even number of teams. We introduce two generalizations: one where teams from
a club have to play according to the same pattern, and one where club capacities differ throughout
the season.

© 2020 Published by Elsevier B.V.

1. Introduction

Every sports competition needs a schedule, stating who will
play whom, when, and where. Depending on which constraints
need to be taken into account, scheduling a single league may
already be quite a challenge (see e.g. [2,6,15]). However, while
professional sports usually have only a handful of leagues, in
amateur sports or youth competitions, the number of leagues
and matches can be very large. For instance, in the Belgian soc-
cer association, each province is responsible for scheduling the
matches of its (youth and amateur) teams; a single province
may harbor hundreds of clubs, that jointly may have over 5000
teams, distributed over hundreds of leagues, yielding over tens
of thousands of matches in one season. In these leagues, clubs
typically have several teams (e.g. based on age or skill of the
players); however, all teams from the same club share the same
infrastructure. This creates a capacity problem at each club: a club
has a bound on the number of matches it can host at each point
in time (which typically follows from its number of terrains).
Observe that these capacity constraints create interdependencies
between the leagues, such that it becomes a challenging problem
to schedule all leagues while taking these capacities into account.

With respect to scheduling multiple leagues simultaneously,
the literature is sparse. Kendall [11] considers the problem of si-
multaneously scheduling the matches in four different leagues of
the English soccer competition. However, the focus is only on two
rounds, played on Boxing day and New Year’s day. During these
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rounds, each team must play one home match and one away
match such that the two opponents of each team are different,
and that some pairs of teams do not meet at all. In all leagues, the
objective is to minimize the total distance traveled by the teams
in those two rounds. The solution offered, however, does not gen-
eralize to scheduling the entire season. Grabau [8] describes the
scheduling of a recreational softball competition with 74 teams,
split over 8 leagues, and competing on 12 fields. The scheduler
must adhere to several intertwined scheduling rules, while si-
multaneously ensuring that the players play their allotment of
matches. Burrows and Tuffley [4] describe a scheduling problem
for a competition played in two divisions. The authors try to
achieve a maximal number of so-called common fixtures between
clubs, which occur if their teams in division one and two are
scheduled to play each other in the same round. Schönberger [16]
introduces the so-called championship timetabling problem, which
involves several leagues that are scheduled simultaneously. Two
types of inter-league constraints are considered: limited venue
capacity as well as player substitution opportunities between
several teams of a club. Computational experiments involving
a mixed-integer linear program illustrate that even finding a
feasible solution for a very small instance with only two leagues
of six teams each is a time-consuming task.

In this paper, we study the multi-league scheduling problem
as faced by the league organizer. Clearly, when scheduling a
single league in professional sports, the precise round in which
a particular match takes place can be quite important. However,
such matters are not relevant when scheduling thousands of
matches for hundreds of leagues. In order to cope with this
huge number of matches, typically, a league organizer uses the
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Fig. 1. A HAPset for a league consisting of 6 teams.

Fig. 2. A schedule compatible with the HAPset from Fig. 1 where team i has
been assigned to hi , i = 1, . . . , 6.

following approach. First, the teams are clustered into leagues of
even size. Common practice is to (i) use a geographical clustering,
ensuring that teams of the same strength/age category are in
a same league, and (ii) to avoid teams of the same club to be
present in the same league, see [17] for a discussion of the
problem of grouping teams into leagues. Leagues of even size
make sense, as they allow each team to play on each round;
and although the total number of teams may not be an exact
multiple of the league size, with an even league size the vast
majority of the teams will be still able to play each round. Second,
the league organizer no longer assigns individual matches to
individual rounds. Instead, using a prespecified set of so-called
Home-Away patterns (in short HAPs, see Section 2 for terminol-
ogy) that is valid for each league, the league organizer assigns
teams to these HAPs. Next, combining this assignment with a
compatible opponent table, which specifies each team’s opponent
for each round, the schedule follows.

As an illustration of the latter procedure, consider the HAPset
(i.e., a set of HAPs) depicted in Fig. 1; it reflects a particular
HAPset for a league consisting of 6 teams, where each team
plays against each other team twice. Although a priori, the given
HAPset may allow different schedules (or none), Fig. 2 gives one
such schedule compatible with the HAPset from Fig. 1. The issue
of deciding whether a schedule exists for a given HAPset is a
well-researched topic (see [3,7,10,14]); we do not go into details
here.

Our contribution focuses exclusively on assigning teams to
HAPs. Since such assignment dictates when each team plays
home, it specifies for each club how many matches are played
at the club’s venue in each round. This is important, since the
capacity of a club in terms of the number of matches it can host
in a round is typically bounded. In fact, a capacity is given for
each club; in practice this number follows from the number of
available pitches, the set of possible starting times, and the avail-
ability of material and referees. Our goal is to find, for each league,
an assignment of teams to HAPs minimizing the total capacity
violation over the clubs. We refer to the resulting problem as
the Multi-league Scheduling Problem (MSP) (see Section 3 for a
precise problem description).

We present a polynomial-time algorithm for the MSP
(Section 4). Further, we show that, for a league consisting of at
least four teams, the problem becomes difficult when all teams
of each club must play according to the same pattern, or when
club capacities differ throughout the season (Section 5).

2. Terminology and assumptions

Each team belongs to a club, and each club has a venue. When
a team plays at its club’s venue, the team plays home, otherwise
the team plays away. A double round robin tournament (DRR) is a
tournament where each team meets each other team twice. This
is a typical format in many sport competitions, such as soccer,
basketball, volleyball, hockey; each team meets each other team
once home and once away.

When scheduling a tournament, the matches must be allo-
cated to rounds in such a way that each team plays at most
one match in each round (typically, a round corresponds to a
weekend). Since, in our case the number of teams k is even, at
least 2(k − 1) rounds are required to schedule a DRR; if that
number is attained, it is called a compact DRR.

The sequence of home and away matches according to which a
team plays in a tournament, is referred to as a Home-Away pattern
(in short, HAP). A HAP is represented by a vector consisting of
2(k − 1) symbols, k − 1 of which are an ‘H’, and k − 1 of which
are an ‘A’; these obviously refer to the home matches and away
matches. A Home-Away pattern set (HAPset) corresponds to the
set of HAPs, one for each team in the tournament. We say that
a HAPset is feasible if there exists at least one schedule that is
compatible with the HAPset (i.e. for each match i vs. j in round r ,
team i has an ‘H’ in its HAP and team j has an ‘A’).

Two HAPs h and h′ are complementary if whenever the team
assigned to HAP h plays home, the team assigned to HAP h′ plays
away and vice versa. A complementary HAPset is a set that only
consists of complementary pairs of HAPs. For example, the HAPset
depicted in Fig. 1 is a feasible, complementary HAPset with three
pairs of complementary HAPs (pair 1: h1 and h6; pair 2: h2 and
h3 pair 3: h4 and h5).

In this work, we make a number of assumptions. We assume
that each league has the same even number of teams. We also
assume that the league organizer uses the same complementary
HAPset for each league. This is common practice in competitions
where there are few considerations, besides capacity issues. In
Section 4, it will become clear that the choice of a particular
(complementary) HAPset is irrelevant. Finally, we exclusively deal
with compact DRRs for an even number of teams. Consequently,
all leagues are played simultaneously, and each team plays either
home or away in each round.

3. Problem description

We are given a set T of teams (n = |T |), a set L of leagues
(m = |L|), and a set C of clubs. Also given are two partitions
of the set T : one partition {T̄1, . . . , T̄m} of the set T indicates
which teams belong to which league; notice that, for each ℓ ∈ L,
|T̄ℓ| = k with k even since each league consists of the same even
number of teams. Another partition of the set T is {T̂1, . . . , T̂|C |},
which describes which teams belong to which club. Here we have
nc = |T̂c | for c ∈ C , as clubs can consist of any number of teams.
Of course

∑
c∈C nc = km. We are also given k HAPs, each of

length 2(k−1) that jointly form a feasible, complementary HAPset
denoted by H. The set of rounds is {1, 2, . . . , 2(k − 1)} and is
denoted by R. Finally, each club c ∈ C has a given fixed capacity
δc , which corresponds to the number of matches it can host in
each round.

Capacity violations happen whenever for any club and any
round the number of teams of a club that play home exceeds the
capacity of the club. The violation of a club in a round is measured
by a scalar value that is either zero (if there is no violation) or
equal to the number of teams that play home in that round minus
the club’s capacity (if there is a violation).
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The multi-league sports scheduling problem (MSP) is now to
find an assignment of teams to HAPs, such that the total capacity
violation (i.e. the summation of violations over all clubs and all
rounds) is minimized.

Let us introduce binary variables xt,h which equal one if team
t ∈ T is assigned to HAP h ∈ H and zero otherwise, and
auxiliary variables zc,r that represent the amount of violation of
club c ∈ C in round r ∈ R. An assignment x is feasible iff the
teams in each league are assigned to different HAPs. Given the set
of HAPs and the set of rounds, we compute (in a pre-processing
step) parameters Uh,r which equal one if the team assigned to
HAP h ∈ H plays home in round r ∈ R, and zero otherwise. The
following mixed integer program formulates MSP.

vIP = min
∑
c∈C

∑
r∈R

zc,r (1)

s.t. ∑
t∈T̄ℓ

xt,h = 1 ∀ℓ ∈ L, h ∈ H (2)

∑
h∈H

xt,h = 1 ∀t ∈ T̄ℓ, ℓ ∈ L (3)

zc,r ≥

∑
t∈T̂c

∑
h∈H

xt,hUh,r − δc ∀c ∈ C, r ∈ R (4)

zc,r ≥ 0 ∀c ∈ C, r ∈ R (5)

xt,h ∈ {0, 1} ∀t ∈ T , h ∈ H (6)

This formulation aims to minimize total capacity violation. Con-
straints (2)–(3) enforce an assignment of teams to HAPs, while
Constraints (4)–(5) determine the number of violations of each
club in each round. We point out that this mixed integer program
can be modified to accommodate situations that are slightly more
general than MSP; for instance, situations where each league has
its own (given) HAP-set, or where not all leagues play in all
rounds can be formulated with minor modifications of (1)–(6).

3.1. The linear programming relaxation

When replacing constraints (6) by xt,h ≥ 0 for each t and h, the
LP-relaxation of formulation (1)–(6) arises; we denote the corre-
sponding value by vLP . One might wonder whether the extreme
vertices of the polytope corresponding to the LP-relaxation of
(1)–(6) are integral. That is not the case, as witnessed by the
following example.

Example 1. We have n = 20 teams, distributed over m = 5
leagues of size k = 4, and belonging to six clubs: in this instance,
T = {t1, . . . , t20}, C = {c1, . . . , c6} and L = {ℓ1, . . . , ℓ5}. The
partition of teams into clubs, as well as the club’s capacities, is
given in Fig. 3a, and the partition of teams into leagues is given
in Fig. 3b. The HAPset is as follows:

H =

⎧⎪⎨⎪⎩
h1 = { H, A, H, A, H, A },

h2 = { A, H, A, H, A, H },

h3 = { H, A, A, A, H, H },

h4 = { A, H, H, H, A, A }

⎫⎪⎬⎪⎭ .

For this instance, we find as an optimal basic solution to the
LP-relaxation of (1)–(6):

x∗

1,2 =x∗

2,1 = x∗

7,2 = x∗

8,3 = x∗

9,4 = x∗

11,4 = x∗

12,2 = x∗

13,1

=x∗

14,3 = x∗

15,1 = x∗

17,3 = x∗

18,1 = x∗

19,2 = x∗

20,4 = 1,
x∗

3,1 =x∗

3,2 = x∗

4,3 = x∗

4,4 = x∗

5,1 = x∗

5,2 = x∗

6,3 = x∗

6,4 = x∗

10,3

=x∗

10,4 = x∗

16,3 = x∗

16,4 = 0.5,

Fig. 3. The data associated with Example 1.

while the remaining x∗

t,h variables are zero; the values of the z∗
c,r

variables follow easily. The objective value of this solution to the
linear programming relaxation, i.e., vLP = 15.

3.2. A combinatorial lower bound

Let us now consider a combinatorial lower bound for vIP .
Observe that, in any HAP, there are k − 1 ‘H’s. Hence, the total
number of home matches of teams belonging to a club c ∈ C
equals (k−1)nc . Total capacity of a club, summed over the rounds,
equals (2k−2)δc . Clearly, if (2k−2)δc < (k−1)nc , or equivalently,
when δc < nc

2 , there will be violations for club c. Let us define
C−

= {c ∈ C | δc < nc/2}. We claim that for each c ∈ C− the
difference between the number of home matches to be played by
teams of club c , and the total capacity of club c is a lower bound
for the number of violations of club c , i.e., club c ∈ C− will have at
least (k−1)nc−(2k−2)δc = (2k−2)( nc2 −δc) violations. To capture
this number of violations we define the following quantity:

Q ≡ 2 (k − 1)
∑
c∈C−

(nc

2
− δc

)
. (7)

The discussion above implies the following lemma.

Lemma 1. Q ≤ vIP .

We will show in Section 4 that Q = vLP = vIP ; in the next
theorem, we prove the first of these equalities.

Theorem 1. Q = vLP .

Proof. Consider a solution (x∗, z∗) that is optimal with respect to
the LP-relaxation of (1)–(6). For each club c ∈ C , we have (by
summing constraints (4) over the rounds):∑
r∈R

z∗

c,r ≥

∑
t∈T̂c

∑
h∈H

x∗

t,h

(∑
r∈R

Uh,r

)
−2(k−1)δc = (k−1)(nc −2δc).

This implies∑
r∈R

z∗

c,r ≥

{
0 if c ∈ C \ C−

2 (k − 1)
( nc

2 − δc
)

if c ∈ C−

Thus, the following inequality holds:

vLP =

∑
c∈C

∑
r∈R

z∗

c,r ≥

∑
c∈C−

2(k − 1)(
nc

2
− δc) = Q . (8)

Now, consider solution (x̂, ẑ) where x̂t,h =
1
k , ∀t ∈ T , h ∈ H.

Due to the fact that the HAPset is feasible, it follows that in each
round k

2 HAPs have an ‘H’, while the remaining k
2 HAPS have an

‘A’. Thus, for each t ∈ T , we have that
∑

h∈H x̂t,h =
1
k ·

k
2 =

1
2 , and

hence the (fractional) number of home matches of a club c ∈ C in
each round equals nc

2 , leading to a violation in a round equaling:
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max
{ 1
2nc − δc, 0

}
. Thus, the objective value of this solution is

exactly Q , which implies vLP ≤ Q . Together with (8), the result
follows. □

In light of Theorem 1, one may wonder whether it is possible
to round an optimal, fractional LP-solution into an optimal inte-
gral solution. That, however, does not seem to be straightforward.

Indeed, consider the LP-solution discussed in Example 1, a
solution in which there are no violations for club c1. The non-zero
variables associated to teams of club c1 are x∗

1,2 = x∗

2,1 = 1 and
x∗

3,1 = x∗

3,2 = x∗

4,3 = x∗

4,4 = 0.5. A straightforward rounding of this
solution would imply that teams t1 and t2 are assigned to com-
plementary HAPs h1 and h2, and therefore teams t3 and t4 should
also be assigned to complementary HAPs (otherwise, club c1 will
have violations in some rounds). But that cannot be achieved by
any straightforward procedure that rounds the current fractional
solution.

In the next section we provide a polynomial-time algorithm
that finds an optimal solution to MSP.

4. A polynomial-time, exact algorithm for MSP

In this section, we exhibit Algorithm 1 that outputs an optimal
solution to MSP in polynomial time. Interestingly, the values of
the capacities δc do not impact the solution; in other words, the
solution found by Algorithm 1 is optimal for any capacities δc .
Informally, this solution is one where the home matches of teams
from the same club are as balanced over the rounds as possible.
Before proving correctness of Algorithm 1, we first illustrate how
Algorithm 1 works on the instance given in Example 1.

Algorithm 1
Input: An instance of MSP.
1: Create a new instance of MSP as follows. Partition, arbitrarily,

each club c into ⌊nc/2⌋ arbitrary pseudo clubs of size two, and
add the remaining team (if there is one) to a new club c ′.

2: Partition club c ′ into nc′/2 arbitrary pseudo clubs of size two.
Set the capacity of all pseudo clubs in the new instance to
one. Notice that in the new instance the assignment of teams
to leagues remains unchanged.

3: Construct the following graph G based on the new instance:
there is a vertex for each league ℓ ∈ L and there is an edge
for each pseudo club that links the two vertices/leagues where
the two teams of that pseudo club play. Note that G will be a
multi-graph with m vertices and km/2 edges.

4: Consider a 2-factorization of G. Associate each 2-factor with
a pair of complementary HAPs. This leads to a feasible as-
signment x: in each 2-factor, each edge is associated with
two teams from a pseudo club, and each vertex is associated
with two teams in a league that follow the associated pair of
complementary HAPs.

Output: An assignment of teams to HAPs: x.

Following steps 1 and 2 of Algorithm 1, we first create a new
instance. The clubs c1 and c4 consist of an even number of teams
and thus we can split them into four clubs (so-called pseudo
clubs) of two teams as follows: T̂c1a = {t1, t4}, T̂c1b = {t2, t3},
T̂c4a = {t11, t12} and T̂c4b = {t13, t14}. The remaining clubs consist
of an odd number of teams. For instance club c6 consists of five
teams, therefore we split it into two clubs of size two and add the
remaining team to the new club c ′. Hence, T̂c6a = {t16, t17} and
T̂c6b = {t18, t19} and team t20 is added to club c ′. We repeat the
process for the other clubs with odd number of teams. As a result,
we have T̂c2a = {t5, t6}, T̂c3a = {t8, t10} and T̂c′ = {t7, t9, t15, t20}.

Fig. 4. The graph associated with Example 1.

Finally, we split club c ′ as follows: T̂c′a = {t7, t9} and T̂c′b =

{t15, t20}.
Then, in steps 3 and 4 of Algorithm 1, we construct a graph

G and identify a 2-factorization of G (see Fig. 4a; recall that a
2-factor is a collection of cycles spanning all vertices of G, and a
2-factorization is a partitioning of the edges of G into 2-factors).
Now, pick one of the 2-factors and associate it with pair (h1, h2)
and the other 2-factor with pair (h3, h4). To assign teams to HAPs
we start with one arbitrary team that is visited in the first 2-
factor, for instance team t1, and assign it to h1. We traverse
the 2-factor in an arbitrary direction (starting from the edge
containing team t1) and enforce the two teams associated to each
edge to HAPs h1 and h2 (see Fig. 4b). Thus, if t1 → h1 (t1 is
assigned to h1), t4 → h2, t10 → h1, t8 → h2, t11 → h1, t12 → h2,
t2 → h1, t3 → h2, t14 → h1 and t13 → h2. Similarly we assign
the teams in the other 2-factor to HAPs h3 and h4 (t7 → h3, t9 →

h4, . . . ).
The capacities of clubs c1, c4 and c5 are never violated. Club c2

has one-unit violations at rounds 1, 5 and 6; club c3 has one-unit
violations at rounds 2, 3 and 4; club c6 has one-unit violations at
rounds 2, 3 and 4 and two-unit violations at rounds 1, 5 and 6.
The total violation for this solution is 15.

Theorem 2. Algorithm 1 solves MSP in O(nm)-time.

Proof. We first comment on the different steps in Algorithm 1.
Clearly, since the league size k is even, the construction in Steps 1
and 2 implies that each pseudo club contains exactly two teams.
Further, the construction in Step 3 implies that G is k-regular, and
thus 2-factorable (since k is even). Notice that the case where two
teams of the same club play in the same league amounts to a loop
in G, and will result in these two teams receiving complementary
HAPs. We refer to Lovász and Plummer [13, Theorem 6.2.4] for
details regarding finding such a 2-factorization.

We now show correctness of Algorithm 1. Consider a solution
outputted by Algorithm 1. Each pair of teams that make up a
pseudo club use complementary patterns, and hence, they jointly
play one home match in each round. Thus, if δc ≥

nc
2 , i.e., if club

c ∈ C\C−, there are no violations for club c. In addition, if δc < nc
2 ,

i.e., if c ∈ C− then the number of violations of club c equals:

2 (k − 1) (nc/2 − δc) .

Using (7), it follows that the value of the solution found by
Algorithm 1 equals Q , and is thereby necessarily optimal. Note
that this implies the second equality of Theorem 1.

To establish the complexity of Algorithm 1, observe that in
the first step, a new instance is generated where each club con-
sists of exactly two teams. This is done in O(n)-time. In the
second and third steps, a graph G is constructed which is done in
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O(n)-time and then a 2-factorization of G is computed which
is done in O(nm)-time (see the algorithm provided by Lovász
and Plummer [13, Theorem 6.2.4]). Finally, the 2-factorization is
mapped to a solution for the original instance, which is done in
O(n)-time. Therefore, the algorithm runs in O(nm)-time. □

Interestingly, from the proof of Theorem 2, we observe that the
given HAPset H (as long as it is complementary) has no impact,
either on the optimal solution or on the minimum violation.
Further, the proofs of Theorems 1 and 2 imply the following
corollary.

Corollary 1. Q = vLP = vIP .

5. Two generalizations of MSP

In this section, we investigate two generalizations of MSP. In
Section 5.1, we consider an extension of MSP where all teams
from the same club must play according to the same HAP; we
refer to this generalization as MSPidHAP. Next, in Section 5.2,
we deal with an extension of MSP in which capacities are not
necessarily constant over the rounds, which we call MSPwVC. We
motivate both generalizations, and we show that both problems
are NP-hard for k ≥ 4, and give polynomial-time algorithms for
the case k = 2, when, in case of MSPwVC, each club consists of
two teams. Observe that a league size of k = 2 may occur in
knock-out tournaments, or play-offs, where two matches decide
upon the winner of a pair of teams.

5.1. MSP with identical HAPs (MSPidHAP)

In a setting where the capacity of clubs is not an issue, clubs
may want that all their teams play home in the same round. There
can be various reasons for this wish: for instance to create a lively
atmosphere at the club’s venues, or to minimize the number of
times a venue is used, or, when clubs have two or more teams
in one particular category (for instance a club has two amateur
teams in the under 21-years-old age category), teams following
the same HAP allow these teams to exchange players whenever
they play home.

The input defining an instance of MSPidHAP consists of the
set of teams, its two partitions (one into leagues, and one into
clubs), and a feasible, complementary HAPset. The question is:
does there exist a feasible assignment, i.e., does there exist an
assignment of teams to HAPs such that (i) all teams from a club
receive the same HAP, and (ii) all teams from a league receive a
different HAP? Of course, in an instance of MSPidHAP, it should
not happen that two teams from a same club are in the same
league, since this would clearly lead to a no-instance.

It is not difficult to see that, in case k = 2, this question can be
answered efficiently as follows: build a simple undirected graph
G = (V , E) with a vertex for each club (V = C), and connect two
vertices iff the corresponding clubs have a team in a same league
(E = L). The existence of a feasible 2-coloring of the vertices of
G decides whether or not the instance of MSPidHAP with k =

2 is a yes-instance or not. It is a fact that all teams of clubs
corresponding to nodes colored with one color play according to
HAP HA, and all teams of clubs corresponding to nodes colored
with the other color play according to HAP AH . We record this
observation formally.

Observation 1. For k = 2, MSPidHAP is solvable in polynomial
time.

It is possible to extend Observation 1 to a situation where a
set of pairs of teams that need the same HAP is given. However,
when k ≥ 4, MSPidHAP becomes more difficult.

Theorem 3. MSPidHAP is NP-hard for each k ≥ 4.

Proof. We reduce MSPidHAP to edge coloring a 4-regular graph.
In this reduction, we do not explicitly construct a feasible, com-
plementary HAPset. In fact, we assume that some HAPset is
specified; the proof works for any given HAPset.

Consider now the following question: given a simple 4-regular
graph G = (V , E), does there exist a coloring of the edges using
4 colors such that no two adjacent edges receive the same color?
This problem is known to be strongly NP-complete [9,12].

Given a simple 4-regular graph G = (V , E), we construct an
instance of MSPidHAP as follows. There is a league ℓ ∈ L for each
vertex in V , i.e., L = V . There is a club c ∈ C for each edge
e = (v, v′) ∈ E, i.e., C = E; each club consists of two teams
(nc = 2), one playing in the league corresponding to node v, one
playing in the league corresponding to node v′. Thus, there are
n = 2|E| teams. We claim that the existence of a 4-coloring of G
corresponds to a feasible assignment of teams to HAPs and vice
versa.

Suppose that a 4-coloring exists. Let each color correspond
to a HAP. By assigning the two teams of a club to the HAP that
corresponds to the color of the edge corresponding to those two
teams, it becomes clear that the feasibility of the coloring implies
that the four teams in each league have received a pairwise
different HAP, and hence a feasible assignment exists.

Suppose a feasible assignment exists. Then all teams that play
according to HAP i receive color i, i = 1, . . . , 4; this results in a
4-coloring of G. □

5.2. MSP with variable capacities (MSPwVC)

Another generalization of MSP is the problem where clubs’
capacities differ throughout the season. We refer to this problem
as MSP with variable capacities (in short MSPwVC). In this general-
ization, instead of having a constant capacity δc for a club, we are
given capacities δc,r that represent the number of matches that
can be hosted by club c in round r . The resulting problem can
be formulated as an integer program by replacing Constraints (4)
by:

zc,r ≥

∑
t∈T̂ c

∑
h∈H

xt,hUh,r − δc,r ∀c ∈ C, r ∈ R. (9)

The resulting formulation of MSPwVC becomes:{
min

∑
c∈C

∑
r∈R

zc,r
⏐⏐ (2), (3), (5)–(6), (9)} .

In Section 5.2.1, we provide, for the case where k = nc = 2,
a polynomial-time algorithm based on finding a min-cost circu-
lation, and in Section 5.2.2 we show that the problem becomes
NP-hard for k ≥ 4.

5.2.1. MSP with variable capacities: the case k = 2
Consider an instance of MSPwVC consisting of clubs C , leagues

L, teams T , capacities (δc,1, δc,2), that features k = nc = 2 for all
c ∈ C . Note that for this specific setting m = |L| = |C |. Let us
first argue that we can restrict our attention to instances that are
‘‘connected’’, as explained hereunder. Indeed, we can represent
such an instance by building a bipartite graph H = (V1 ∪ V2, E),
where V1 = C , V2 = L and E = T ; thus, an edge (v1, v2) ∈ E
represents that a team from the club represented by v1 ∈ V1
plays in the league represented by v2 ∈ V2. As k = nc = 2 for
all c ∈ C , the degree of each node in H equals 2, and hence the
graph H consists of a collection of disjoint cycles. Clearly, we can
restrict our attention to instances where H is a single cycle; we
assume, without loss of generality, that by rearranging indices
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Fig. 5. Ideal occupations (oi,1, oi,2) of club i when given capacities δi,1, δi,2 .

we have a set of clubs C = {c1, c2, . . . , cm} such that each club
ci, i = 1, . . . ,m − 1 has a team in league ℓi and a team in league
ℓi+1 and club cm has a team in league ℓm and a team in league ℓ1.

As the league size is k = 2, there are only two different HAPs
a team can have, either HA or AH . As every club has only 2 teams,
the capacity δi,r of club ci, 1 ≤ i ≤ m, in round r = 1, 2 can be
seen as either 0,1 or ≥ 2. In fact, capacities whose value exceeds
2 can be set to 2 without any consequences; we thus assume
δi,r ∈ {0, 1, 2} for all i = 1, . . . ,m, r = 1, 2. It follows that for
a particular club ci there are nine possibilities for (δi,1, δi,2).

A solution to MSPwVC with k = 2 can be described as
an occupation (oi,1, oi,2) specifying how many teams of club ci
play home in rounds 1 and 2 respectively; clearly (oi,1, oi,2) ∈

{(2, 0), (1, 1), (0, 2)}. We say that an occupation is ideal for club ci
when it results in a minimum number of violations over the two
rounds given its capacities δi = (δi,1, δi,2). Fig. 5 gives, for each of
the nine possibilities for (δi,1, δi,2) the set of ideal occupations.

From Fig. 5, we see that the occupation (oi,1, oi,2) = (1, 1) is
ideal for all capacities except when (δi,1, δi,2) = (2, 0) or (0, 2),
1 ≤ i ≤ m. This observation forms the basis of our approach
which, informally said, will use the occupation (oi,1, oi,2) = (1, 1)
for each club ci as a baseline solution, and next will find a maxi-
mum number of saved violations by modifying the occupation of
appropriately chosen clubs to (2, 0) or (0, 2).

We now describe the construction of a directed graph G =

(V , A) that is instrumental in our procedure to solve the problem.
The vertex set consists of V = L ∪ {v0}, where vertex vi corre-
sponds to league ℓi ∈ L, (i = 1, . . . ,m). The arc set A = A1∪A2∪A3
is defined as follows:

A1 = {(vi → vi+1) : i = 1, . . . ,m − 1} ∪ {(vm → v1)},
A2 = {(v0 → vi) : i = 1, . . . ,m} and
A3 = {(vi → v0) : i = 1, . . . ,m}.

To each arc a ∈ A, we associate a capacity cap(a), and a cost-
coefficient cost(a). We set cap (a) = 1 for each a ∈ A. The costs
are defined as follows:

• for each a ∈ A1, cost(a) = 0,
• for each a0,i = (v0 → vi) ∈ A2 (1 ≤ i ≤ m),

cost(v0 → vi) =

{
−1 if δi = (2, 0),
0 if δi ∈ {(0, 0), (1, 0), (2, 1), (2, 2)},
1 if δi ∈ {(0, 1), (0, 2), (1, 1), (1, 2)}.

• for each ai,0 = (vi → v0) ∈ A3 (1 ≤ i ≤ m),

cost(vi → v0) =

{
−1 if δi = (0, 2),
0 if δi ∈ {(0, 0), (0, 1), (1, 2), (2, 2)},
1 if δi ∈ {(1, 0), (1, 1), (2, 0), (2, 1)}.

We claim that this particular definition of the cost-coefficients
for arcs in A2 (respectively, A3) captures the number of viola-
tions saved when instead of using occupation (1, 1) occupation
(2, 0) (respectively, (0, 2)) is used for club ci with capacity δi =

(δi,1, δi,2) — this claim can be verified using the entries given in
Fig. 5. Indeed, as an example, if the capacity of some club ci equals
(2, 0), then the number of violations saved when using occupation
(2, 0) instead of occupation (1, 1) equals 1; this is reflected in the
−1 value of cost(v0 → vi) when δi = (2, 0). Fig. 6 depicts the
above-described graph G.

Fig. 6. Directed graph G in Section 5.2.1.

We now state Algorithm 2 that computes a minimum cost
circulation in graph G. Recall that a circulation is a flow such
that, for each node, the amount of flow entering the node equals
the amount of flow leaving the node. Obtaining a minimum cost
circulation can be done in polynomial time, see [1].

Algorithm 2
Input: Clubs C , Teams T , Leagues L, capacities (δi,1, δi,2)
1: Build graph G as described above.
2: Solve a min-cost circulation problem on G, getting flow y(a) ∈

{0, 1} for each arc a ∈ A.
3: Set xi := 1 for i = 1, . . . ,m.
4: For each arc (v0 → vi) = a ∈ A2 for which y(a) = 1: (i) xi :=

0, j := i (ii) WHILE y(vj → vj+1) = 1 DO xj := 0, j := j + 1.
Output: (x1, . . . , xm), where xi := 0 (1) indicates that in league ℓi
the team from club ci (ci−1) first plays at home.

Theorem 4. Algorithm 2 solves MLSwVC in polynomial time when
k = 2 and nc = 2 for c ∈ C.

Proof. The value of a solution to an instance of MLSwVC with
k = 2 and nc = 2 for c ∈ C , is nothing else but the total number
of violations induced by the occupations of the clubs. Consider a
solution where each club has occupation (1,1) — we will refer to
this solution as the baseline solution, and we denote its value by B.
Further, let the value of a minimum cost circulation in G (found in
Step 2 of Algorithm 2) be denoted by q (notice that q ≤ 0 because
there is always a circulation with no flow, i.e., y(a) = 0, a ∈ A).
We prove the theorem by showing an equivalence between a
minimum cost circulation in G with value q, and the existence
of a solution with value B + q.

⇒ Consider an optimum solution to the circulation problem
in G. Since, for each i = 1, . . . ,m:

cost(v0 → vi) + cost(vi → v0) ≥ 0,

it follows that there exists an optimum solution that does not
have a unit flow using the two arcs (v0 → vi) and (vi → v0).
Hence, an optimum circulation consists of cycles in G, each cycle
carrying one unit of flow, such that each node of G, except v0,
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occurs in at most one cycle; such a cycle can be expressed as
follows: v0, vi, vi+1, . . . , vj, v0. The cost of an individual cycle
depends solely on the costs of the two arcs (v0, vi) and (vj, v0).
Notice that these costs represent, by definition, the savings in the
number of violations when the occupation of club ci (cj) becomes
(2,0) ((0,2)) instead of (1,1). Thus, a circulation in G with cost q
leads to a solution of the problem with cost B + q.

⇐ Now we show that any solution of our problem corre-
sponds to a circulation in the graph G. As described before, a
solution can be seen as the set of occupations for the clubs. Let us
associate the occupation of club ci to node vi in G. We claim that
a solution is feasible iff occurrences of occupations (2,0) and (0,2)
alternate along the cycle defined by the arcs in A1. Given this fact,
we can associate a circulation to each solution as follows.

Let xi denote the schedule of the league ℓi, where xi = 0
indicates that league ℓi has a schedule in which the team from
club ci first plays at home, and xi = 1 if the league has a schedule
in which the team from club ci−1 will first play at home. Notice
that the occupation of a club ci can be expressed as (1 − xi +

xi−1, 1 + xi − xi−1).
Given any solution x = (x1, . . . , xn), we create a flow y on

the edges of the graph G in the following way. We define index
sets I1 = {i : xi = 0, xi−1 = 1}, I2 = {i : xi = 0} and
I3 = {i : xi = 1, xi−1 = 0} — with x0 = xn. For every i ∈ I1,
set y(v0 → vi) = 1. For i ∈ I2, set y(vi → vi+1) = 1. For i ∈ I3,
set y(vi → v0) = 1. This results in a flow through the graph with
cost

∑
i∈I1

cost(v0 → vi) +
∑

i∈I3
cost(vi → v0).

All clubs i ∈ I1 have occupation (2, 0), all clubs in I3 have
occupation (0, 2), while all other clubs have occupation (1, 1). By
construction of the graph, the cost of the circulation corresponds
exactly with the difference in capacity violation of the solution
x compared to a schedule in which all clubs have occupation
(1, 1). Therefore, minimizing the cost of the circulation mini-
mizes the number of violations. Hence, Algorithm 2 is an exact
algorithm. □

5.2.2. MSP with variable capacities: the case k ≥ 4
We now show that MSPwVC becomes NP-hard when k ≥ 4.

Theorem 5. MSPwVC is NP-hard for each k ≥ 4.

Proof. For our reduction we use a problem known as the re-
stricted timetabling problem (in short, RTT), proven to be NP-
complete in Even et al. [5]. We first describe the RTT using the
terminology from [5]. We are given a set of exactly three time
slots (hours) Π = {π1, π2, π3}, a set of teachers T and a set of
classes V (a class refers to a group of students). Classes are always
available, whereas teachers have a given availability, i.e., for each
teacher τ ∈ T , there is a set of available time slots Πτ ⊆ Π . We
are also given a set S of courses, each of which must be taught
by a specific teacher τ to a specific class ν during anyone of the
three time slots. We denote courses by pairs (τ , ν). At most three
courses are taught to each class and every teacher is either a
tight 2-teacher or a tight 3-teacher. A teacher is a tight α-teacher
if he/she teaches exactly α courses and is available for exactly
α time slots, α ∈ {2, 3}. Let us denote the number of courses
taught to a class ν by ρ(ν), ν ∈ V . The question is whether
there exists an assignment of time slots to each course (τ , ν)
such that teachers’ availabilities are satisfied and there are no
overlaps (i.e., the courses taught by the same teacher are assigned
to different time slots and the courses corresponding to each class
are also assigned to different time slots).

Given an instance of RTT, we construct an instance of MSPwVC
with clubs C , leagues L, teams T and capacities δc,r as follows.
Each class ν ∈ V is associated with a league ℓ ∈ L and thus
our instance has m = |V | leagues. Our instance has

∑
ν∈V (k −

ρ(ν)) + |T | clubs: we associate a club of α teams to each tight
α-teacher τ ∈ T (the resulting set of clubs is denoted by C1);
the remaining

∑
ν∈V (k − ρ(ν)) clubs each have exactly one team

(these clubs belong to subsets C2 and C3 such that |C2| = m(k−3)
and |C3| =

∑
ν∈V (3 − ρ(ν)); note that C = C1 ∪ C2 ∪ C3).

Our instance thus has
∑

ν∈V (k − ρ(ν)) + |S| teams. Each course
(τ , ν) ∈ S represents a team t ∈ T that belongs to a club in C1
which is associated with teacher τ ∈ T and plays in the league
corresponding to class ν ∈ V . We distribute the teams of clubs in
C2 by placing k−3 teams of clubs in C2 in each of the leagues. The
remaining

∑
ν∈V (3 − ρ(ν)) teams are members of clubs c ∈ C3;

we arbitrarily add these teams to leagues such that all leagues
consist of k teams.

Consider a given complementary HAPset H = {h1, . . . , hk}

with complementary pairs (h2j−1, h2j), j = 1, . . . , k
2 . We deter-

mine the capacity of clubs c ∈ C1 as follows: first, we associate
the HAP hκ to time slot πκ for κ = 1, 2, 3. Then for each club
c ∈ C1, we identify the set of HAPs which correspond to the time
slots during which the teacher (that gave rise to club c ∈ C1) is
available. Recall that each teacher is available either in time slots
{π1, π2, π3}, or {π1, π2}, or {π1, π3}, or {π2, π3}. The capacity of a
club c ∈ C1 is determined by the available time slots. We have,
for each c ∈ C1, r ∈ R:

δc,r =

∑
h∈Hc

Uh,r , (10)

where Hc equals either {h1, h2, h3} or {h1, h2}, or {h1, h3}, or
{h2, h3}, depending on the availabilities of the teacher giving rise
to club c ∈ C1.

We determine the capacity of a club c ∈ C2 as follows. We
partition C2 into k − 3 subsets C1

2 , . . . , Ck−3
2 each containing m

clubs such that the teams belonging to the clubs of subset C i
2, i =

1, . . . , k − 3 all play in different leagues. Next, we set for each
club c ∈ C i

2, i = 1, . . . , k − 3, and each round r ∈ R:

δc,r = Uhi+3,r .

Finally, for each club c ∈ C3, we set δc,r = 1 for each round r ∈ R.
This completes the description of an instance of MSPwVC.

We now show that a solution to MSPwVC without any capacity
violations corresponds to a yes-instance of RTT and vice versa.
Suppose that the instance of MSPwVC admits a solution without
any capacity violation. In such a solution it must be the case
that each team from a club in C2 has been assigned the one HAP
in the HAPset that yields no capacity violation for this club; in
other words, each team from club c ∈ C i

2 is assigned to HAP
hi+3 for i = 1, . . . , k − 3. Consider now the teams from a club
c ∈ C1. This club has a capacity given by (10) which must be fully
utilized in order to have no capacity violations. Hence, the only
set of patterns that satisfy this requirement are those patterns in
{h1, h2, h3} that correspond with club c ∈ C1, and we assign the
teams accordingly. Teams from clubs in C3 receive any remaining
pattern. Based on this assignment of teams to HAPs, we can assign
time slots to courses in RTT. The resulting assignment is feasible
since (1) each team in a league is assigned to a different HAP,
thus the courses taught to each class are assigned to different
time slots, (2) the teams from a single club are assigned to
different HAPs, thus the courses taught by the associated teacher
are assigned to different time slots.

If the instance of RTT is a yes-instance, we simply copy the
existing assignment of courses to time slots to the instance of
MSPwVC, where the assignment of teams of clubs in C1 to the
given HAPs h1, h2, h3 follows directly from the solution to the
RTT instance. Further, we give each team of a club in C2 its cor-
responding pattern, and each team in C3 any remaining pattern.
This gives no capacity violations in the instance of MSPwVC. □
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Fig. 7. Graph representations for the proof of Theorem 5; (a) A graph repre-
sentation for the instance of RTT. (b) A graph representation of the instance of
MSPwVC.

Fig. 8. The instance I associated with the example in Theorem 5.

As an illustration of the reduction in Theorem 5, consider the
following instance of RTT: there are four teachers (τ1, τ2, τ3, τ4),
three classes (ν1, ν2, ν3) and three time slots (π1, π2, π3). Teacher
τ1 teaches different courses to all classes and is available on
all time slots. Teacher τ2 teaches only classes ν1 and ν3 and is
available on time slots π1 and π3. Teacher τ3 teaches only classes
ν1 and ν2 and is available on time slots π2 and π3. Finally, teacher
τ4 teaches only classes ν2 and ν3 and is available on time slots π1
and π2. Fig. 7a shows a graph representation of this instance.

Assuming k = 4, we construct an instance of MSPwVC with 3
leagues, 7 clubs and 12 teams: L = {ℓ1, ℓ2, ℓ3}, C = {c1, . . . , c7}
and T = {t1, . . . , t12} where C1 = {c1, c2, c3, c4} and C2 =

{c5, c6, c7}. The clubs and leagues are thus given in Figs. 8a and 8b.
Also, Fig. 7b provides a graph representation of the clubs, leagues
and teams. The capacity profiles of clubs are given in Fig. 9 and
are based on the HAPset given in Example 1. As an example, the
capacity profile of club c2 (that is associated with teacher τ2 for
which Πτ2 = {π1, π3}) is δc = (Uh1,1 + Uh2,1, . . . ,Uh1,6 + Uh2,6) =

(1 + 1, . . . , 0 + 1) = (2, 0, 1, 0, 2, 1) (see Fig. 9b).
There is a solution with objective value of zero for this instance

which is obtained by assigning h1 → t2, t4, t9, h2 → t3, t6, t8,
h3 → t1, t5, t7, and h4 → t10, t11, t12. Hence, the given instance of
RTT is a yes-instance.
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Fig. 9. Capacity of the associated clubs.
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