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1. Introduction

A basic and popular format for a competition is the well-known 
Single Round Robin (SRR) format. Given a set of teams T , with |T |
even, an SRR format prescribes that each team plays against each 
other team once in a set of |T | − 1 rounds, such that each team 
plays once in each round. Moreover, our setting prescribes that in 
each match there is one team that plays home, and one team that 
plays away - sometimes abbreviated with H and A respectively.

When faced with the task of deciding upon the fixtures, i.e., 
to come up with a schedule that specifies which match is played in 
which round, and which team plays home and away in each match, 
various strategies have been described in literature that come up 
with a schedule; here, we simply refer to the surveys [6] and [1]. 
We also mention [2] as an important source of references.

In this note we focus on a question that is relevant for a set 
of strategies that are known as first-break-then-schedule. These 
are strategies that follow a 2-step approach: first decide upon the 
home/away designation of each team in each round (thereby spec-
ifying a home-away pattern (HAP) for each team), then allocate all 
the matches in a way that is compatible with these HAPs, see [8]
and [7] for early references. A key question is to what extent spec-
ifying the HAP-set in Step 1 impacts the set of possible schedules 
in Step 2. Or in other words, what is the diversity of schedules 
compatible with a given HAP-set?
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This issue has been investigated in [3] where various measures 
for the flexibility of a HAP-set are proposed and analyzed. One 
such measure is called the width. Informally, the width of a HAP-
set equals the size of the largest set of compatible schedules, such 
that no match is scheduled in the same round in any two sched-
ules of the set (see Section 2 for precise definitions). Clearly, the 
larger the width, the more flexible the HAP-set. In [3], it is estab-
lished that the width of a popular HAP-set known as the canonical 
HAP-set equals 1. Moreover there exists a match that, in every 
schedule compatible with the canonical HAP-set, is always sched-
uled in the same round.

Here we focus on the following questions: do there exist HAP-
sets that have large width? And how large can the width actually 
be?

Section 2 gives the preliminaries, and in Section 3 we give up-
per and lower bounds for the width. In Section 4, we prove that 
the upper bound on the width from Section 3 can be achieved for 
a particular HAP-set when the number of teams is a power of 2. 
Section 5 details a construction that allows one to combine HAP-
sets, and their corresponding schedules, in a way that preserves 
the width. We close with describing an extension in Section 6.

2. Preliminaries and notation

We consider a set of teams T , with 2n := |T |. To avoid trivi-
alities, we assume n ≥ 2. A single round robin format uses 2n − 1
rounds that we denote by the set R . Throughout the paper, we 
take R = {1, 2, . . . , 2n − 1}. For each team t ∈ T , its Home-Away 
Pattern (HAP) is given by H(t) = (Hr(t))r∈R , with Hr(t) ∈ {0, 1}, 
where Hr(t) = 0 indicates team t playing Home and Hr(t) = 1 in-
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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dicates team t playing Away in round r ∈ R . We define a HAP-set
H = {(Hr(t))r∈R : t ∈ T } to consist of a HAP for every team t ∈ T . 
Given two teams t, t′ , we define �(t, t′) = #{r : Hr(t) �= Hr(t′)}
to be the number of rounds where t, t′ differ in Home/Away-
allocation.

A partition M of the set of all matches into 2n − 1 rounds 
is given by M = ∪r∈R Sr where each Sr is a matching of the 2n
teams, in such a way that for every pair of distinct teams t, t′ ∈ T , 
there exists a round r ∈ R such that (t, t′) ∈ Sr , ensuring that every 
team meets every other team once. A schedule S can be generated 
from such a partition by assigning a Home-team and Away-team 
in every match in the partition. As notation, we write S(t, t′) = r
to indicate that in schedule S , the match between teams t, t′ is 
scheduled in round r ∈ R .

Thus, to any schedule S we can associate a corresponding HAP-
set H(S). Two distinct schedules can have equal HAP-sets. We say 
a HAP-set H is feasible if there exists a schedule S such that H =
H(S).

We define Hn to be the set of all feasible HAP-sets on 2n
teams. As stated earlier, we define H(S) to be the HAP-set cor-
responding to schedule S . We also define S(H) = {S : H(S) = H}
to be the set of all schedules S that have HAP-set H. We say that 
schedule S is compatible with HAP-set H if S ∈ S(H).

Definition 2.1. Two schedules S, S ′ are orthogonal- S⊥S ′ - if for 
every pair of distinct teams t, t′ ∈ T , the round S(t, t′) is different 
from S ′(t, t′).

In words, schedules S, S ′ being orthogonal means that no 
match is scheduled in the same round for S, S ′ .

Definition 2.2. Two schedules S, S ′ are rotational orthogonal -
S⊥rot S ′ - if there is a permutation of the rounds σ : R → R with-
out fixed elements, that is, σ is such that there is no round r ∈ R
with σ(r) = r, and Sr = S ′

σ(r) ∀r ∈ R .

Clearly, any two schedules S, S ′ that are rotational orthogonal 
are also orthogonal. Using these definitions of orthogonality, we 
define the following measures of a given HAP-set H.

Definition 2.3. [3] Given a HAP-set H for a set T of 2n teams, we 
define:

• opp(H) = mint,t′∈T |{r : Hr(t) �= Hr(t′)}|,
• width(H) = maxS⊂S(H) |{S : S⊥S ′ ∀S, S ′ ∈ S}|,
• rotw(H) = maxS⊂S(H) |{S : S⊥rot S ′ ∀S, S ′ ∈ S}|.

In words, for a given H ∈ H, the measures opp(H),width(H),

rotw(H) are defined as:

• opp(H): The minimum number of rounds over any pairs 
of teams t, t′ such that they have a different (opposite) 
Home/Away-assignment in H - i.e., mint,t′ �(t, t′).

• width(H): The maximum number of schedules compatible 
with HAP-set H that are pairwise orthogonal, i.e., where no 
match (t, t′) is played in the same round in two different 
schedules.

• rotw(H): The maximum number of schedules with HAP-set H
that are pairwise rotational orthogonal.

It is not difficult to see that opp(H) ≥ width(H) ≥ rotw(H) for 
each feasible H ∈H.

Remark 2.1. For notational purposes, we define the rotational 
width of a schedule S = (Sr)r compatible with H, denoted 
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widthrot(S) instead of widthrot(H) as follows. widthrot(S) equals 
the cardinality of the largest set of pairwise orthogonal schedules 
that can be obtained by permuting the rounds Sr , with all sched-
ules compatible to H. Obviously widthrot(S) ≤ widthrot(H).

In Definition 2.3, we have defined three measures of a given 
HAP-set H. Our main goal here is to find HAP-sets with extremal 
values for these measures. Therefore, for each of these measures, 
we define on, wn, xn as follows:

Definition 2.4. For each 2n ≥ 4, we define:

• on = maxH∈Hn opp(H),
• wn = maxH∈Hn width(H),
• xn = maxH∈Hn rotw(H).

Simply put, on, wn, xn equals the value of a HAP-set that scores 
best on the respective measure for a given n.

With these definitions, we get to the following fundamental 
question:

Question 2.1. For a given value of n, what is wn? And what are on, xn?

3. Upper and lower bounds for the width

We establish the following lower and upper bounds on the 
width:

Theorem 3.1. For each n ≥ 2:

2 ≤ xn ≤ wn ≤ on ≤ n.

Proof. The inequalities xn ≤ wn ≤ on are immediate, as for each 
H ∈Hn , we have opp(H) ≥ width(H) ≥ rotw(H).

We now argue that on ≤ n. Consider any HAP-set H ∈ Hn . As 
H is feasible, it follows that in every round, there are n teams 
that play at home and n teams that play away, so there are 
n2 pairs of teams with a different Home/Away-allocation, lead-
ing to a total sum of different Home/Away-allocations equal to ∑

(t,t′)∈(T2 ) �(t, t′) = (2n − 1)n2. As there are 
(2n

2

) = n(2n − 1) pairs 
of teams, there must be a pair of teams t, t′ ∈ T with �(t, t′) ≤ n. 
Thus, for any HAP-set H ∈Hn , we have opp(H) ≤ n, which implies 
on ≤ n.

We now show that 2 ≤ xn . We prove this inequality by first con-
sidering a partition of the set of all matches into 2n − 1 rounds; 
next, we construct a HAP-set such that there exist two schedules 
compatible with it, such that all matches in round r in one sched-
ule, are scheduled in round r + 1 in the other schedule, where we 
work modulo 2n − 1.

There are many ways to partition the set of 
(2n

2

)
matches 

into 2n − 1 rounds S1, . . . , S2n−1 such that each round consists 
of n matches featuring each team exactly once; let’s call such 
a partition a feasible partition of the matches. One possibility to 
find a feasible partition is the well-known Circle Method, see 
e.g. [5] and [9]; it is given by any proper edge coloring of K2n
with 2n − 1 colors. Thus, we can assume we are given a set of 
rounds S1, . . . , S2n−1; notice that the Home/Away assignment for 
the matches in these rounds has not been specified. We will give a 
procedure that constructs a HAP-set H in a round-by-round fash-
ion, in such a way that there exist two schedules compatible with 
H that are rotational orthogonal.

Fix a round r ∈ R , and construct a simple undirected graph 
Gr,r+1 = (V = T , Er,r+1), where (t, t′) ∈ Er,r+1 iff match (t, t′) is 
played in round r or r + 1 (indices are read modulo 2n − 1, thus 
2n = 1). Clearly, Gr,r+1 is a regular graph of degree 2, where every 
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Table 1
A HAP-set with rotational width at least 2.

Rnd 1 Rnd 2 Rnd 3 Rnd 4 . . . Rnd 2n − 1

Team 0 A A A A . . . A
Team 1 H H A H . . . A
Team 2 A H H A . . . H
Team 3 H A H H . . . A
.
.
.

.

.

.

.

.

.

.

.

.
. . .

. . .
.
.
.

Team 2n − 1 H A H A . . . H

node (team) is incident to an edge corresponding to its match-up 
in round r and to an edge corresponding to its match-up in round 
r + 1, r ∈ R . As Gr,r+1 is the edge-union of two perfect matchings, 
it can be seen as a collection of even cycles. For every cycle, define 
an orientation (clockwise or counter-clockwise), traverse every cy-
cle, and for every edge (match) that is scheduled in round r + 1, 
assign the first node (with respect to the orientation) to be the 
Home playing team and the second node the team that plays Away 
in round r + 1.

Notice that this Home/Away assignment accommodates the 
matches in Sr+1 as the nodes corresponding to each pair of teams 
that are matched in Sr+1 are connected in Gr,r+1, and the con-
struction ensures that these nodes receive a different Home/Away 
assignment. It is also true that this Home/Away assignment si-
multaneously accommodates the matches in Sr . Indeed, again the 
nodes corresponding to each pair of teams that are matched in Sr

are connected in Gr,r+1, and hence receive a different Home/Away 
assignment.

When we perform this procedure sequentially for r = 1, 2, . . . ,
2n −1, we thereby specify a HAP-set H. By construction, this HAP-
set is compatible with the schedule S , and it is also compatible 
with the schedule S ′ , where S ′ is obtained from S by moving every 
match one round earlier (modulo 2n − 1).

Concluding, we have constructed a HAP-set H, and we have 
shown that there exist two schedules S and S ′ that are compatible 
with it while S⊥rot S ′ . This concludes the proof. �
Remark 3.1. Notice that, if n is odd, the upper bound from Theo-
rem 3.1 can be improved. Indeed, any feasible HAP-set H on 2n
teams has exactly n(2n − 1) Home assignments, which is an odd 
number when n is odd. When two teams t, t′ both have an even 
number of Home’s assigned, they have a different Home/Away-
allocation in an even number of rounds, so �(t, t′) is even. Also, 
when two teams t, t′ both have an odd number of Home’s as-
signed, �(t, t′) is even. When there are more than 2 teams, there 
must be a pair of teams t, t′ that have the same parity number 
of Home games, so they will have �(t, t′) even. As n is presumed 
odd, and the only way to make a HAP-set with opp(H) = n is if 
every pair of teams t, t′ has �(t, t′) = n, we see that opp(H) < n.

Notice also that the procedure sketched in the second part of 
the proof of Theorem 3.1 starts from any feasible partition of the 
matches into rounds. In case one would start from the partition 
that is generated by the well-known circle method, we can, us-
ing this procedure identify an explicit HAP-set. In fact, we claim 
that the HAP-set from Table 1 arises, and it follows that this HAP-
set has rotational width at least 2. One might comment that this 
HAP-set is unbalanced in the sense that Team 0 only has Away 
matches, whereas each other team plays only n − 1 away matches. 
However, as the operation of inverting all Home/Away assignments 
in a single round does not impact the (rotational) width, one can 
improve this balance by inverting the Home/Away assignments in 
n
2 rounds, leading to a HAP-set such that no team plays more than 
3 n − 1 matches away.
2
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4. HAP-sets with maximum width

In this section, we identify a family of HAP-sets whose width 
equals the upper bound established in Section 3 in case the num-
ber of teams is a power of 2.

Theorem 4.1. When n = 2� (� ∈ N), there is a HAP-set H∗ ∈ Hn with 
width(H∗) = n.

Proof. We prove this by constructing HAP-set H∗ and providing n
orthogonal schedules that are compatible with H∗ .

Constructing H∗ Let P be the set of all 2�+1 subsets of 
{1, 2, . . . , � +1}, and let P0 =P \{∅}. The 2n teams are represented 
by T := {T A : A ∈ P}, and the rounds by R := {R B : B ∈ P0}. For 
each A ∈P and for each B ∈P0 we choose:

H R B (T A) := |A ∩ B| (mod 2).

When H R B (T A) = 0, this implies a Home match for team T A ∈ T in 
round R B ∈ R, otherwise when H R B (T A) = 1 this implies an away 
match. We claim that the HAP-set H∗ = {(H R B (T A))B∈P0 : A ∈ P}
is a HAP-set with (rotational) width n.

Generating the schedules Note that two teams T A1 and T A2

can play each other at round R B if and only if |A1 ∩ B| and |A2 ∩
B| have different parities. This is equivalent to the condition that 
|A1 ∩ B| +|A2 ∩ B| is odd, which is also the same as |(A1�A2) ∩ B|
being odd.

Therefore, the following is true:

T A1 and T A2 can be scheduled at round R B

iff |(A1�A2) ∩ B| is odd. (1)

Next, for each K ∈ P0, we define a set of (unordered) pairs of 
teams, each being a perfect matching on the teams:

MK := {{X, X�K } : X ∈ P} .

If X = Y �K , then Y = X�K . Moreover, for any X, Y ∈ P , there is 
a unique K such that {X, Y } ∈ MK , namely K = X�Y . Thus, M =
{MK : K ∈P0} is a feasible partition of matches into rounds.

Crucially, all the matches in MK can be scheduled at round R B

if and only if |K ∩ B| is odd by (1) - and there are exactly n rounds 
R B for which this holds.

To find the n rotational orthogonal schedules, construct the bi-
partite graph G = (M ∪ R, E) where (MK , R B) ∈ E if and only if 
|K ∩ B| is odd. Since each nonempty set has equal number of odd 
sized and even sized subsets, G is n-regular. Hence, there exists 
a 1-factorization of G - each 1-factor is a perfect matching giving 
one of the n rotational orthogonal schedules. �
Example 4.1. Table 2 contains the HAP-set that follows from the con-
struction in Theorem 4.1 when 2n = 2 · 22 = 8.

We find the four pairwise orthogonal schedules for the HAP-set in 
Table 3.

Proof of Theorem 4.1 gives a HAP-set on 2n teams with com-
plete rotational width in the case n = 2� . Next, we will show that 
this complete rotational width is reserved only for powers of two.

Theorem 4.2. If xn = n for some n ≥ 2, then n = 2� (� ∈N).

Proof. Let H be a HAP-set on T = {1, 2, . . . , 2n} such that 
rotw(H) = n. Denote the rounds as R = {1, 2, . . . , 2n − 1}, and let 
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Table 2
HAP-set on 2n = 8 teams.

Rounds 1 2 12 3 13 23 123
Teams

∅ 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1
2 0 1 1 0 0 1 1
12 1 1 0 0 1 1 0
3 0 0 0 1 1 1 1
13 1 0 1 1 0 1 0
23 0 1 1 1 1 0 0
123 1 1 0 1 0 0 1

Table 3
Four pairwise orthogonal schedules for 8 teams.

Schedule Round 1 2 3 4 5 6 7

S1 0-1 0-2 0-5 0-6 0-3 0-4 0-7
2-3 1-3 3-6 1-7 2-1 1-5 3-4
4-5 4-6 4-1 2-4 5-6 6-2 5-2
6-7 5-7 7-2 3-5 7-4 7-3 6-1

S2 0-3 0-6 0-2 0-7 0-1 0-5 0-4
2-1 1-7 3-1 1-6 2-3 1-4 3-7
4-7 4-2 4-6 2-5 5-4 6-3 5-1
6-5 5-3 7-5 3-4 7-6 7-2 6-2

S3 0-5 0-7 0-1 0-4 0-6 0-3 0-2
2-7 1-6 3-2 1-5 2-4 1-2 3-1
4-1 4-3 4-5 2-6 5-3 6-5 5-7
6-3 5-2 7-6 3-7 7-1 7-4 6-4

S4 0-7 0-3 0-6 0-5 0-4 0-2 0-1
2-5 1-2 3-5 1-4 2-6 1-3 3-2
4-3 4-7 4-2 2-7 5-1 6-4 5-4
6-1 5-6 7-1 3-6 7-3 7-5 6-7

Ai be the set of rounds in which team i plays its game at Home. 
By Theorem 3.1, we have n = rotw(H) ≤ opp(H) ≤ on ≤ n, which 
implies opp(H) = n. As previously explained in Remark 3.1, this 
shows

|Ax�A y| = �(x, y) = n for any teams x �= y (2)

On the other hand, as rot w(H) = n, the set of all pairs of teams 
can be partitioned into 2n − 1 perfect matchings M1, M2, . . . ,
M2n−1 such that each Mi can be played in at least n rounds. 
Then, by (2), we can conclude that each Mi can be played at ex-
actly n rounds. On the other hand, if (x, y), (z, w) ∈ Mi for some 
i, then Ax�A y and Az�Aw contain the rounds in which all the 
matches Mi can be played. In other words, we obtain |(Ax�A y) ∩
(Az�Aw)| ≥ n, which gives Ax�A y = Az�Aw by (2). Hence, for 
each perfect matching Mi , there is a subset Si ⊆ R of size n such 
that Ax�A y = Si whenever (x, y) ∈ Mi . For any i, j ∈ R with i �= j, 
pick (x, y) ∈ Mi and (x, z) ∈ M j . Since Ax�A y = Si , Ax�Az = S j , 
we have A y�Az = Si�S j . On the other hand, we know (y, z) ∈ Mk

for some k /∈ {i, j}, then we obtain Si�S j = Sk for some k ∈ R . As 
a result, if xn = n, we can find S1, S2, . . . , S2n−1 ⊆ R such that

For any i, j ∈ R with i �= j, there exists k ∈ R with Si�S j = Sk.

(3)

We will show that such sets can be found only if n is a power of 
two. For each i ∈ R , consider the indicator vector vi of Si that is 
defined as

(vi) j :=
{

1, if j ∈ Si

0, otherwise.

Let v0 be the zero vector of dimension 2n − 1, and write C = {vi :
0 ≤ i ≤ 2n − 1}. We can think of C as a subset of the vector space 
531
F2n−1
2 , under usual addition and scalar multiplication. On the other 

hand, it can be easily seen that (3) is equivalent to the following:

For any i, j ∈ R, we have vi + v j ∈ C.

This implies that C is closed under addition. Moreover, it is closed 
under scalar multiplication, as this is trivial for F2n−1

2 . So we can 
conclude that C is a subspace of F2n−1

2 . Therefore, its order 2n
should be a power of 2, which implies that n is a power of 2, 
which completes the proof. �
5. Maximum opposing HAP-sets

We call a HAP-set H on 2n teams a maximum opposing HAP-set 
if opp(H) = n. In this section we introduce a procedure to create 
a HAP-set H that is maximum opposing, provided that we have 
two other HAP-sets, H1, H2 on 2n1, 2n2 teams with n = 2n1n2 and 
H1, H2 both maximum opposing.

For the matrices Am×n and B p×q , the Kronecker product of A
and B , denoted by A ⊗ B , is defined as the pm × qn block matrix:⎡
⎢⎣

A11 B A12 B · · · A1n B
...

...
. . .

...

Am1 B Am2 B · · · Amn B

⎤
⎥⎦

Lemma 5.1. Suppose Am×m and Bn×n are orthogonal matrices. Then, 
A ⊗ B is also orthogonal.

Proof. It follows from the well-known properties of the Kronecker 
product:

(A ⊗ B) · (A ⊗ B)T = (A ⊗ B)
(

AT ⊗ BT
)

=
(

A AT
)

⊗
(

B BT
)

= Im ⊗ In = Imn. �
For a given HAP-set H = {

(Hr(t))1≤r≤2n−1 : t ∈ {1, . . . ,2n}}, de-
fine the matrix MH as follows:

MH
i j =

{
−1/

√
2n, if j ≥ 2 and H j−1(i) = 0,

1/
√

2n, otherwise,

for 1 ≤ i, j ≤ 2n. For a given matrix M2n×2n with entries {1, −1}, 
define the HAP-set H(M) = {

(Hr(t))1≤r≤2n−1 : t ∈ {1, . . . ,2n}} such 
that Hr(t) = Mr+1,t holds for all 1 ≤ r ≤ 2n − 1 and 1 ≤ t ≤ 2n.

Theorem 5.1. Let H1, H2 be HAP-sets on 2n1, 2n2 teams and opp(Hi)

= ni for i = 1, 2. Then, there is a HAP-set on 4n1n2 teams that is maxi-
mum opposing.

Proof. It is important to recall that if H is a HAP-set with 
opp(H) = n, then �(t, t′) = n holds for all teams t �= t′ , which 
shows MH is orthogonal. Conversely, if M2n×2n is a matrix with 
entries {1, −1} such that its rows are orthogonal to each other and 
all the entries in its first column are the same, then opp(H(M)) =
n holds. Suppose HAP-sets H1, H2 are given by:

H1 = {
(H1

r (t))1≤r≤2n1−1 : t ∈ {1, . . . ,2n1}
}

H2 =
{
(H2

r (t))1≤r≤2n2−1 : t ∈ {1, . . . ,2n2}
}

By Lemma 5.1, MH1 ⊗ MH2 is orthogonal. Consider the matrix

M = 2
√

n1n2 ·
(

MH1 ⊗ MH2
)

.
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Table 4
A HAP-set H on 12 teams with opp(H) = 6.

0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0

1 1 0 1 0 0 1 0 0 1 1
1 0 1 0 1 0 0 1 0 1 1
0 1 1 0 0 1 0 0 1 1 1

0 0 1 1 1 0 1 0 1 0 1
0 0 1 1 0 1 1 1 0 1 0

0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 0 1 1 0 1
1 0 0 0 1 1 1 0 1 1 0

Observe that all the entries of M are ±1 and any two rows of M
are orthogonal to each other. Moreover, each entry in the first col-
umn of M is 1. Then, the HAP-set H(M) on 4n1n2 teams satisfies 
opp(H(M)) = 2n1n2. �
Corollary 5.1. When on = n, o2n = 2n.

Proof. If on = n, there must exist a HAP-set H on 2n teams, such 
that opp(H) = n. Notice that the trivial HAP-set on 2n = 2 teams, 
H∗ , has opp(H∗) = 1 = n1. By Theorem 5.1, the result follows. �

The procedure in the proof of Theorem 5.1 preserves the prop-
erty of having maximum opposing rounds of two HAP-sets. So far 
we have only shown for HAP-sets where the number of teams 
equals a power of two that they can have maximum opposing 
rounds. And in those cases, we can even explicitly construct the 
HAP-set, without using smaller sized HAP-sets, as shown in Sec-
tion 4.

However, the property of having maximum opposing rounds, 
is not reserved for HAP-sets on 2� teams, as can be seen by the 
HAP-set H on 12 teams in Table 4. It has opp(H) = 6, which is 
maximum. It is also the smallest possible number of teams n for 
which n �= 2� and the HAP-set is maximum opposing.

The largest known set of orthogonal schedules compatible with 
the HAP-set in Table 4, obtained using a mixed integer program, 
has order 4.

6. An extension

It is clear that the width is a measure indicating to what extent 
a particular HAP-set can accommodate distinct schedules where an 
individual match is played in different rounds in distinct schedules. 
This is clearly relevant in a first-break-then-schedule approach, see 
Section 1. From a scheduling point of view, not only the round in 
which a match is scheduled matters, but also the other matches 
in that round. It could very well be that there is a preference to 
have pairs of matches in separate rounds. To capture this idea, we 
introduce match-pair disjointness. Given a HAP-set, two schedules 
are match-pair disjoint if each pair of matches that are in the same 
round in one schedule, are not in the same round in the other 
schedule.

Table 5
A HAP-set that allows two feasible match-pair disjoint schedules.

Teams/Rounds 1 2 3 4 5 6 7

0 H H H H H H H
1 A A A H A H A
2 H A H A H H H
3 A H A H H A H
4 A H H A H A A
5 H H H A A H A
6 H A A H A A H
7 A A A A A A A

Table 6
Two match-pair disjoint orthogonal schedules compatible with the HAP-set from 
Table 6.

Rounds 1 2 3 4 5 6 7

Schedule 1 0-1 0-2 0-2 0-4 0-5 0-6 0-7
2-3 3-1 2-1 1-5 2-7 1-7 2-5
5-4 4-6 4-7 3-7 6-2 3-6 3-4
6-7 5-7 5-6 6-2 4-1 5-3 6-1

Schedule 2 0-4 0-1 0-7 0-2 0-6 0-3 0-5
2-7 3-6 2-3 1-7 2-1 1-4 2-4
5-3 4-7 4-6 3-4 3-7 2-6 3-1
6-1 5-2 5-1 6-5 4-5 5-7 6-7

Notice that this property is different from orthogonality, i.e., a 
pair of schedules may be match-pair disjoint or not, and they may 
be orthogonal or not. Although we have no theoretical results for 
this property of match-pair disjointness, we provide, for 2n = 8
teams, two schedules that are both match-pair disjoint, as well as 
orthogonal. (See Table 5.)

Acknowledgements

This research is supported by NWO Gravitation Project NET-
WORKS, Grant Number 024.002.003. Also, Yıldız was supported by 
a Marie Skłodowska-Curie Action from the EC (COFUND grant no. 
945045).

References

[1] G. Kendall, S. Knust, C.C. Ribeiro, S. Urrutia, Scheduling in sports: an annotated 
bibliography, Comput. Oper. Res. 37 (2010) 1–19.

[2] S. Knust, Classification of literature on sports scheduling, http://www2 .inf .uos .
de /knust /sportssched /sportlit _class/, March 2022.

[3] R. Lambers, D. Goossens, F.C.R. Spieksma, The flexibility of home away pattern 
sets, J. Sched. (2022), https://doi .org /10 .1007 /s10951 -022 -00734 -w.

[4] R. Lambers, Fairness and Flexibility in Sport Scheduling, PhD thesis, Eindhoven 
University of Technology, 2022.

[5] E. Lambrechts, A. Ficker, D. Goossens, F.C.R. Spieksma, Round-robin tournaments 
generated by the Circle Method have maximum carry-over, Math. Program. 172 
(2018) 277–302.

[6] R. Rasmussen, M.A. Trick, Round robin scheduling: a survey, Eur. J. Oper. Res. 
188 (2008) 617–636.

[7] R.A. Russell, J.M. Leung, Devising a cost effective schedule for a baseball league, 
Oper. Res. 42 (1994) 614–625.

[8] J.A.M. Schreuder, Combinatorial aspects of construction of competition Dutch 
professional football leagues, Discrete Appl. Math. 35 (1992) 301–312.

[9] M.R. Siemann, A polyhedral study of the Travelling Tournament Problem, Master 
Thesis, University of Twente, 2020, https://essay.utwente .nl /80918/.
532

http://refhub.elsevier.com/S0167-6377(23)00130-X/bib8B003415373476156DF9100ABE2369CCs1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bib8B003415373476156DF9100ABE2369CCs1
http://www2.inf.uos.de/knust/sportssched/sportlit_class/
http://www2.inf.uos.de/knust/sportssched/sportlit_class/
https://doi.org/10.1007/s10951-022-00734-w
http://refhub.elsevier.com/S0167-6377(23)00130-X/bibFD77FDB6042911182F02A3B23F735452s1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bibFD77FDB6042911182F02A3B23F735452s1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bibEB37343AF47295FBA5733556B6807500s1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bibEB37343AF47295FBA5733556B6807500s1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bibEB37343AF47295FBA5733556B6807500s1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bib5495570AAE5146ED3623AEA0E8E719C4s1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bib5495570AAE5146ED3623AEA0E8E719C4s1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bibDFAB1A8A7CE4E02C8A49509C2581DA1Es1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bibDFAB1A8A7CE4E02C8A49509C2581DA1Es1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bib69F98E9C1263B80DAD29A5C42CEEF1E5s1
http://refhub.elsevier.com/S0167-6377(23)00130-X/bib69F98E9C1263B80DAD29A5C42CEEF1E5s1
https://essay.utwente.nl/80918/

	Orthogonal schedules in single round robin tournaments
	1 Introduction
	2 Preliminaries and notation
	3 Upper and lower bounds for the width
	4 HAP-sets with maximum width
	5 Maximum opposing HAP-sets
	6 An extension
	Acknowledgements
	References


