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STABLE APPROXIMATION ALGORITHMS FOR THE DYNAMIC
BROADCAST RANGE-ASSIGNMENT PROBLEM\ast 

MARK DE BERG\dagger , ARPAN SADHUKHAN\dagger , AND FRITS SPIEKSMA\dagger 

Abstract. Let P be a set of points in \BbbR d, where each point p\in P has an associated transmission
range, denoted \rho (p). The range assignment \rho induces a directed communication graph \scrG \rho (P ) on P ,
which contains an edge (p, q) iff | pq| \leqslant \rho (p). In the broadcast range-assignment problem, the goal is
to assign the ranges such that \scrG \rho (P ) contains an arborescence rooted at a designated root node and
the cost

\sum 
p\in P \rho (p)2 of the assignment is minimized. We study the dynamic version of this problem.

In particular, we study trade-offs between the stability of the solution---the number of ranges that
are modified when a point is inserted into or deleted from P---and its approximation ratio. To this
end we study k-stable algorithms, which are algorithms that modify the range of at most k points
when they update the solution. We also introduce the concept of a stable approximation scheme, or
SAS for short. A SAS is an update algorithm \mathrm{A}\mathrm{L}\mathrm{G} that, for any given fixed parameter \varepsilon > 0, is k(\varepsilon )-
stable and that maintains a solution with approximation ratio 1 + \varepsilon , where the stability parameter
k(\varepsilon ) only depends on \varepsilon and not on the size of P . We study such trade-offs in three settings. (1)
For the problem in \BbbR 1, we present a SAS with k(\varepsilon ) = O(1/\varepsilon ). Furthermore, we prove that this is
tight in the worst case: any SAS for the problem must have k(\varepsilon ) = \Omega (1/\varepsilon ). We also present 1-, 2-,
and 3-stable algorithms with constant approximation ratio. (2) For the problem in \BbbS 1 (that is, when
the underlying space is a circle) we prove that no SAS exists. This is in spite of the fact that, for
the static problem in \BbbS 1, we prove that an optimal solution can always be obtained by cutting the
circle at an appropriate point and solving the resulting problem in \BbbR 1. (3) For the problem in \BbbR 2,
we also prove that no SAS exists, and we present a O(1)-stable O(1)-approximation algorithm. Most
results generalize to the setting where, for any given constant \alpha > 1, the range-assignment cost is\sum 

p\in P \rho (p)\alpha .

Key words. computational geometry, online algorithms, broadcast range assignement, stable
approximation schemes, bounded recourse
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1. Introduction.

The broadcast range-assignment problem. Let P be a set of points in \BbbR d,
representing transmission devices in a wireless network. By assigning each point p\in P
a transmission range \rho (p), we obtain a communication graph \scrG \rho (P ). The nodes in
\scrG \rho (P ) are the points from P and there is a directed edge (p, q) iff | pq| \leqslant \rho (p), where
| pq| denotes the Euclidean distance between p and q. The energy consumption of
a device depends on its transmission range: the larger the range, the more energy
it needs. More precisely, the energy needed to obtain a transmission range \rho (p) is
given by \rho (p)\alpha , for some real constant \alpha > 1 called the distance-power gradient. In
practice, \alpha depends on the environment and ranges from 1 to 6 [36]. Thus, if we
denote the set of ranges given to the points in P by \rho (P ), then the total cost of a
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 791

range assignment is cost\alpha (\rho (P )) :=
\sum 

p\in P \rho (p)\alpha . The goal of the range-assignment
problem is to assign the ranges such that \scrG \rho (P ) has certain connectivity properties
while minimizing the total cost [12]. Desirable connectivity properties are that \scrG \rho (P )
is (h-hop) strongly connected [14, 15, 16, 32] or that \scrG \rho (P ) contains a broadcast tree,
that is, an arborescence rooted at a given source s \in P . The latter property leads to
the broadcast range-assignment problem, which is the topic of our paper.

The broadcast range-assignment problem has been studied extensively, sometimes
with the extra condition that any point in P is reachable in at most h hops from the
source s. For \alpha = 1, the problem is trivial in any dimension: setting the range of
the source s to max\{ | sp| : p \in P\} and all other ranges to zero is optimal. However,
Fuchs [25] proves that, for any fixed \alpha > 1, the broadcast range-assignment problem
is np-hard in \BbbR 2, and that the problem is np-hard to approximate within 1 + 1

50 in
\BbbR 3. There are several approximation algorithms for the problem, typically based on
finding a minimum spanning tree [10, 13]. Caragiannis, Flammini, and Moscardelli [9]
describe a polynomial-time approximation algorithm that achieves an approximation
ratio 4.2 in the case d = 2, a ratio 6.49 in the case d = 3, and a ratio 2.2d+ 0.61 in
the case d > 3. As far as we are aware, these results summarize the state of the art
of the approximability of the static broadcast range-assignment problem in various
dimensions.

Many of our results will be on the 1-dimensional (or linear) broadcast range-
assignment problem. Linear networks are important for modeling road traffic infor-
mation systems [6, 34] and as such they have received ample attention. In \BbbR 1, the
broadcast range-assignment problem is no longer np-hard, and several polynomial-
time algorithms have been proposed, for the standard version, the h-hop version, as
well as the weighted version [4, 10, 13, 19, 20]. The currently fastest algorithms for
the (standard and h-hop) broadcast range-assignment problem run in O(n2) time [19].

All results mentioned so far are for the static version of the problem. Our interest
lies in the dynamic version, where points can be inserted into and deleted from P
(except the source, which is fixed and should always be present). This corresponds
to new sensors being deployed and existing sensors being removed or, in a traffic
scenario, cars entering and exiting the highway. Recomputing the range assignment
from scratch when P is updated may result in all ranges being changed. The question
we want to answer is, therefore, is it possible to maintain a close-to-optimal range
assignment that is relatively stable, that is, an assignment for which only a few ranges
are modified when a point is inserted into or deleted from P? And which trade-offs
can be achieved between the quality of the solution and its stability?

To the best of our knowledge, the dynamic problem has not been studied so
far. The online problem, where there are only insertions, was studied by De Berg,
Markovic, and Umboh [22] under the restriction that it is not allowed to decrease
ranges. This restriction is arguably unnatural, and it has the consequence that a
bounded approximation ratio cannot be achieved. Indeed, let the source s be at
x = 0, and suppose that first the point x = 1 arrives, forcing us to set \rho (s) := 1.
Then the points x = i/n arrive for 1 \leqslant i < n. In the optimal static solution at the
end of this scenario all points, except the rightmost one, have range 1/n; for \alpha = 2
this induces a total cost of n \cdot (1/n)2 = 1/n. But if we are not allowed to decrease
the range of s after setting \rho (s) = 1, the total cost will be at least 1, leading to
an unbounded approximation ratio. Therefore, De Berg, Markovic, and Umboh [22]
analyze the competitive ratio: they compare the cost of their algorithm to the cost of
an optimal offline algorithm, which knows the future arrivals, but must still maintain
a valid solution at all times without decreasing any range. As we will see, by allowing
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792 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

one to also decrease a few ranges, we are able to maintain solutions whose cost is close
even to the static optimum.

Stable algorithms. Taking a general perspective, let us consider an arbitrary
dynamic optimization problem where we face the task of maintaining a feasible so-
lution at all times. Our interest is in designing and analyzing update algorithms
that perform this task with the objective to modify the existing solution as little as
possible, while simultaneously having a good objective value. The number of mod-
ifications needed by such an algorithm will be referred to as its stability; we give
precise definitions later. To analyze this property, we need to be able to define how
two (consecutive) solutions differ [40]. For many problems there is a natural choice
for the difference between two solutions. In our dynamic broadcast range-assignment
problem, we focus on the number of points whose range changes after the arrival of a
new point (an insertion), or after a point disappears (a deletion).

The concept of stability is not new and has been studied for online algorithms
under the name of bounded recourse. It should be noted that in most papers on
bounded-recourse algorithms, only insertions (and no deletions) are considered. More-
over, instead of considering the approximation ratio of the solution, the competitive
ratio is considered. As explained above for the range-assignment problem, this can
make a huge difference. Some representative examples of work related to bounded re-
course include dynamic versions of problems such as minimum spanning trees and the
Traveling Salesman Problem (TSP) [35], Steiner trees [26, 27, 30], knapsack [29, 31],
packing problems [5], clustering [17, 24, 33], and matching [3, 7, 8, 28].

Our contribution. Before we state our results, we first define the framework
we use to analyze our algorithms. Let P be a dynamic set of points in \BbbR d, which
includes a fixed source point s that cannot be deleted.

An update algorithm ALG for the dynamic broadcast range-assignment problem is
an algorithm that, given the current solution (the current ranges of the points in the
current set P ) and the location of the new point to be inserted into P , or the point
to be deleted from P , modifies the range assignment so that the updated solution is
a valid broadcast range assignment for the updated set P . We call such an update
algorithm k-stable if it modifies at most k ranges when a point is inserted into or
deleted from P . Here we define the range of a point currently not in P to be zero.
Thus, if a newly inserted point receives a positive range it will be counted as receiving
a modified range; similarly, if a point with positive range is deleted, then it will be
counted as receiving a modified range. To get a more detailed view of the stability,
we sometimes distinguish between the number of increased ranges and the number of
decreased ranges, in the worst case. When these numbers are k+ and k - , respectively,
we say that ALG is (k+, k - )-stable. This is especially useful when we separately report
on the stability of insertions and deletions; often, when insertions are (k1, k2)-stable
then deletions will be (k2, k1)-stable.

We are not only interested in the stability of our update algorithms, but also in the
quality of the solutions they provide. We measure this in the usual way, by considering
the approximation ratio of the solution. We emphasize that the approximation ratio
compares the cost of the current solution to the static optimum for the current point
set. As mentioned, we are interested in trade-offs between the stability of an algorithm
and its approximation ratio. Of particular interest are so-called stable approximation
schemes, defined as follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 793

Definition 1.1. A stable approximation scheme, or SAS for short, is an update
algorithm ALG that, for any given yet fixed parameter \varepsilon > 0, is k(\varepsilon )-stable and that
maintains a solution with approximation ratio 1 + \varepsilon , where the stability parameter
k(\varepsilon ) only depends on \varepsilon and not on the size of P .

Notice that in the definition of a SAS we do not take the computational complexity
of the update algorithm into account. We point out that, in the context of dynamic
scheduling problems (where jobs arrive and disappear in an online fashion, and it is
allowed to reassign jobs), a related concept has been introduced under the name robust
PTAS: a polynomial-time algorithm that, for any given parameter \varepsilon > 0, computes a
(1+\varepsilon )-approximation with reassignment costs only depending on \varepsilon ; see, e.g., [37, 38].

We now present our results. Recall that cost\alpha (\rho (P )) :=
\sum 

p\in P \rho (p)\alpha , is the cost
of a range assignment \rho , where \alpha > 1 is a fixed constant. To make the results easier
to interpret, we state the results for \alpha = 2; the dependencies of the bounds on the
parameter \alpha can be found in the theorems presented in later sections.

\bullet In section 3, we present a SAS for the broadcast range-assignment problem
in \BbbR 1, with k(\varepsilon ) = O(1/\varepsilon ). We prove that this is tight in the worst case, by
showing that any SAS for the problem must have k(\varepsilon ) =\Omega (1/\varepsilon ).

\bullet Our SAS (as well as some other algorithms) needs to know an optimal solution
after each update. The fastest existing algorithms to compute an optimal
solution in \BbbR 1 run in O(n2) time. In section 2 we show how to recompute an
optimal solution in O(n logn) time after each update, which we believe to be
of independent interest. As a consequence, our SAS also runs in O(n logn)
time per update.

\bullet In section 4, we study the problem in \BbbS 1, that is, when the underlying
1-dimensional space is circular. This version has, as far as we know, not been
studied so far. We first prove that in \BbbS 1 an optimal solution for the static
problem can always be obtained by cutting the circle \BbbS 1 at an appropriate
point and solving the resulting problem in \BbbR 1. This leads to an algorithm to
solve the static problem optimally in O(n2 logn) time. We also prove that,
in spite of the similarity between the structure of an optimal solution in \BbbS 1
and in \BbbR 1, a SAS does not exist in \BbbS 1.

\bullet We consider in section 5 the problem in \BbbR 2. Based on the no-SAS proof
in \BbbS 1, we show that the 2-dimensional problem does not admit a SAS ei-
ther. In addition, we present a 17-stable 12-approximation algorithm for the
2-dimensional version of the problem.

\bullet Finally, in section 6, we return to \BbbR 1 and study algorithms with a very small
stability parameter. There is a very simple 2-stable 2-approximation algo-
rithm. We show that a 1-stable algorithm with bounded approximation ratio
does not exist when both insertions and deletions must be handled. For the
insertion-only case, however, we give a 1-stable (6 + 2

\surd 
5)-approximation al-

gorithm. We have not been able to improve upon the approximation ratio
2 with a 2-stable algorithm, but we show that with a 3-stable we can get a
1.97-approximation.

2. Maintaining an optimal solution in \BbbR 1. Before we can present our stable
algorithms for the broadcast range-assignment problem in \BbbR 1, we first introduce some
terminology and we discuss the structure of optimal solutions. We also present an
efficient subroutine to maintain an optimal solution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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p∗s

chain chain

`|L| `j ri r|R|

chain ZrightZleft

Fig. 1. The structure of an optimal solution. The nonfilled points are zero-range points, the
solid black points all have a standard range (for \ell | L| and r| R| the standard range is zero), except for
the root-crossing point which (in this example) has a long range.

2.1. The structure of an optimal solution. Several papers have character-
ized the structure of optimal broadcast range assignments in \BbbR 1, in a more or less
explicit manner. We use the characterization by Caragiannis, Kaklamanis, and Kanel-
lopoulos [10], which is illustrated in Figure 1 and described next.

Let P := L\cup \{ s\} \cup R be a point set in \BbbR 1. Here s is the designated source node,
L := \{ \ell 1, . . . , \ell | L| \} contains all points from P to the left of s, and R := \{ r1, . . . , r| R| \} 
contains all points to the right of s. The points in L are numbered in order of increasing
distance from s, and the same is true for the points in R. The points \ell | L| and r| R| 
are called extreme points. In the following, and with a slight abuse of notation, we
sometimes use p or q to refer a generic point from P---that is, a point that could be s,
or a point from R, or a point from L. Furthermore, we will not distinguish between
points in P and the corresponding nodes in the communication graph \scrG \rho (P ).

For a nonextreme point ri \in R, we define ri+1 to be its successor; similarly, \ell i+1

is the successor of \ell i. The source s has (at most) two successors, namely, r1 and \ell 1.
The successor of a point p is denoted by succ(p); for an extreme point p we define
succ(p) = NIL. If succ(p) = q \not = NIL, then we call p the predecessor of q and we write
pred(q) = p. A chain is a path in the communication graph \scrG \rho (P ) that only consists
of edges connecting a point to its successor. Thus a chain either visits consecutive
points from \{ s\} \cup R from left to right, or it visits consecutive points from \{ s\} \cup L from
right to left. It will be convenient to consider the empty path from s to itself to be a
chain as well.

Consider a range assignment \rho . We say that a point q \in P is within reach of
a point p \in P if | pq| \leqslant \rho (p). Let \scrB be a broadcast tree in \scrG \rho (P )---that is, \scrB is an
arborescence rooted at s. A point in R\cup L in \scrB is called a root-crossing in \scrB if it has
a child on the other side of s; the source s is root-crossing if it has a child in L and
a child in R. Here we say that a point q is a child of p if (p, q) is a (directed) edge
in the broadcast tree \scrB . The following theorem, which holds for any distance-power
gradient \alpha > 1, is proven by Caragiannis, Kaklamanis, and Kanellopoulos [10].

Theorem 2.1 ([10]). Let P be a point set in \BbbR 1. If all points in P \setminus \{ s\} lie to
the same side of the source s, then the optimal solution induces a chain from s to
the extreme point in P . Otherwise, there is an optimal range assignment \rho such that
\scrG \rho (P ) contains a broadcast tree \scrB with the following structure:

\bullet \scrB has a single root-crossing point, p\ast .
\bullet \scrB contains a chain from s to p\ast .
\bullet All points within reach of p\ast , except those on the chain from s to p\ast , are
children of p\ast .

\bullet Let ri and \ell j be the rightmost and leftmost point within reach of p\ast , respec-
tively. Then \scrB contains a chain from ri to r| R| , and a chain from \ell j to \ell | L| .

From now on, whenever we talk about optimal range assignments and their in-
duced broadcast trees, we implicitly assume that the broadcast tree has the structure
described in Theorem 2.1. Note that the communication graph \scrG \rho (P ) induced by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 795

an optimal range assignment \rho can contain more edges than the ones belonging to
the broadcast tree \scrB . Obviously, for \rho to be optimal it must be a minimum-cost
assignment inducing \scrB .

Define the standard range of a nonextreme point ri \in R to be | riri+1| ; the standard
range of the extreme point r| R| is defined to be zero. The standard ranges of the points
in L are defined similarly. The source s has two standard ranges, | s\ell 1| and | sr1| . A
range assignment in which every point has a standard range is called a standard
solution; a standard solution may or may not be optimal. Note that, in the static
problem, it is never useful to give a point a nonzero range that is smaller than its
standard range(s). Hence, we only need to consider three types of points: standard-
range points, zero-range points, and long-range points. Here zero-range points are
nonextreme points with a zero range, and a point is said to have a long range if its
range is greater than its standard range. Theorem 2.1 implies that an optimal range
assignment has the following properties; see also Figure 1.

\bullet There is at most one long-range point.
\bullet The set Z \subset P of zero-range points (which may be empty) can be partitioned

into two subsets, Zleft and Zright, such that Zleft consists of consecutive points
that lie to the left of the source s, and Zright consists of consecutive points to
that lie to the right of s.

2.2. An efficient update algorithm. Using Theorem 2.1 an optimal solution
for the broadcast range-assignment problem can be computed in O(n2) time [19]. Be-
low we show that maintaining an optimal solution under insertions and deletions can
be done more efficiently than by re-computing it from scratch: using a suitable data
structure, we can update the solution in O(n logn) time, as stated in Theorem 2.4.
We use this result in later sections, when we give algorithms that maintain a stable
solution.

Recall that an optimal solution for a given point set P has a single root-crossing
point, p\ast . Once the range \rho (p\ast ) is fixed, the solution is completely determined. Since
\rho (p\ast ) = | p\ast p| for some point p \not = p\ast , there are n - 1 candidate ranges for a given choice
of the root-crossing point p\ast . The idea of our solution is to implicitly store the cost
of the range assignment for each candidate range of p\ast such that, upon the insertion
or deletion of a point in P , we can find the best range for p\ast in O(logn) time. By
maintaining n such data structures \scrT p\ast , one for each choice of the root-crossing point
p\ast , we can then find the overall best solution.

Besides the data structures \scrT p\ast which are described below, we also maintain a
global data structure \scrT P that supports the following operations.

\bullet Find the predecessor pred(q) and successor succ(q) in P of a query point q.
\bullet Given two points p, p\prime \in P , report the total cost of the chain from p to p\prime .
\bullet Insert or delete points from P .

By implementing \scrT P as a suitably augmented binary search tree, each of these op-
erations can be performed in O(logn) time. In particular, \scrT P is a red-black tree on
the points from P , where each internal node v is augmented with an extra field that
stores the total cost of the chain on the points in the subtree rooted at v. How to
maintain such an augmented tree and how to answer queries is standard (see the book
by Cormen et al. [18, Chapter 15]) so we omit further details.

The data structure \scrT p\ast for a given root-crossing point p\ast . Next we explain
our data structure for a given candidate root-crossing point p\ast . We assume without
loss of generality that p\ast lies to the right of the source point s; it is straightforward
to adapt the structure to the (symmetric) case where p\ast lies to the left of s, and to
the case where p\ast = s.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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s p∗

ρjρj

dummy

Fig. 2. A dummy point is inserted to ensure that points to the right of p\ast can be reached. For
clarity the dummy is drawn to the right of p\ast , but it actually coincides with p\ast .

Let \scrR p\ast be the set of all ranges we need to consider for p\ast for the current set P .
The range of a root-crossing point must extend beyond the source point. Hence,

\scrR p\ast := \{ | p\ast p| : p\in P and | p\ast p| > | p\ast s| \} .

Let \lambda 1, . . . , \lambda m denote the sequence of ranges in \scrR p\ast , ordered from small to large.
(If \scrR p\ast = \emptyset , there is nothing to do and our data structure is empty.) As mentioned,
once we fix a range \lambda j for the given root-crossing point p\ast , the solution is fully
determined by Theorem 2.1: there is a chain from s to p\ast , a chain from the rightmost
point within range of p\ast to the right-extreme point, and a chain from the leftmost
point within range of p\ast to the left-extreme point. We denote the resulting range
assignment1 for P by \Gamma (P,p\ast , \lambda j).

There is one subtlety in the definition of \Gamma (P,p\ast , \lambda j), namely, when there are no
points within reach of p\ast to, say, the right of p\ast ; see Figure 2. Such a solution can
never be optimal, but we must maintain it nevertheless, because the range \lambda j may
become relevant later. To deal with this situation, we will insert a dummy point
whose location coincides with p\ast and that is defined to be the predecessor of succ(p\ast ).
The dummy will become a zero-range point as soon as an actual point is inserted that
is within the range of p\ast and lies to the same side of p\ast as the dummy.

Our data structure, which implicitly stores the costs of the range assignments
\Gamma (P,p\ast , \lambda j) for all \lambda j \in \scrR p\ast , is an augmented balanced binary search tree \scrT p\ast , defined
as follows.

\bullet The leaves of \scrT p\ast are in one-to-one correspondence with the candidate ranges
in \scrR p\ast : the leftmost leaf corresponds to \lambda 1, the next left to \lambda 2, and so on.
From now on, with a slight abuse of notation, we use \lambda j to refer to a range
in \scrR p\ast as well as to the corresponding leaf.

\bullet Each leaf stores, besides the corresponding range \lambda j , a value f(\lambda j). Together
with certain other values stored in \scrT p\ast , the value f(\lambda j) will help us to deter-
mine \Gamma (P,p\ast , \lambda j); see invariant (2.1) below.

\bullet The internal nodes of \scrT p\ast are augmented with extra information, as follows.
For an internal node v, let \scrR p\ast (v)\subseteq \scrR p\ast be the set of all ranges stored in the
leaves of the subtree rooted at v. The node v stores the following additional
information, besides the splitting values that we have because \scrT p\ast is a search
tree on the ranges in \scrR p\ast :
-- A correction value \Delta (v)\in \BbbR .
-- A value min-cost(v) defined as follows. For a range \lambda j \in \scrR p\ast (v) define
the local cost of \lambda j at v to be f(\lambda j)+

\sum 
u\Delta (u), where the sum is over all

1When all points in P lie to the same side of s, then the range assignment is formally not root-
crossing, but we will permit ourselves this slight abuse of terminology. Notice that in this case the
range assignment induced by considering s as a root-crossing point and setting \rho (s) := | s succ(s)| 
gives a chain from s to the extreme point as the solution, which is optimal.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 797

nodes u on the path from v (and including v) to \lambda j . Then min-cost(v) is
defined to be the minimum local cost over all ranges in \scrR p\ast (v).

-- A range \lambda j \in \scrR p\ast (v) whose local cost at v is min-cost(v). This range is
denoted by best-range(v).

Our update algorithm will ensure the following invariant:

For any range \lambda j \in \scrR p\ast , the total cost of \Gamma (P,p\ast , \lambda j) is equal to
f(\lambda j) +

\sum 
u\Delta (u), where the sum is over all nodes on the search

path from root(\scrT p\ast ) to \lambda j .
(2.1)

In other words, invariant (2.1) states that, for any range \lambda j , the local cost of \lambda j at
the root of \scrT p\ast is equal to the actual cost of \Gamma (P,p\ast , \lambda j). Since \scrR p\ast (root(\scrT p\ast )) =\scrR p\ast ,
this implies that min-cost(root(\scrT p\ast )) equals the minimum cost that can be obtained
by a solution that uses p\ast as a root-crossing point.

Updating the data structure. We now describe how to update the structure
upon the insertion of a new point. Deletions can be handled in a symmetrical manner.
To simplify the presentation, we assume that no two points in P coincide; the solution
is easily adapted to the case where P is a multiset. Let \Delta j be the (signed) difference
of the cost of the range assignment \Gamma (P,p\ast , \lambda j) before and after the insertion of q,
where \Delta j is positive if the cost increases. Figure 3 shows various possible values for
\Delta j , depending on the location of the new point q. The figure is for the generic case,
when Zleft,Zright \not = \emptyset and there are points to the right as well as to the left of the
interval that are within reach of the root-crossing point p\ast . Lemma 2.2, which is easy
to verify, gives the values for \Delta j for all cases, where we write p < q when a point p is
to the left of a point q.

Lemma 2.2. Let \Delta j := cost(\Gamma (P \cup \{ q\} , p\ast , \lambda j)) - cost(\Gamma (P,p\ast , \lambda j)). If s < q < p\ast 

or p\ast < q < s we have

\Delta j = | pred(q) q| \alpha + | q succ(q)| \alpha  - | pred(q) succ(q)| \alpha .

Otherwise we have

\Delta j=

\left\{               

| q succ(q)| \alpha  - | pred(q) succ(q)| \alpha if | p\ast q| \leqslant \lambda j < | p\ast succ(q)| ,
0 if \lambda j \geqslant | p\ast succ(q)| 

or
\bigl( 
\lambda j \geqslant | p\ast q| and succ(q)=NIL

\bigr) 
,

| pred(q) q| \alpha + | q succ(q)| \alpha  - | pred(q) succ(q)| \alpha 
if \lambda j < | p\ast q| and succ(q) \not = NIL,

| pred(q) q| \alpha if \lambda j < | p\ast q| and succ(q) = NIL.

s p∗

∆j = | pred(q) q|α ∆j = | pred(q) q|α + |q succ(q)|α − | pred(q) succ(q)|α

∆j = 0 ∆j = |q succ(q)|α − | pred(q) succ(q)|α

λj λj

Fig. 3. Various cases that can arise when a new point q is inserted into P . Open disks indicate
zero-range points. The arcs indicate the ranges of the points before the insertion of q, where the
range of the root-crossing point is drawn both to its right and to its left. The colored intervals relate
the possible locations of q to the corresponding values \Delta j . Note: color appears only in the online
article.
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798 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

Lemma 2.2 implies that, after computing pred(q) and succ(q), we can update our
data structure using O(1) bulk updates of the following form:

given an interval I of range values and an update value \Delta , add \Delta to
the cost of \Gamma (P,p\ast , \lambda j) for all \lambda j \in I.

We cannot afford to do this explicitly, so we implement bulk updates by updating the
auxiliary information stored in O(logn) nodes in \scrT p\ast , as follows.

1. Let \lambda min and \lambda max be the two endpoints of the interval I (possibly \lambda max =\infty ).
By searching with \lambda min and \lambda max in \scrT p\ast , identify a collection \scrC (I) of O(logn)
nodes in \scrT p\ast such that \lambda i \in I iff the leaf storing \lambda j is a descendant of a node
in \scrC (I).

2. Add \Delta to the correction values \Delta (v) of all nodes v \in \scrC (I) and to the value
min-cost(v).

3. Update the values \Delta (v), min-cost(v), and best-range(v) of the O(logn) an-
cestors of the nodes in \scrC (v) in a bottom-up manner.

Since algorithms for updating this type of auxiliary information are rather standard
we omit further details. After updating the auxiliary information as described above,
invariant (2.1) has been restored.

Besides updating the auxiliary information in the tree \scrT p\ast , we may also need to
introduce another candidate range for p\ast . In particular, we need to introduce the
range \lambda new := | p\ast q| if | p\ast q| > | p\ast s| . To this end we need to compute the cost of the
range assignment \Gamma (P,p\ast , \lambda new). After computing pred(q), succ(q), and the cost of
O(1) chains---this can all be done in O(logn) time using the global tree \scrT P---we can
compute the cost of \Gamma (P,p\ast , \lambda new) in O(1) time. We then insert a leaf w for the range
\lambda new into \scrT p\ast with

f(\lambda new) := cost(\Gamma (P,p\ast , \lambda new)) - 
\sum 
u

\Delta (u),

where the sum is over all nodes on the search path from root(\scrT p\ast ) to w. Initializing
f(\lambda new) in this manner ensures that invariant (2.1) is satisfied for the new range \lambda new

as well. Finally, we update the values min-cost(v) and best-range(v) of the ancestors
v of w whose current value of min-cost(v) is larger than f(\lambda new)). (Rebalancing \scrT p\ast ,
when necessary, can be done in a standard manner [18, Chapter 15].)

The following lemma summarizes the discussion above.

Lemma 2.3. \scrT p\ast can be updated in O(logn) time per insertion and deletion.

Putting it all together. To summarize, upon the insertion of a new point q
into P , we first update each tree \scrT p\ast , as described above. This takes O(logn) time per
tree, so O(n logn) time in total. Then we update the global tree \scrT P in O(logn) time.
Finally, we create a tree \scrT q with q being the root-crossing point. This can be done in
O(n logn) time, by inserting the points from P one by one as described above. Thus
inserting a new point q can be done in O(n logn) time in total, after which we know
the cost of the optimal solution for P \cup \{ q\} . Deletions can be handled in a similar
manner, so we obtain the following theorem.

Theorem 2.4. An optimal solution to the broadcast range-assignment problem
for a point set P in \BbbR 1 can be maintained in O(n logn) per insertion and deletion.

3. A stable approximation scheme in \BbbR 1. In this section we use the struc-
ture of an optimal solution provided by Theorem 2.1 to obtain a SAS for the 1-
dimensional broadcast range-assignment problem. Our SAS has stability parameter
k(\varepsilon ) =O((1/\varepsilon )1/(\alpha  - 1)), which we will show to be asymptotically optimal.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 799

The optimal range assignment can be very unstable. Indeed, suppose the current
point set is P := \{ s, r1, . . . , rn\} with s= 0 and ri = i (1\leqslant i\leqslant n), and take any \alpha > 1.
Then the (unique) optimal assignment \rho opt has \rho opt(s) = \rho opt(r1) = \cdot \cdot \cdot = \rho opt(rn - 1) =
1 and \rho opt(rn) = 0. If now the point \ell 1 = - n is inserted, then the optimal assignment
becomes \rho opt(s) = n and \rho opt(r1) = \cdot \cdot \cdot = \rho opt(rn) = \rho opt(\ell 1) = 0, causing n ranges to
be modified.

Next, we will define a feasible solution, referred to as a canonical range assignment
\rho k that is more stable than an optimal assignment, while still having a cost close to
the cost of an optimal solution. Here k is a parameter that allows a trade-off between
stability and quality of the solution. The assignment \rho k for a given point set P will
be uniquely determined by the set P ; it does not depend on the order in which the
points have been inserted or deleted. This means that the update algorithm simply
works as follows. Let \rho k(P ) be the canonical range assignment for a point set P , and
suppose we update P by inserting a point q. Then the update algorithm computes
\rho k(P \cup \{ q\} ) and it modifies the range of each point p\in P \cup \{ q\} whose canonical range
in \rho k(P \cup \{ q\} ) is different from its canonical range in \rho k(P ). The goal is now to specify
\rho k such that (i) many ranges in \rho k(P \cup \{ q\} ) are the same as in \rho k(P ), and (ii) the
cost of \rho k(P ) is close to the cost of \rho opt(P ).

The instance in the example above shows that there can be many points whose
range changes from being standard to being zero (or vice versa) when preserving
optimality of the consecutive instances. Our idea is therefore to construct solutions
where the number of points with zero range is limited, and instead give many points
their standard range; if we do this for points whose standard range is relatively small,
then the cost of this solution remains bounded compared to the cost of an optimum
solution. We now make this idea precise.

Consider a point set P and let \rho opt be an optimal range assignment satisfying the
structure described in Theorem 2.1. Assuming there are points in P on both sides of
the source, \rho opt induces a broadcast tree \scrB with the structure depicted in Figure 1.
Let \rho st(p) be the standard range of a point p \not = s. The canonical range assignment \rho k
is now defined as follows.

\bullet If all points from P lie to the same side of s, then \rho k(p) := \rho opt(p) for all
p\in P . Note that in this case \rho k(p) = \rho st(p) for all p\in P \setminus \{ s\} .

\bullet Otherwise, let Z be the set of zero-range points in \rho opt(P ). If | Z| \leqslant k, then
let Zk := Z; otherwise let Zk \subseteq Z be the k points from Z with the largest
standard ranges, with ties broken arbitrarily. We define \rho k as follows.
-- \rho k(p) := \rho opt(p) for all p \in P \setminus Z. Observe that this means that \rho k(p) =
\rho st(p) for all p \in P \setminus (Z \cup \{ s\} ) except (possibly) for the root-crossing
point.

-- \rho k(p) := 0 for all p\in Zk.
-- \rho k(p) := \rho st(p) for all p\in Z \setminus Zk.

Notice that \rho k is a feasible solution since \rho k(p) \geqslant \rho opt(p) for each p \in P . The next
lemma analyzes the stability of the canonical range assignment \rho k. Recall that for
any range assignment \rho ---hence, also for \rho k---and any point q not in the current set
P , we have \rho (q) = 0 by definition.

Lemma 3.1. Consider a point set P and a point q \not \in P . Let \rho old(p) be the range
of a point p in \rho k(P ) and let \rho new(p) be the range of p in \rho k(P \cup \{ q\} ). Then

| \{ p\in P \cup \{ q\} : \rho new(p)>\rho old(p)\} | \leqslant k+ 3
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800 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

and

| \{ p\in P \cup \{ q\} : \rho new(p)<\rho old(p)\} | \leqslant k+ 3.

Proof. The range of a point p \in P \cup \{ q\} can increase due to the insertion of q
only if

(i) p= q and \rho new(q)> 0, or
(ii) p is a zero-range point in \rho k(P ), or
(iii) p is the root-crossing point in \rho k(P \cup \{ q\} ), or
(iv) the standard range of p increases due to the insertion of q, or
(v) p= s and, out of the two standard ranges it has, s gets assigned a larger one

in \rho k(P \cup \{ q\} ) than in \rho k(P ).
Recall that we defined \rho k such that the number of zero-range points is at most k.
Furthermore, at most one standard range can increase due to the insertion of q,
namely, the standard range of a point that is extreme in P but not in P \cup \{ q\} . When
this happens, however, q is extreme in P \cup \{ q\} and so \rho new(q) = 0; this implies that
cases (i) and (iv) cannot happen simultaneously. To summarize: cases (i) and (iv)
together contribute a range increase of at most one point; case (ii) contributes to at
most k range increases; and cases (iii) and (v) each contribute a range increase of at
most one point. Hence, | \{ p\in P \cup \{ q\} : \rho new(p)>\rho old(p)\} | \leqslant k+ 3.

The range of a point p can decrease only if
(vi) p is a zero-range point in \rho k(P \cup \{ q\} ), or
(vii) p is the root-crossing point in \rho k(P ), or
(viii) the standard range of p decreases due to the insertion of q, or
(ix) p= s and, out of the two standard ranges it has, p gets a assigned a smaller

one in \rho k(P \cup \{ q\} ) than in \rho k(P ).
Note that the only point whose standard range decreases is the predecessor of q in
P , so case (viii) contributes to a range decrease of at most one point. Clearly, case
(vii) and case (ix) each contribute to a range decrease of at most one point as well.
Finally, case (vi) contributes to at most k range decreases. So we conclude that
| \{ p\in P \cup \{ q\} : \rho new(p)<\rho old(p)\} | \leqslant k+ 3.

Observe that, while the insertion of q may increase the range of some points and
decrease the range of some other points, not all combinations of cases (i)--(v) and
(vi)--(ix) can happen. In particular, cases (iv) and (viii) cannot occur simultaneously
(since both concern the predecessor of q) and cases (v) and (ix) cannot occur si-
multaneously (since both concern the source s). Thus the statement of the lemma
could be strengthened accordingly. This would have no impact on our final result,
Theorem 3.3, however.

Next we bound the approximation ratio of \rho k.

Lemma 3.2. For any set P and any \alpha > 1, we have cost\alpha (\rho k(P ))\leqslant 
\bigl( 
1 + 2\alpha 

k\alpha  - 1

\bigr) 
\cdot 

cost\alpha (\rho opt(P )).

Proof. If all points in P lie to the same side of s, then \rho k(P ) = \rho opt(P ), and we
are done. Otherwise, let p\ast be the root-crossing point. The only points receiving a
different range in \rho k(P ) when compared to \rho opt(P ) are the points in Z \setminus Zk; these
points have \rho k(p) = \rho st(p) while \rho opt(p) = 0. This means we are done when Z \setminus Zk = \emptyset .
Thus we can assume that | Z| > k, so Z \setminus Zk \not = \emptyset . Assume without loss of generality
that \rho opt(p

\ast ) = 1. As each p\in Z is within reach of p\ast , we have
\sum 

p\in Z \rho st(p)\leqslant 2. Since
Zk contains the k points with the largest standard ranges among the points in Z, we
have max\{ \rho st(p) : p\in Z \setminus Zk\} \leqslant 2/k. Hence,
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 801\sum 
p\in Z\setminus Zk

\rho k(p)
\alpha =

\sum 
p\in Z\setminus Zk

\rho st(p)
\alpha 

=
\sum 

p\in Z\setminus Zk
\rho st(p)

\alpha  - 1 \cdot \rho st(p)
\leqslant 
\bigl( 
2
k

\bigr) \alpha  - 1\sum 
p\in Z\setminus Zk

\rho st(p)

\leqslant 2\alpha 

k\alpha  - 1 .

(The analysis can be made tighter by using
\sum 

p\in Z\setminus Zk
\rho st(p)\leqslant 2 - kmaxp\in Z\setminus Zk

\rho st(p),
but this will not change the approximation ratio asymptotically.) We conclude that

cost\alpha (\rho k(P ))

cost\alpha (\rho opt(P ))
\leqslant 

\sum 
p\in P\setminus (Z\setminus Zk)

\rho k(p)
\alpha +

\sum 
p\in Z\setminus Zk

\rho k(p)
\alpha \sum 

p\in P\setminus (Z\setminus Zk)
\rho opt(p)\alpha 

\leqslant 1 +
2\alpha 

k\alpha  - 1
,

where the last inequality follows because we have \rho k(p) = \rho opt(p) for all p\in P \setminus (Z\setminus Zk)
and

\sum 
p\in P\setminus (Z\setminus Zk)

\rho opt(p)
\alpha \geqslant 1.

By maintaining the canonical range assignment \rho k for k := \lceil (2\alpha /\varepsilon )1/(\alpha  - 1)\rceil ---note
that this is O((1/\varepsilon )1/(\alpha  - 1)) since \alpha , the distance-power gradient, is a fixed constant
greater than 1---we obtain the following theorem.

Theorem 3.3. There is a SAS for the dynamic broadcast range-assignment prob-
lem in \BbbR 1 with stability parameter k(\varepsilon ) =O((1/\varepsilon )1/(\alpha  - 1)), where \alpha > 1 is a constant
specifying the distance-power gradient. The time needed by the SAS to compute the
new range assignment upon the insertion or deletion of a point is O(n logn), where n is
the number of points in the current set. Moreover, any SAS for the dynamic broadcast
range-assignment problem in \BbbR 1 must have stability parameter k(\varepsilon ) =\Omega ((1/\varepsilon )1/(\alpha  - 1)).

Proof. We maintain the canonical range assignment \rho k for k = \lceil (2\alpha /\varepsilon )1/(\alpha  - 1)\rceil .
We then have cost\alpha (\rho k(P ))\leqslant (1+\varepsilon )\cdot \rho opt(P ) by Lemma 3.2. Furthermore, the number
of modified ranges when P is updated is 2k + 6 by Lemma 3.1. This proves the first
statement of Theorem 3.3.

To compute the assignment \rho k, for some given k, we need to know an optimal
assignment \rho opt with the structure from Theorem 2.1. Such an optimal assignment
can be maintained in O(n logn) time per update, by Theorem 2.4. Once we have the
new optimal assignment, the new optimal assignment can trivially be determined in
O(n) time.

It remains to show that any SAS has stability parameter k(\varepsilon ) =\Omega ((1/\varepsilon )1/(\alpha  - 1)).
To this end let ALG be a k-stable algorithm, where k\geqslant 4 and k\alpha  - 1 \geqslant 1

2\alpha +1(2\alpha  - 1 - 1) and
k is even, and let \rho alg be the range assignment it maintains. Note that the condition
on k is satisfied for k large enough. We will show that the approximation ratio of ALG

is at least 1+ 1
2\alpha +2k\alpha  - 1 . Since a SAS has approximation ratio 1+ \varepsilon , this implies that

the stability parameter k(\varepsilon ) of ALG must satisfy k(\varepsilon ) =\Omega ((1/\varepsilon )1/(\alpha  - 1)). Consider the
point set P := \{ s, r1, r2, . . . , r2k\} , where s= 0 and ri = i/(2k) for i= 1,2, . . . ,2k. We
consider two cases.

Case I: The number of zero-range points in \rho alg(P ) is at least k/2, where we
assume without loss of generality that all points with range less than 1/(2k) actually
have range zero. It is easy to verify that the cheapest possible solution in this case
is to have exactly k/2 zero-range points, k points with range 1/(2k), and k/2 points
with range 1/k, for a total cost of

cost\alpha (\rho alg(P ))\geqslant k \cdot 
\biggl( 

1

2k

\biggr) \alpha 

+
k

2
\cdot 
\biggl( 
1

k

\biggr) \alpha 

=

\biggl( 
1 +

2\alpha  - 1  - 1

2

\biggr) 
\cdot 2k

\biggl( 
1

2k

\biggr) \alpha 

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

5/
24

 to
 8

4.
28

.5
1.

24
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



802 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

An optimal solution has cost 2k \cdot (1/(2k))\alpha , and so the approximation ratio of ALG in

Case I is at least 1+ 2\alpha  - 1 - 1
2 , which is at least 1+ 1

2\alpha +2k\alpha  - 1 since k\alpha  - 1 \geqslant 1
2\alpha +1(2\alpha  - 1 - 1) .

Case II: The number of zero-range points \rho alg(P ) is less than k/2. Now suppose
the point \ell 1 = - 1 arrives. Since \rho alg(P ) had less than k/2 zero-range points and ALG

can modify at most k ranges, \rho alg(P \cup \{ \ell 1\} ) has less than 3k/2 zero-range points.
Hence, at least k/2 points in P \cup \{ \ell 1\} have a range that is at least 1/(2k), one
of which must have a range at least 1. This implies that cost\alpha (\rho alg(P \cup \{ \ell 1\} )) \geqslant 
1+(k/2 - 1) \cdot 

\bigl( 
1
2k

\bigr) \alpha 
\geqslant 1+ 1

2\alpha +2k\alpha  - 1 , where the last inequality holds since k/2 - 1\geqslant k/4
(because k \geqslant 4). An optimal range assignment on P \cup \{ \ell 1\} has \rho opt(s) = 1 and all
other ranges equal to zero, for a total cost of 1, and so the approximation ratio of ALG

in Case II is at least 1 + 1
2\alpha +2k\alpha  - 1 as well.

4. The problem in \BbbS 1. We now turn to the setting where the underlying space
is \BbbS 1, that is, the points in P lie on a circle and distances are measured along the
circle. In section 4.1, we prove that the structure of an optimal solution in \BbbS 1 is very
similar to the structure of an optimal solution in \BbbR 1 as formulated in Theorem 2.1.
In spite of this, and contrary to the problem in \BbbR 1, we prove in section 4.2 that no
SAS exists for the problem in \BbbS 1.

When discussing the problem in \BbbS 1, we distinguish the clockwise distance from a
point p\in \BbbS 1 to a point q \in \BbbS 1, denoted by dcw(p, q), and the counterclockwise distance,
denoted by dccw(p, q). The actual distance is then d(p, q) :=min(dcw(p, q), dccw(p, q)).
The closed and open clockwise intervals from p to q are denoted by [p, q]cw and (p, q)cw,
respectively. As before, the (fixed) source point is denoted by s.

4.1. The structure of an optimal solution in \BbbS 1. Here we prove that the
structure of an optimal solution in \BbbS 1 is very similar to the structure of an optimal
solution in \BbbR 1. The heart of this proof is Lemma 4.1, stated next. Define the covered
region of P with respect to a range assignment \rho , denoted by cov(\rho ,P ), to be the set
of all points r \in \BbbS 1 such that there exists a point p\in P with \rho (p)\geqslant d(p, r).

Lemma 4.1. Let P be a point set in \BbbS 1 with | P | > 2 and let \rho opt be an optimal
range assignment for P . Then there exists a point r \in \BbbS 1 such that r /\in cov(\rho opt, P ).

Lemma 4.1 implies that an optimal solution for an instance in \BbbS 1 corresponds to
an optimal solution for an instance in \BbbR 1 in the following way. For a point r \in \BbbS 1,
define the mapping \mu r : P \rightarrow \BbbR 1 such that \mu r(s) := 0, and \mu r(p) := dcw(s, p) for all
p\in [s, r]cw, and \mu r(p) := - dccw(s, p) for all p\in [r, s]cw. Let \mu r(P ) denote the resulting
point set in \BbbR 1; informally, the mapping \mu r corresponds to ``cutting"" the cycle at r; see
Figure 4. Then, by Lemma 4.1, there is a point r \in \BbbS 1 such that an optimal solution

s

r

s

Fig. 4. The mapping \mu r from \BbbS 1 to \BbbR 1. The solution for \BbbS 1 that is shown has no arcs crossing
the point r and so it induces a solution in \BbbR 1 of exactly the same cost.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 803

for \mu r(P ) induces an optimal solution for P . We postpone the proof of Lemma 4.1 to
the end of this subsection, and proceed by stating the following result.

Theorem 4.2. Let P be an instance of the broadcast range-assignment problem
in \BbbS 1. There exists a point r \in \BbbS 1 such that an optimal range assignment for \mu r(P ) in
\BbbR 1 induces an optimal range assignment for P . Moreover, we can compute an optimal
range assignment for P in O(n2 logn) time.

Proof. Let r \in \BbbS 1 be a point such that r /\in cov(\rho opt, P ) (such a point exists by
Lemma 4.1). Consider the mapping \mu r. Any feasible range assignment for \mu r(P )
induces a feasible range assignment for P in \BbbS 1, since d(p, q) \leqslant | \mu r(p)\mu r(q)| for any
two points p, q \in P . Conversely, an optimal range assignment for P induces a feasible
range assignment for \mu r(P ), since the point r is not covered in the optimal solution.
This proves the first part of the theorem.

We now show that an optimal range assignment for P can be computed in
O(n2 logn) time. Note that we cannot use an algorithm for the problem in \BbbR 1 directly,
since we do not know the point r where we have to cut \BbbS 1. Hence, we proceed as
follows. Let P := \{ s, p1, . . . , pn\} , where the points pi are ordered clockwise from s.
For 0\leqslant i\leqslant n, let ri be a point in (pi, pi+1)

cw, where p0 = pn+1 = s. Since \mu ri = \mu r for
any r \in (pi, pi+1)

cw, an optimal solution can be computed by finding the best solution
over all mappings \mu ri . The only difference between \mu ri and \mu ri+1

is the location that
pi+1 is mapped to, so after computing an optimal solution for \mu 1(P ) in O(n2 logn)
time, we can go through the mappings \mu 2, . . . , \mu n and update the optimal solution
in O(n logn) time using Theorem 2.4. We then report the best of all solutions that
were generated. This way, an optimal range assignment for P can be computed in
O(n2 logn) time.

Without loss of generality we identify \BbbS 1 with a circle of perimeter 1. Let \rho opt
be a fixed optimal range assignment on P . To prove Lemma 4.1 we will need the
following lemma.

Lemma 4.3. If | P | > 2, then \rho opt(p)<
1
2 for all p\in P .

Proof. Note that setting \rho (s) = 1
2 and \rho (p) = 0 for all p \in P \setminus \{ s\} gives a feasible

solution. Since \rho (s) > 0 in any feasible solution, this means that \rho opt(p) <
1
2 for all

p \not = s. Hence, it suffices to show that \rho opt(s)<
1
2 . If there is no point p \in P which is

diametrically opposite s, then clearly \rho opt(s)<
1
2 . Now suppose some point p\in P lies

diametrically opposite s. Let q \in P \setminus \{ s, p\} be a point that maximizes the distance
from s among all points in P \setminus \{ s, p\} . The point q exists since | P | > 2. Note that
d(s, q) + d(q, p) = 1

2 . Hence, setting \rho (s) = d(s, q) and \rho (q) = d(q, p) (and keeping all
other ranges zero) gives a solution of cost d(s, q)\alpha + d(q, p)\alpha , which is less than

\bigl( 
1
2

\bigr) \alpha 
since \alpha > 1. Thus \rho opt(s)<

1
2 , which finishes the proof.

Before we proceed, we introduce some more notation.
Consider a directed edge (p, q) in a communication graph \scrG \rho (P ). We say that

(p, q) is a clockwise edge if \rho (p) \geqslant dcw(p, q), and we say that it is a counterclockwise
edge if \rho (p) \geqslant dccw(p, q). Lemma 4.3 implies that an edge cannot be both clockwise
and counterclockwise in an optimal range assignment, assuming | P | > 2. Finally, we
define the covered region of a subset Q\subseteq P with respect to a range assignment \rho to be
the set of all points r \in \BbbS 1 such that there exists a point p\in Q such that \rho (p)\geqslant d(p, r).
We denote this region by cov(\rho ,Q). Furthermore, the counterclockwise covered region
of Q, denoted by covccw(\rho ,Q), is the set of all points r \in \BbbS 1 such that there exists a
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804 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

point p \in Q such that \rho (p) \geqslant dccw(p, r). The clockwise covered region of Q, denoted
by covcw(\rho ,Q), is defined similarly.

We now have everything in place to prove Lemma 4.1, which we restate for the
reader's convenience.

Lemma 4.1. Let P be a point set in \BbbS 1 with | P | > 2 and let \rho opt be an optimal
range assignment for P . Then there exists a point r \in \BbbS 1 such that r /\in cov(\rho opt, P ).

Proof. Let dhop(p, q) denote the hop distance from p to q in the communication
graph \scrG \rho \mathrm{o}\mathrm{p}\mathrm{t}

(P ). Let \scrB be a broadcast tree rooted at s in \scrG \rho \mathrm{o}\mathrm{p}\mathrm{t}
(P ) with the following

properties.
\bullet \scrB is a shortest-path tree in terms of hop distance, that is, the hop distance

from s to any point p in \scrB is equal to dhop(s, p).
\bullet Among all such shortest-path trees, \scrB maximizes the number of clockwise

edges.
For two points p, q \in P , let \pi (p, q) denote the path from p to q in \scrB , and let | \pi (p, q)| 
be its length, that is, the number of edges on the path. Note that | \pi (s, p)| = dhop(s, p)
for any p\in P . Let pa(p) denote the parent of a point p in \scrB and define

Scw = \{ p\in P \setminus \{ s\} : (pa(p), p) is a clockwise edge\} 

and

Sccw = \{ p\in P \setminus \{ s\} : (pa(p), p) is a counterclockwise edge\} .

Note that Scw \cup Sccw = P \setminus \{ s\} . Now define

qcw = the point from Scw that maximizes dcw(s, p),

where qcw = s if Scw = \emptyset . Similarly, define

qccw = the point from Sccw that maximizes dccw(s, p),

where qccw = s if Sccw = \emptyset . Let anc(p) be the set of ancestors in \scrB of a point p \in P ,
that is, anc(p) contains the points of \pi (s, p) excluding the point p. The following
observation will be used repeatedly in the proof.

Claim. If (pa(p), p) is a clockwise edge, then [s, p]cw \subset cov(\rho opt,anc(p)). Similarly,
if (pa(p), p) is a counterclockwise edge, then [s, p]ccw \subset cov(\rho opt,anc(p)).

Proof. Assume (pa(p), p) is a clockwise edge; the proof for when (pa(p), p) is a
counterclockwise edge is similar. There are two cases, as illustrated in Figure 5.

If s \in [pa(p), p)]cw---this includes the case where pa(p) = s---then the statement
obviously holds, so assume pa(p) \in [s, p]cw. Since (pa(p), p) is a clockwise edge, it
then suffices to prove that [s,pa(p)]cw \subset cov(\rho opt,anc(p)). Note that cov(\rho opt,anc(p))
is connected, because the points in anc(p) form a path, namely, \pi (s,pa(p)). Since
\pi (s, p) is the shortest path, p \not \in cov(\rho opt,anc(pa(p)), which implies that [s,pa(p)]cw \subset 
cov(\rho opt,anc(pa(p)))\subset cov(\rho opt,anc(p)).

We now proceed to show that qccw must lie clockwise from qcw, as seen from s,
that is, the situation shown in Figure 6(i) cannot happen.

Claim. dcw(s, qcw) + dccw(s, qccw)< 1.

Proof. Note that dcw(s, qcw) + dccw(s, qccw) \not = 1, since otherwise qcw = qccw which
cannot happen since Scw \cap Sccw = \emptyset .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 805

pa(p)

p
s

pa(p)

p

s

Fig. 5. Two cases in the proof of the first claim in the proof of Lemma 4.1. The ancestors of p
and the edges on the path \pi (s, p) are shown in red, and cov(\rho \mathrm{o}\mathrm{p}\mathrm{t},anc(p)) is shown in green. On the
left we illustrate the case where s \in [pa(p), p)]\mathrm{c}\mathrm{w}, and on the right the case where s \not \in [pa(p), p)]\mathrm{c}\mathrm{w}.
Note: color appears only in the online article.

qcw

qccw

s

qccw

qcw

s

qccw

qcw

s

[qcw, qccw]
cw is covered

by a single range
[qcw, qcw]

ccw is covered
by two ranges

qcw and qccw are in
reverse order

p∗
p∗1

(i) (ii) (iii)

p∗2

Fig. 6. Illustration for the proof of Lemma 4.1. Note that the point p\ast in part (ii) of the figure
could also lie in [s, q\mathrm{c}\mathrm{w}]\mathrm{c}\mathrm{w}. Similarly, in part (iii) the points p\ast 1 and p\ast 2 could lie on ``the other side""
of s.

Now assume for a contradiction that dcw(s, qcw) + dccw(s, qccw)> 1, which means
that qccw \in [s, qcw]

cw. Since qcw is reached from its parent by a clockwise edge, this
implies that qccw \in cov(\rho opt,anc(qcw)) by the observation above. Hence, dhop(s, qcw)\geqslant 
dhop(s, qccw). An analogous argument shows that dhop(s, qccw)\geqslant dhop(s, qcw). Hence,
dhop(s, qccw) = dhop(s, qcw). This implies that the edge (pa(qcw), qcw) passes over
qccw, otherwise some other edge of \pi (s, qcw) would pass over qccw and we would have
dhop(s, qccw) < dhop(s, qcw). But then we also have a shortest path from s to qccw
whose last edge is a clockwise edge, contradicting the definition of \scrB .

So we can assume that dcw(s, qcw)+dccw(s, qccw)< 1 or, in other words, that qccw
lies clockwise from qcw, as seen from s. Clearly no point from P lies in (qcw, qccw)

cw. If
we have (qcw, qccw)

cw \not \subset cov(\rho opt, P ), then we are done, so assume for a contradiction
that (qcw, qccw)

cw \subset cov(\rho opt, P ). This can happen in three ways, each of which will
lead to a contradiction.

Case I: There exists a point p\ast \in \scrB such that qcw \in covccw(\rho opt,\{ p\ast \} ).
See Figure 6(ii) for an illustration of the situation. If p\ast = s, then dhop(s, qcw) = 1.

Since qcw \in Scw this means that qcw must also have an incoming clockwise edge from s.
But then \rho opt(s) \geqslant 1

2 , which contradicts Lemma 4.3. So p\ast \not = s. Now note that p\ast 

must have an outgoing clockwise edge in \scrB , else we can reduce the range of p\ast to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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806 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

dccw(p
\ast , qccw), which is smaller than dccw(p

\ast , qcw), and still get a feasible solution.
Observe that p\ast /\in \pi (s, qcw), otherwise we must have p\ast = pa(qcw) (since qcw lies in
the range of p\ast ) which contradicts that qcw \in Scw. So for any point from P in the
region [s, qcw]

cw there exists a path from s in the communication graph induced by
\rho opt that does not use p\ast . We now have two subcases.

If p\ast \in [s, qccw]
ccw, then clearly p\ast \in Sccw (otherwise the definition of qcw is

contradicted). Hence, each point from P in the region [s, p\ast ]ccw has a path from s
that does not use p\ast . This implies that can reduce the range of p\ast to dccw(p

\ast , qccw)
and still get a feasible solution.

If p\ast \in [s, qcw]
cw, then obviously we can also reduce the range of p\ast to dccw(p

\ast , qccw)
and still get a feasible solution.

So both subcases lead to the desired contradiction.
Case II: There exists a point p\ast \in \scrB such that qccw \in covcw(\rho opt,\{ p\ast \} ).
In the proof of Case I we never used that \scrB maximizes the number of clockwise

edges. Hence, a symmetric argument shows that Case II also leads to a contradiction.
Case III: There are two points p\ast 1, p

\ast 
2 \in P such that [qcw, qccw]

cw\subseteq covccw(\rho opt,\{ p\ast 1\} )
\cup covcw(\rho opt,\{ p\ast 2\} ).

See Figure 6(iii) for an illustration. We can assume that qcw /\in covccw(\rho opt,\{ p\ast 1\} )
and qccw /\in covcw(\rho opt,\{ p\ast 2\} ), otherwise we are in Case I or Case II. Now either p\ast 2 /\in 
\pi (s, p\ast 1) or p\ast 1 /\in \pi (s, p\ast 2) or both. Without loss of generality, assume p\ast 2 /\in \pi (s, p\ast 1).
Then p\ast 2 \not = s and all points from P in the region [s, qccw]

ccw have a path from s in
the communication graph \scrG \rho \mathrm{o}\mathrm{p}\mathrm{t}(P ) that does not use p\ast 2. The point p\ast 2 must have an
outgoing counterclockwise edge, else we can reduce the range of p\ast 2 to dcw(p

\ast 
2, qcw) and

still get a feasible solution. We have two subcases.
If p\ast 2 \in [s, qccw]

ccw, then by reducing the range of p\ast 2 to dcw(p
\ast 
2, qcw) we still get a

feasible solution.
If p\ast 2 \in [s, qcw]

cw, then p\ast 2 must be reached by a clockwise edge from its parent
in\scrB , otherwise the definition of qccw would be contradicted. Hence, for each point
from P in the region [s, p\ast 2]

cw there is a path from s that does not use p\ast 2. So again
we can reduce the range of p\ast 2 to dcw(p

\ast 
2, qcw) and we still get a feasible solution.

Thus both subcases lead to a contradiction.
This finishes the proof of the lemma.

4.2. Nonexistence of a SAS in \BbbS 1. We have seen that an optimal solution
for a set P in \BbbS 1 can be obtained from an optimal solution in \BbbR 1, when we cut \BbbS 1 at
an appropriate point r. However, the insertion of a new point into P may cause the
location of the cutting point r to change drastically. Next we show that this means
that the dynamic problem in \BbbS 1 does not admit a SAS.

Theorem 4.4. The dynamic broadcast range-assignment problem in \BbbS 1 with dis-
tance power gradient \alpha > 1 does not admit a SAS. In particular, there is a con-
stant c\alpha > 1 such that the following holds: for any n large enough, there is a set
P := \{ s, p1, . . . , p2n+1\} and a point q in \BbbS 1 such that any update algorithm ALG that
maintains a c\alpha -approximation must modify more than 2n

3  - 1 ranges upon the insertion
of q into P .

The rest of this section is dedicated to proving Theorem 4.4. We will prove the
theorem for

c\alpha :=min

\Biggl( 
1 + 2\alpha  - 4  - 1

8
, 1 +

2\alpha  - 1  - 1

3 \cdot 2\alpha + 2
, 1 +

min
\bigl( 
2\alpha  - 1, 3

\alpha  - 2\alpha  - 1
2 , 4

\alpha  - 2\alpha  - 2
3

\bigr) 
4(2\alpha + 1)

\Biggr) 
.
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δ

p1
p2p2n+1

q
s

xδ
xδ

2

1

(i) (ii)

δxδ
s

qxδ

δα = (2α + 1)n

xα = 1
4
+
(
1
2

)α+1

Fig. 7. (i) The instance showing that there is no SAS in \BbbS 1. (ii) The instance in \BbbR 2.

Note that each term is a constant strictly greater than 1 for any fixed constant \alpha > 1.
In particular, for \alpha = 2 we have c\alpha = 1+ 1

14 .
Let P := \{ s, p1, . . . , p2n+1\} , where dcw(pi, pi+1) = 2 for odd i and dcw(pi, pi+1) = 1

for even i; see Figure 7(i). Let dcw(s, p1) = \delta , where \delta \alpha = (2\alpha + 1)n. Finally, let

dcw(p2n+1, q) = dcw(q, s) = x\delta , where x\alpha = 1
4 +

\bigl( 
1
2

\bigr) \alpha +1
. Note that (1/2)\alpha < x\alpha < 1/2

for any \alpha > 1.
Let \rho (p) denote the range given to a point p by the update algorithm ALG. Re-

call that a directed edge (p, p\prime ) in the communication graph induced by \rho is called
a clockwise edge if \rho (p) \geqslant dcw(p, p

\prime ), and it is called a counterclockwise edge if
\rho (p)\geqslant dccw(p, p

\prime ). Observe that we may assume that no edge (p, p\prime ) is both clockwise
and counterclockwise, because otherwise \rho (p)\geqslant (\delta + 3n+ 2x\delta )/2, which is much too
expensive for an approximation ratio of at most c\alpha . Define the range \rho (p) of a point
in P to be cw-minimal if \rho (p) equals the distance from p to its clockwise neighbor
in P . Similarly, \rho (p) is ccw-minimal if \rho (p) equals the distance from p to its coun-
terclockwise neighbor. The idea of the proof is to show that before the insertion of
q, most of the points s, p1, . . . , p2n+1 must have a cw-minimal range, while after the
insertion most points must have a ccw-minimal range. This will imply that many
ranges must be modified from being cw-minimal to being ccw-minimal.

Before the insertion of q, giving every point a cw-minimal range leads to a feasible
assignment of total cost \delta \alpha + (2\alpha + 1)n = 2\delta \alpha . After the insertion of q, giving every
point a ccw-minimal range leads to a feasible assignment of total cost 2(x\delta )\alpha +(2\alpha +
1)n= (2x\alpha +1)\delta \alpha . Hence, if OPT(\cdot ) denotes the cost of an optimal range assignment,
we then have the following.

Observation 4.5. OPT(P )\leqslant 2\delta \alpha and OPT(P \cup \{ q\} )\leqslant (2x\alpha + 1)\delta \alpha < 2\delta \alpha .

We first prove a lower bound on the total cost of the points p1, . . . , p2n+1. Intu-
itively, only o(n) of those points can be reached from s or q (otherwise the range of
s or q would be too expensive) and the cheapest way to reach the remaining points
will be to use only cw-minimal or ccw-minimal ranges.

Lemma 4.6.
\sum 2n+1

i=1 \rho (pi)
\alpha \geqslant (2\alpha +1)n - o(n), both before and after the insertion

of q.

Proof. By Observation 4.5, we have \rho (p)\alpha \leqslant c\alpha \cdot 2\delta \alpha and, hence, \rho (p)\leqslant (2c\alpha )
1/\alpha \cdot 

\delta < 3\delta for any point p. Consider the interval I = [y1, y2]
cw, where dcw(s, y1) = 3\delta and

dccw(q, y2) = 3\delta . All the points in I \cap P are at a distance more than 3\delta from s or q

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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808 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

and hence I \cap P \subseteq cov(\rho opt, P \setminus \{ s, q\} ). Let pi \in I \cap P be the point whose clockwise
distance from s is minimum, and let pj \in I \cap P be the point whose counterclockwise
distance from q is minimum. Then the cost of covering all the points in I \cap P using
the points in P \setminus \{ s, q\} is at least

\sum j - 1
t=i dcw(pt, pt+1)

\alpha  - 2\alpha , where the term  - 2\alpha is
because the covered region may leave one interval [pt, pt+1]

cw uncovered. Recall that
the cost of assigning all the points in P \setminus \{ s, q\} a cw-minimal range is (2\alpha +1)n. Note
that i=O(\delta ) since dcw(s, pi)\leqslant 3\delta +2 and (2n+1) - j =O(\delta ) since dcw(pj , q)\leqslant 3\delta +2.
Hence,

2n+1\sum 
i=1

\rho (pi)
\alpha \geqslant (2\alpha + 1)n - O(\delta ) \cdot 2\alpha \geqslant (2\alpha + 1)n - o(n),

since \delta = ((2\alpha + 1)n)1/\alpha = o(n).

The following lemma gives a key property of the construction.

Lemma 4.7. The point p2n+1 cannot have an incoming counterclockwise edge
before q is inserted, and the point p1 cannot have an incoming clockwise edge after q
has been inserted.

Proof. Suppose before insertion of q the point p2n+1 has an incoming counter-
clockwise edge. The cheapest incoming counterclockwise edge would be from s and
this is already too expensive. Indeed, if \rho (s)\geqslant 2x\delta , then by Lemma 4.6 the total cost
of the range assignment by ALG is at least

(2x\delta )\alpha + (2\alpha +1)n - o(n) =

\Biggl( 
2\alpha \cdot 

\Biggl( 
1

4
+

\biggl( 
1

2

\biggr) \alpha +1
\Biggr) 
+ 1

\Biggr) 
\cdot \delta \alpha  - o(n)

=

\biggl( 
1 +

\biggl( 
2\alpha  - 3  - 1

4

\biggr) \biggr) 
\cdot 2\delta \alpha  - o(n)

\geqslant 

\biggl( 
1 +

1

2
\cdot 
\biggl( 
2\alpha  - 3  - 1

4

\biggr) \biggr) 
\cdot 2\delta \alpha for n sufficiently large

\geqslant c\alpha \cdot OPT(P ) by the definition of c\alpha and Observation 4.5.

This contradicts the approximation ratio of ALG, proving the first part of the lemma.
Now suppose after the insertion of q the point p1 has an incoming clockwise edge.

The cheapest way to achieve this is with \rho (s) = \delta , which is too expensive. Indeed, by
Lemma 4.6 the total cost of the range assignment is then at least

\delta \alpha + (2\alpha + 1)n - o(n)

=
2\delta \alpha 

(2x\alpha + 1)\delta \alpha 
\cdot (2x\alpha + 1)\delta \alpha  - o(n)

\geqslant 

\biggl( 
1 +

1

2
\cdot 
\biggl( 

2\delta \alpha 

(2x\alpha + 1)\delta \alpha 
 - 1

\biggr) \biggr) 
\cdot OPT(P \cup \{ q\} ) for n sufficiently large

=

\biggl( 
1 +

2 - (2x\alpha + 1)

2(2x\alpha + 1)

\biggr) 
\cdot OPT(P \cup \{ q\} )

=

\Biggl( 
1 +

1 - 
\bigl( 
1
2 + 1

2\alpha 

\bigr) 
2
\bigl( 
1
2 + 1

2\alpha + 1
\bigr) \Biggr) \cdot OPT(P \cup \{ q\} ) since 2x\alpha = 1

2 + 1
2\alpha 

=

\biggl( 
1 +

2\alpha  - 1  - 1

3 \cdot 2\alpha + 2

\biggr) 
\cdot OPT(P \cup \{ q\} )

\geqslant c\alpha \cdot OPT(P \cup \{ q\} ) by the definition of c\alpha and Observation 4.5.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 809

This contradicts the approximation ratio of ALG, proving the second part of
the lemma.

We are now ready to prove that many edges must change from being cw-minimal
to being ccw-minimal when q is inserted. Observe that before and after the insertion
of a point q, the distance between any two points is either 1, 2, or at least 3. Hence,
in the following lemma we may assume that \rho (p) \in \{ 0,1,2\} \cup [3,\infty ) for any point
p\in P \cup \{ q\} .

Lemma 4.8. Before the insertion of q, at least 4n/3+1 of the points from the set
\{ s, p1, . . . , p2n\} have a cw-minimal range. After the insertion of q, at least 4n/3 + 1
of the points from the set \{ q, p1, . . . , p2n\} have a ccw-minimal range.

Proof. We prove the lemma for the situation before q is inserted; the proof for
the situation after the insertion of q is similar. It will be convenient to define p0 := s
(although we may still use s if we want to stress that we are talking about the
source). Recall that p2n+1 does not have an incoming counterclockwise edge in the
communication graph \scrG \rho (P ) before the insertion of q. Let \pi \ast be a minimum-hop path
from s to p2n+1 in \scrG \rho (P ). Since p2n+1 does not have an incoming counterclockwise
edge and \pi \ast is a minimum-hop path, all edges in \pi are clockwise. We assign each
point pj with 1 \leqslant j \leqslant 2n+ 1 to the edge (pi, pt) in \pi \ast such that i+ 1 \leqslant j \leqslant t, and
we define A(pi, pt) := \{ pi+1, . . . , pt\} to be the set of all points assigned to (pi, pt). We
define the excess of a point pj \in A(pi, pt) to be

excess(pj) :=
1

| A(pi, pt)| 
\cdot 

\left(  \rho (pi)
\alpha  - 

\sum 
p\ell \in A(pi,pt)

d(p\ell  - 1, p\ell )
\alpha 

\right)  .

We say that an edge (pi, pt) in \pi \ast is cw-minimal if pi has a cw-minimal range. Note
that if a point pj is assigned to a cw-minimal edge, then this is the edge (pj - 1, pj) and
excess(pj) = 0. Intuitively, excess(pj) denotes the additional cost we pay for reaching
pj compared to reaching it by a cw-minimal edge, if we distribute the additional cost
of a non-cw-minimal edge over the points assigned to it. Because each of the points
p1, . . . , p2n+1 is assigned to exactly one edge on the path \pi \ast , we have\sum 

pi\in \pi \ast 

\rho (p)\alpha \geqslant 
2n+1\sum 
j=1

d(pj - 1, pj)
\alpha +

2n+1\sum 
j=1

excess(pj)\geqslant OPT(P ) +

2n+1\sum 
j=1

excess(pj),(4.1)

where the second inequality follows from Observation 4.5 and because p0 = s. The
following claim essentially states that the smallest possible excess is obtained when
| A(pi, pt)| \in \{ 1,2,3\} . (The three terms in the claim correspond to these cases.) The
reader may want to skip the proof of the claim on first reading, to avoid losing track
of the overall proof.

Claim. If pj is not assigned to a cw-minimal edge, then excess(pj) \geqslant c\prime \alpha , where
c\prime \alpha =min

\bigl( 
2\alpha  - 1, 3

\alpha  - 2\alpha  - 1
2 , 4

\alpha  - 2\alpha  - 2
3

\bigr) 
.

Proof. Consider a non-cw-minimal edge (pi, pt). First suppose only a single point
pj is assigned to (pi, pt). Then t = i+ 1 and pj = pt. Hence, \rho (pi) \geqslant d(pj - 1, pj) + 1
because we assumed \rho (pi)\in \{ 0,1,2\} \cup [3,\infty ). Thus when | A(pi, pt)| = 1 then

excess(pj)\geqslant (d(pj - 1, pj) + 1)\alpha  - d(pj - 1pj)
\alpha \geqslant 2\alpha  - 1\geqslant c\prime \alpha .

Now suppose | A(pi, pt)| > 1. Let z1 be the number of points pj \in A(pi, pt) with
d(pj - 1, pj) = 1, and let z2 be the number of points pj \in A(pi, pt) with d(pj - 1, pj) = 2.
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810 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

Since | A(pi, pt)| > 1 we have z1 \geqslant 1 and z2 \geqslant 1 and | z1  - z2| \leqslant 1. When | A(pi, pt)| = 2
then z1 = z2 = 1, and we are distributing the cost of an edge of length at least 3,
minus the costs of edges of length 2 and 1, over two points. Thus in this case we have

excess(pj)\geqslant 
3\alpha  - 2\alpha  - 1

2
.

Similarly, when | A(pi, pt)| = 3 then z1 = 2 and z2 = 1 (or vice versa, but that will only
lead to a larger excess), and we have

excess(pj)\geqslant 
4\alpha  - 2\alpha  - 2

3
.

It remains to argue that we do not get a smaller excess when | A(pi, pt)| \geqslant 4. To see
this, we compare the excess we get when (pi, pt) is an edge of \pi with the excesses we
would get when, instead of (pi, pt), the edges (pi, pi+2) and (pi+2, pt) would be in \pi \ast .
Note that

d(pi, pt)
\alpha =

\Bigl( 
d(pi, pi+2) + d(pi+2, pt)

\Bigr) \alpha 
>d(pi, pi+2)

\alpha + d(pi+2, pt)
\alpha 

since \alpha > 1. Hence,

d(pi, pt)
\alpha  - 

\sum t
\ell =i+1 d(p\ell  - 1, p\ell )

\alpha 

t - i

>

\Bigl( 
d(pi, pi+2)

\alpha  - 
\sum i+2

\ell =i+1 d(p\ell  - 1, p\ell )
\alpha 
\Bigr) 
+
\Bigl( 
d(pi+2, pt)

\alpha  - 
\sum t

\ell =i+3 d(p\ell  - 1, p\ell )
\alpha 
\Bigr) 

t - i

\geqslant 
d(pi, pi+2)

\alpha  - 
\sum i+2

\ell =i+1 d(p\ell  - 1, p\ell )
\alpha 

2
+

d(pi+2, pt)
\alpha  - 

\sum t
\ell =i+3 d(p\ell  - 1, p\ell )

\alpha 

t - i - 2
,

where the last step uses that a1+a2

b1+b2
\geqslant min(a1

b1
, a2

b2
) for any a1, a2, b1, b2 > 0. Thus the

excess we get for (pi, pt) is at least the minimum of the excesses we would get for
(pi, pi+2) and (pi+3, pt). More generally, when | A(pi, pt)| > 4 then we can compare the
excess for (pi, pt) with the excesses we get when we would replace (pi, pt) with a path
of smaller edges, each being assigned two or three points. The excess for (pi, pi+2) is
at least the minimum of the excesses for these shorter edges. (Reducing to edges that
are assigned a single point is not useful, since these may be cw-minimal and have
zero excess.) This finishes the proof of the claim.

Now suppose for a contradiction that fewer than 4n/3 + 1 points from
\{ s, p1, . . . , p2n+1\} have a cw-minimal range. Then at least 2n/3 + 1 points pj have
excess(pj) \geqslant c\prime \alpha by the claim above. By Inequality (4.1) the total cost incurred by
ALG is therefore more than

OPT(P ) + c\prime \alpha \cdot (2n/3) = OPT(P ) +
c\prime \alpha 

3(2\alpha + 1)
\cdot 2(2\alpha + 1)n(4.2)

>

\Biggl( 
1 +

min
\bigl( 
2\alpha  - 1, 3

\alpha  - 2\alpha  - 1
2 , 4

\alpha  - 2\alpha  - 2
3

\bigr) 
4(2\alpha + 1)

\Biggr) 
\cdot OPT(P )(4.3)

\geqslant c\alpha \cdot OPT(P )(4.4)

which contradicts the approximation ratio achieved by ALG.

Lemma 4.8 implies that at least 4n/3 of the points p1, . . . , p2n+1 have a cw-
minimal range before q is inserted, and at least 4n/3 of those points have a ccw-
minimal range after the insertion. Hence, at least 2n+ 1 - 2 \cdot (2n/3 + 1) = 2n/3 - 1
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 811

points must change from being cw-minimal to being ccw-minimal, thus finishing the
proof of Theorem 4.4.

5. The 2-dimensional problem. The broadcast range-assignment problem is
np-hard in \BbbR 2, so we cannot expect a characterization of the structure of an optimal
solution similar to Theorem 2.1. By extending our lower-bound construction for \BbbS 1
to \BbbR 2, we show in section 5.1 that the problem in \BbbR 2 does not admit a SAS. Also, in
section 5.2 we give a relatively simple O(1)-stable O(1)-approximation algorithm for
\alpha \geqslant 2.

5.1. Non-existence of SAS in \BbbR 2.
Theorem 5.1. The dynamic broadcast range-assignment problem in \BbbR 2 with dis-

tance power gradient \alpha > 1 does not admit a SAS. In particular, there is a con-
stant c\alpha > 1 such that the following holds: for any n large enough, there is a set
P := \{ s, p1, . . . , p2n+1\} and a point q in \BbbR 2 such that any update algorithm ALG that
maintains a c\alpha -approximation must modify at least 2n/3 - 1 ranges upon the insertion
of q into P .

Proof. We use the same construction as in \BbbS 1, where we embed the points on a
square and the distances used to define the instance are measured along the square;
see Figure 7(ii). We now discuss the changes needed in the proof to deal with the fact
that distances in \BbbR 2 between points from P \cup \{ q\} may be smaller than when measured
along the square. With a slight abuse of terminology, we will still refer to an edge
(p, p\prime ) that was clockwise in \BbbS 1 as a clockwise edge, and similarly for counterclockwise
edges.

Note that Observation 4.5 still holds. Now consider Lemma 4.6. The proof uses
the fact that the points pi at a distance more than 3\delta from s or q must be covered
by the ranges of the points p1, . . . , p2n+1. We now restrict our attention to the points
that are also at distance more than 3\delta from a corner of the square. Each such point pi
must be covered by the range of some point pj on the same edge of the square. Hence,
the distance in \BbbR 2 from pj to pi is the same as the distance in \BbbS 1, so we can use the
same reasoning as before. Thus the exclusion of the points that are at a distance at
most 3\delta from a corner of the square only influences the constant in the o(n) term in
the lemma. Hence, Lemma 4.6 still holds.

The proof of Lemma 4.7 still holds, since the cheapest counterclockwise edge to
p2n+1 before the insertion of q is still from s (and the distance from s to p2n+1 did
not change), and the cheapest clockwise edge to p1 after the insertion of q is still from
s (and the distance from s to p1 did not change).

It remains to check Lemma 4.8. The proof still holds, except that the claim that
excess(pj) \geqslant c\prime \alpha may not be true for the given value of c\prime \alpha when pj is near a corner
of the square, because the distances between points on different edges of the square
do not correspond to the distances in \BbbS 1. To deal with this, we simply ignore the
excess of any point within distance 3\delta from a corner. This reduces the total excess
by o(n). It is easily verified that this does not invalidate the rest of the proof: we
have to subtract o(n) from the formulas in equality (4.2), but this is still larger than
c\alpha \cdot OPT(P ).

We conclude that all lemmas still hold, which proves Theorem 5.1.

5.2. An \bfitO (1)-stable \bfitO (1)-approximation algorithm in \BbbR 2. We describe an
O(1)-stable O(1)-approximation algorithm for \alpha \geqslant 2 in \BbbR 2. The algorithm is based
on a result by Amb\"uhl [2], who showed that a minimum spanning tree (MST) on P
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812 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

gives a 6-approximation for the static broadcast range-assignment problem: turn the
MST into a directed tree rooted at the source s, and assign as a range to each point
p \in P the maximum length of any of its outgoing edges. The key lemma underlying
the result is the following.

Lemma 5.2 ([2]). Let P be any point set in \BbbR 2. Let TP be an MST on P , and
let E(TP ) be the set of edges of TP . Then, for any distance-power gradient \alpha \geqslant 2, we
have

\sum 
e\in TP

| e| \alpha \leqslant 6 \cdot OPT, where OPT= cost\alpha (\rho opt(P )) is the cost of an optimal range
assignment.

In the static problem this immediately gives a 6-approximation algorithm: turn
the MST into a directed tree rooted at the source s, and assign as a range to each
point p \in P the maximum length of any of its outgoing edges. To apply this in the
dynamic setting, we need the following lemma, which implies that for any point set
P and any additional point q, any MST T on P can be converted to an MST T \prime on
P \cup \{ q\} that is very similar to T . The result is folklore [39].

Lemma 5.3. Let P be a set of points in a metric space X, and let P \prime := P \cup \{ q\} 
for some point q \in X. For any MST T on P , there exists an MST T \prime on P \prime that only
contains edges of T and edges incident to q. Similarly, for any MST T \prime on P \prime there
exists an MST T on P such that T \prime only contains edges of T and edges incident to q.

We use this lemma in combination with the following well-known lemma.

Lemma 5.4. Let T be an MST of a point set in \BbbR d. Then the maximum vertex
degree of T is bounded by the Hadwiger number of the corresponding unit ball in \BbbR d.
In particular, the maximum vertex degree of an MST in \BbbR 2 is at most 6.

We can now prove the following theorem.

Theorem 5.5. There is a 17-stable 12-approximation algorithm for the dynamic
broadcast range-assignment problem in \BbbR 2, for any fixed power-distance gradient
\alpha \geqslant 2. The algorithm can update the range assignment upon an insertion or dele-
tion in O(n\alpha (n)) time, where n is the number of points in the current point set and
\alpha (n) is the inverse Ackermann function.

Proof. Our algorithm will maintain an MST T on the current point set P , using
Lemma 5.3. We set the range of each point to be the maximum length of any of its
incident edges. Clearly, this defines a feasible solution. We denote the resulting range
assignment by \rho mst.

We now analyze the stability of \rho mst. Consider the insertion of a point q. Let T
be the MST before the insertion of q, and let T \prime be the MST T \prime after the insertion
has been handled (and with the properties stated in Lemma 5.3). Observe that, apart
from the point q itself, only the ranges of the neighbors of q in T \prime can increase. By
Lemma 5.4 we have deg(q) \leqslant 6, where deg(q) denotes the degree of q. Hence, the
number of ranges that need to be increased is at most 7. Also observe that only the
ranges of those points can decrease that had an edge belonging to the edge set T \setminus T \prime 

incident to it. Since deg(q)\leqslant 6, and T and T \prime have | P |  - 1 and | P | edges, respectively,
we have | T \setminus T \prime | \leqslant 5. Hence the ranges of at most ten points can decrease. It follows
that the algorithm is 17-stable; even more, the algorithm is (7,10) stable when only
insertions are present, and (10,7) stable when only deletions are allowed.

To analyze the approximation ratio, we use Lemma 5.2 and note that every edge in
T is adjacent to at most two vertices. Hence, cost\alpha (\rho mst(P ))\leqslant 2 \cdot 

\sum 
e\in T | e| \alpha \leqslant 12 \cdot OPT

for any set P .
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 813

It remains to argue that updating the range assignment can be done in O(n\alpha (n))
time. Assume for the moment that the MST, both before and after the update, is
unique. It is well known that the MST of a planar point set is a subset of a Delaunay
triangulation of that point set, and that a Delaunay triangulation has O(n) edges [21].
Thus, if we maintain the Delaunay triangulation of P , then after each update we only
need to compute the MST from the updated Delaunay triangulation. Maintaining a
Delaunay triangulation can be done in O(n) time per update [1] and computing an
MST of a graph with O(n) edges can be done in O(n\alpha (n)) time [11]. Hence, our
update algorithm runs in O(n\alpha (n)) time in total.

So far we assumed that the MST is unique. In general this need not be the
case, since edges may have exactly the same length. The Delaunay triangulation of a
planar point set may not be unique either, when the point set contains four cocircular
points. Lemma 5.3 guarantees that there still exists an MST for the updated point
set that is sufficiently similar to the previous MST. An easy way to deal with these
degeneracies is using symbolic perturbation [23]: symbolically perturb the points so
that the degeneracies disappear and the Delaunay triangulation and the MST are
unique. Note that in our application we need to ensure that the perturbations before
and after an update are consistent---for instance, if a perturbed edge e is shorter
than a perturbed edge e\prime before an insertion, then this should also be true after the
perturbation. Fortunately this is easy to achieve, since the perturbation of a point is
uniquely determined by its index (that is, its unique identifier).

6. 1-Stable, 2-Stable, and 3-Stable Algorithms in \BbbR 1. In section 3 we have
presented a (2k + 6)-stable algorithm with approximation ratio 1 + 2\alpha /k\alpha  - 1, which
provides us with a SAS. For small k the algorithm is not very good: the most stable
algorithm we can get is 6-stable, by setting k = 0. A careful analysis shows that the
approximation ratio of this 6-stable algorithm is 3, for \alpha = 2. In this section, we
investigate the approximation ratios we can get for instances in \BbbR 1 using a very small
stability parameter. We give a 1-stable O(1)-approximation algorithm; obviously,
this is the best we can do in terms of stability. This algorithm can only handle
insertions. We also show that this is necessarily the case: a 1-stable algorithm that
can handle insertions as well as deletions cannot have a bounded approximation ratio.
We then present a straightforward 2-stable 2-approximation algorithm, which simply
gives every point its standard range. Finally, we study 3-stable algorithms: we show
that using a 3-stable algorithm it is possible to get an approximation ratio strictly
below 2. See Table 1 for an overview of results.

6.1. A 1-stable insertion-only algorithm. We first describe our algorithm for
the one-sided version of the problem, where all points in P lie to the same side of the
source. Let P = \{ s, p1, . . . , pn\} , where the points are numbered in order of increasing
distance to the source. It will be convenient to define p0 := s. Our algorithm maintains
a range assignment \rho that satisfies the following invariant.

Table 1
An overview of the approximation ratio of 1-stable, 2-stable, and 3-stable algorithms.

\ell -stable algorithm Approximation ratio Remarks

\ell = 1 6+ 2
\surd 
5\approx 10.47 \alpha = 2, insertions only

\ell = 2 2 for any \alpha > 1

\ell = 3 1.97 \alpha = 2
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814 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

Algorithm 6.1. 1-Stable-Insert(P, q).
1: � By default \rho (q) = 0, so we only set \rho (q) when it receives a nonzero range.
2: if q is extreme then
3: Set \rho (pred(q)) := | pred(q)q| , thus creating a new block.
4: else
5: Let B[i, j] be the block containing q, after the insertion of q.
6: if B[i, j] consists of at most four points then
7: Do nothing.
8: else if B[i, j] consists of five points then
9: Set \rho (pmid) := | pmidpj | , where pmid is the middle point from B[i, j].
10: else � B[i, j] consists of six points
11: Let pmid \not \in \{ pi, pj\} be the point in B[i, j] with nonzero range.
12: Split the block B[i, j] by decreasing the range of pi to | pipmid| .

=⇒ =⇒ =⇒ =⇒

Fig. 8. Life cycle of a block. At the last step, the block is split into two smaller blocks, which
start in the middle of their life cycle: one block consists of three points, the other of four points.

\bullet There is a path \pi \ast in \scrG \rho (P ) from p0 to pn such that for each edge (pi, pj) on
the path we have \rho (pi) = | pipj | and i < j \leqslant i+ 4. For an edge (pi, pj) on \pi \ast ,
we call the subsequence pi, . . . , pj a block, and we denote it by B[i, j].

\bullet A point pt in a block B[i, j] is a zero-range point, unless B[i, j] consists of
five points (including pi and pj) of which pt is the middle one. In the latter
case \rho (pt) = | ptpj | .

Algorithm 1-Stable-Insert, presented below, shows how to insert a point q into P .
Figure 8 shows the life cycle of a block in the solution maintained by the algorithm.

It is readily verified that 1-Stable-Insert maintains the invariant, implying that
the solution remains feasible, and that it is 1-stable. We now analyze its approxima-
tion ratio.

Lemma 6.1. Algorithm 1-Stable-Insert maintains a c\prime \alpha -approximation of an
optimal solution for the one-sided range-assignment problem in \BbbR 1, where the approx-
imation ratio c\prime \alpha depends on the distance-power gradient \alpha . For \alpha = 2 the approxima-
tion ratio is c\prime 2 = 3+

\surd 
5.

Proof. The unique optimal solution for the one-sided problem on the current point
set P = \{ p0, . . . , pn\} is the chain from p0 to pn, which has cost

\sum n - 1
i=0 | pipi+1| \alpha . This

implies that the approximation ratio of the current range assignment \rho is bounded
by the maximum, over all blocks B[i, j] in the current assignment, of the quan-
tity

\sum j - 1
t=i \rho (pt)

\alpha 
\big/ \sum j - 1

t=i | ptpt+1| \alpha , where the numerator gives the cost incurred by
the algorithm on B[i, j] and the denominator gives the cost of the optimal solution
on B[i, j].

To analyze this maximum, consider a block B[i, j] and assume without loss of
generality that pi = 0 and pj = 1. Clearly, the maximum approximation ratio that
can be achieved is when B[i, j] consists of five points; see the fourth block in Figure 8.
Let p(i+j)/2, the middle point in B[i, j], be located at position x, for some 0< x< 1.
Then the cost of the algorithm incurred on B[i, j] is 1 + (1  - x)\alpha . The cost of the
optimal solution on B[i, j] is minimized when the second point in the block is located

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1−c
2

s p1p4p2 p3
c
2

c
2

Fig. 9. The lower-bound construction used in the proof of Observation 6.2. The red ranges
correspond to the optimal solution, while the blue ranges correspond to the 1-stable algorithm.
Note: color appears only in the online article.

at position x/2 (this is true because \alpha > 1 and so for 0< y < x the function y\alpha +(x - y)\alpha 

is minimized at y= x/2) and, similarly, when the fourth point is located at (x+1)/2.
Hence, \sum j - 1

t=i \rho (pt)
\alpha \sum j - 1

t=i | ptpt+1| \alpha 
=

1+ (1 - x)\alpha 

2(x/2)\alpha + 2((1 - x)/2)\alpha 
=

2\alpha  - 1 \cdot (1 + (1 - x)\alpha )

x\alpha + (1 - x)\alpha 
.

Thus the approximation ratio is c\prime \alpha = max0\leqslant x\leqslant 1
2\alpha  - 1\cdot (1+(1 - x)\alpha )

x\alpha +(1 - x)\alpha . For \alpha = 2 this is

maximized at x= (3 - 
\surd 
5)/2, giving an approximation ratio c\prime 2 = 3+

\surd 
5.

The approximation ratio of Algorithm 1-Stable-Insert for the one-sided range
assignment problem in \BbbR 1 is actually tight for \alpha = 2, as the next observation shows.

Observation 6.2. For the one-sided range-assignment problem, the approximation
ratio of 3 +

\surd 
5 is tight for Algorithm 1-Stable-Insert.

Proof. Let c = (3 - 
\surd 
5)/2, and consider the instance P = \{ s, p1, p2, p3, p4\} with

s= 0, p1 = 1, p2 =
c
2 , and p3 = c, p4 =

(1+c)
2 ; see Figure 9. The insertion order of the

points is p1, p2, p3, p4. Clearly, by setting \rho (s) = \rho (p2) =
c
2 and \rho (p3) = \rho (p4) =

1 - c
2 , an

optimum solution with cost2(\rho (P )) = 5 - 2
\surd 
5

2 is found. Algorithm 1-Stable-Insert
sets \rho (s) := 1 and \rho (p3) := 1 - c, and all other ranges to 0. The resulting cost equals
5 - 

\surd 
5

2 , and the ratio follows. See Figure 9 for an illustration.

To handle the case with points to both sides of s, we proceed as follows. Let
P = L \cup \{ s\} \cup R, where L and R contain the points to the left and to the right of s,
respectively. We simply run the above algorithm separately on L \cup \{ s\} and \{ s\} \cup R.
This way the points in R\cup L are assigned one range, while s gets assigned two ranges;
the actual range of s is the largest of these two ranges.

Theorem 6.3. There exists a 1-stable c\alpha -approximation algorithm for the
broadcast range-assignment problem in \BbbR 1, where the approximation ratio c\alpha de-
pends on the distance-power gradient \alpha . For \alpha = 2 the approximation ratio is c2 =
2(3 +

\surd 
5)\approx 10.47.

Proof. Recall that our algorithm simply runs the one-sided algorithm separately
on L\cup \{ s\} and \{ s\} \cup R, where the actual range of s is defined to be the largest of the
two ranges it receives.

To analyze the approximation ratio of this algorithm we use that for any \alpha > 1
we have OPT(L \cup \{ s\} \cup R)\geqslant max(OPT(L\cup \{ s\} ),OPT(\{ s\} \cup R)), where OPT(\cdot ) denotes
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816 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

the cost of an optimal range assignment [22]. Hence, the cost of the range assignment
\rho that we maintain is

cost\alpha (\rho (L\cup \{ s\} \cup R))\leqslant cost\alpha (\rho (L\cup \{ s\} )) + cost\alpha (\rho (\{ s\} \cup R))
\leqslant c\prime \alpha \cdot (OPT(L\cup \{ s\} ) + OPT(\{ s\} \cup R))
\leqslant 2c\prime \alpha \cdot max(OPT(L\cup \{ s\} ),OPT(\{ s\} \cup R))
\leqslant 2c\prime \alpha \cdot OPT(L\cup \{ s\} \cup R).

Lemma 6.1 thus implies the theorem.

We note that a 1-stable algorithm ALG that handles deletions cannot have a
bounded approximation ratio, as we show next for \alpha = 2. Suppose for a contradiction
that ALG has approximation ratio c, where we assume for simplicity that c is an
integer. Let P := \{ s, r1, . . . , rc+1\} , where s = 0 and ri = i/(c + 1). Then OPT =
(c + 1) \cdot (1/(c + 1))2 = 1/(c + 1), so ALG cannot give the source a range of 1. But
if we then delete all nonzero points in P \setminus \{ s\} , the algorithm is stuck: the deletion
of a nonzero point already causes a modification, so the algorithm is not allowed to
increase any range; hence, the solution is invalid after all nonzero-range points from
P \setminus \{ s\} have been deleted. This is a consequence of our choice of the definition of an
algorithm's stability, and one may consider alternative definitions of the stability in
the broadcast range-assignment problem avoiding this consequence. However, with
the application in mind, our current definition (where the algorithm has to pay for
both for removing a point with nonzero range, as well as for assigning a nonzero
range to a new point) is appropriate. It is then actually interesting to observe that
for insertions it is possible to obtain a 1-stable algorithm with O(1)-approximation
ratio.

A lower bound for 1-stable insertion-only algorithms. The next theorem shows
that any 1-stable algorithm in \BbbR 1 has an approximation ratio greater than 2.61 for
\alpha = 2.

Theorem 6.4. Any 1-stable algorithm for the insertion-only broadcast range-
assignment problem in \BbbR 1 has an approximation ratio that is greater than or equal to
1
2 \cdot (3 +

\surd 
5)\approx 2.61 for \alpha = 2, and any 1-stable algorithm has an approximation ratio

greater than 2\alpha +1
2 for \alpha > 2.

Proof. Let ALG be a 1-stable algorithm, and let \rho alg be the range assignment it
maintains.

Consider the point set P := \{ s, r1, r2, p\} , where s= 0, and ri = xi for i= 1,2, and

p = 1. Assume 0 < x1 < 1 and let x2 = x1 +
(1 - x1)

2 . Also assume after the source,
the point p arrives first, then the point r1, and finally r2 arrives. Let P \prime := \{ s, r1, p\} .
Trivially, after the arrival of the point p, we must have \rho alg \geqslant 1 in order to have a
feasible solution. After the arrival of r1, ALG is forced to keep \rho alg(s)\geqslant 1 since ALG is
1-stable.

We consider two cases.
Case I: After the arrival of r1, ALG gives a range of at least 1 - x1 to r1.
In this case ALG cannot decrease any range. So,

cost\alpha (\rho alg(P
\prime ))\geqslant 1 + (1 - x1)

\alpha .

An optimal solution for P \prime has cost x\alpha 
1 +(1 - x1)

\alpha , and so the approximation ratio of

ALG in Case I is at least 1+(1 - x1)
\alpha 

x\alpha 
1 +(1 - x1)\alpha 

.

Case II: After the arrival of r1, ALG gives a range less than 1 - x1 to r1.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 817

Now the point r2 arrives. Since ALG is 1-stable it cannot decrease the range of
the source. Hence,

cost\alpha (\rho alg(P ))\geqslant 1.

An optimal solution for P has cost x\alpha 
1 + 2 \cdot ( 1 - x1

2 )\alpha , and so the approximation ratio
of ALG in Case II is at least 1

x\alpha 
1 +2\cdot ( 1 - x1

2 )\alpha 
.

We conclude that the approximation ratio of any 1-stable algorithm is greater
than or equal to at least

min

\Biggl( 
1 + (1 - x1)

\alpha 

x\alpha 
1 + (1 - x1)\alpha 

,
1

x\alpha 
1 + 2 \cdot ( 1 - x1

2 )\alpha 

\Biggr) 
.

For \alpha = 2 we see that by substituting x1 =
3
2  - 

\surd 
5
2 we get the approximation ratio is

at least 1
2 \cdot (3 +

\surd 
5). Moreover, for any \alpha > 2 we get an approximation ratio greater

than 2\alpha +1
2 , for instance, by substituting x1 =

1
2 .

6.2. A 2-stable algorithm. Obtaining a 2-stable 2-approximation algorithm is
straightforward: simply give every point in P its standard range, where the source s
receives the largest of its (at most) two standard ranges. This induces a broadcast tree
consisting of (at most) two chains: a chain from s to the rightmost point and a chain
from s to the leftmost point. This algorithm is 2-stable: if we insert an extreme point,
then we increase the range of at most one point, and if we insert a nonextreme point
q we increase the range of q and decrease the range of its predecessor. (Deletions are
symmetrical.) We call this algorithm the standard-range algorithm. It is easy show
that the standard-range algorithm gives a 2-approximation [22].

Observation 6.5 ([22]). The standard-range algorithm for the dynamic broadcast
range-assignment problem in \BbbR 1 is 2-stable and gives a 2-approximation, for any
power-distance gradient \alpha > 1. Moreover, the approximation ratio 2 is tight for this
algorithm.

Proof. The fact that the approximation ratio is at most 2 was observed in Theo-
rem 2.2 in [22]. We sketch the key idea for completeness. Divide the point set P \setminus \{ s\} 
into P+ and P - . Let the source be at x = 0 on the real line. Let P+ be the set of
points whose x-coordinate is positive and P - be the set of points whose x-coordinate
is negative. Then

cost\alpha (\rho opt(P ))\geqslant max(cost\alpha (\rho opt(P
+ \cup \{ s\} )), cost\alpha (\rho opt(P - \cup \{ s\} ))).

Moreover, the increase in the cost of ALG after arrival of a point q with positive x-
coordinate is at most the increase in the cost of cost\alpha (\rho opt(P

+ \cup \{ s\} )). Similarly, the
increase in the cost of ALG after arrival of a point q with negative x-coordinate is at
most the increase in the cost of cost\alpha (\rho opt(P

 - \cup \{ s\} )). Hence,

cost\alpha (\rho alg(P ))\leqslant cost\alpha (\rho opt(P
+ \cup \{ s\} )) + cost\alpha (\rho opt(P

 - \cup \{ s\} )).

Since ALG is optimal for P+ and P - , we have cost\alpha (\rho opt(P
+\cup \{ s\} )) = cost\alpha (\rho alg(P

+\cup 
\{ s\} )) and cost\alpha (\rho opt(P

 - \cup \{ s\} ) = cost\alpha (\rho alg(P
 - \cup \{ s\} )). We can conclude that ALG

is a 2-approximation.
It remains to give an instance showing this bound is tight. Define P := P (\varepsilon )\cup \{ s\} ,

where s= 0 is the source, and P (\varepsilon ) := \{ p1, p2, p3, p4\} , where p1 = \varepsilon , p2 = - \varepsilon , p3 = 1,
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818 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

and p4 =  - 1 for some small \varepsilon > 0. The insertion order of the points in P (\varepsilon ) is
p1, p2, p3, p4. Clearly, by setting \rho (s) = 1 and \rho (pi) = 0 for i = 1, . . . ,4, we obtain an
optimal solution with cost\alpha (\rho (P )) = 1. However, the standard-range algorithm will
set \rho (s) = \varepsilon , \rho (p1) = \rho (p2) = 1 - \varepsilon , and \rho (p3) = \rho (p4) = 0, leading to a solution with
cost f(\varepsilon ) := 2(1 - \varepsilon )\alpha + \varepsilon \alpha . Since lim\varepsilon \rightarrow 0 f(\varepsilon ) = 2, this proves we have tightness for
any \alpha > 1.

6.3. A 3-stable algorithm with approximation ratio less than 2. Given
the simplicity of our 2-stable 2-approximation algorithm, it is surprisingly difficult to
obtain an approximation ratio strictly smaller than 2. In fact, we have not been able
to do this with a 2-stable algorithm. Below we show this is possible with a 3-stable
algorithm, at least for the case \alpha = 2, which we assume from now on.

Recall that for any set P with points on both sides of the source point s, there is an
optimal range assignment inducing a broadcast tree with a single root-crossing point;
see Figure 1. Unfortunately the root-crossing point may change when P is updated.
This may cause many changes if we maintain a solution with a good approximation
ratio and the same root-crossing point as the optimal solution. We therefore restrict
ourselves to source-based range assignments, where s is the root-crossing point. The
main question is then how large the range of s should be, and which points within
range of s should be zero-range points.

We now define our source-based range assignment, which we denote by \rho sb, more
precisely. It will be uniquely defined by the set P ; it does not depend on the order in
which points have been inserted or deleted. Let \delta be a parameter with 1/2 < \delta < 1;
later we will choose \delta such that the approximation ratio of our algorithm is optimized.
We call a point p \in P \setminus \{ s\} expensive if succ(p) \not = NIL and | p succ(p)| > \delta \cdot | s succ(p)| ,
and we call it cheap otherwise. The source s is defined to be always expensive. (This is
consistent in the sense that for p= s the condition | p succ(p)| > \delta \cdot | s succ(p)| holds for
both successors, since \delta < 1.) We denote the set of all expensive points in P by Pexp

and the set of all cheap points by Pcheap. Define dmax := max\{ | s succ(p)| : p \in Pexp\} ,
that is, dmax is the maximum distance from s to the successor of any expensive point.
We say that a point p\in Pexp is crucial if | s succ(p)| = dmax. Typically there is a single
crucial point, but there can also be two: one on the left and one on the right of s.
Our source-based range assignment \rho sb is now defined as follows:

\bullet \rho sb(s) := dmax;
\bullet \rho sb(p) := 0 for all p\in Pexp \setminus \{ s\} ; and
\bullet \rho sb(p) := \rho st(p) for all p\in Pcheap, where \rho st(p) denotes the standard range of

a point.
It is easily checked that we can maintain this range assignment with a 3-stable al-
gorithm. The challenge is to analyze its approximation ratio; we show that, for a
suitable choice of \delta , the approximation ratio is strictly smaller than 2.

Now we prove the stability and approximation ratio of our proposed 3-stable
algorithm. The lemma below analyzes the stability of \rho sb. The lemma implies that
insertions are (2,1)-stable and deletions are (1,2)-stable.

Lemma 6.6. Consider a point set P and a point q \not \in P . Let \rho old(p) be the range
of a point p in \rho sb(P ) and let \rho new(p) be the range of p in \rho sb(P \cup \{ q\} ). Then

| \{ p\in P \cup \{ q\} : \rho old(p)<\rho new(p)\} | \leqslant 2 and | \{ p\in P \cup \{ q\} : \rho old(p)>\rho new(p))| \} \leqslant 1.

Proof. Due to the insertion of q, five types of range modifications can happen.
(i) The point q may get a nonzero range because it is cheap and nonextreme.
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DYNAMIC BROADCAST RANGE-ASSIGNMENT PROBLEM 819

(ii) A point p may move from Pcheap to Pexp and become a zero-range point. This
can only happen when p=pred(q) and p was extreme before the insertion of
q. Hence, q will be extreme after its insertion, so this cannot occur together
with type (i).

(iii) A point p \in Pcheap may get a smaller range because its standard range de-
creases. This can only happen when p = pred(q), and so it cannot happen
together with type (ii).

(iv) A point p may move from Pexp to Pcheap and get a nonzero range. Again,
this can only happen when p=pred(q), so this cannot happen together with
types (ii) or (iii).

(v) The source s may get a different range because dmax changes. If dmax de-
creases, then pred(q) must have been crucial, and so this cannot occur to-
gether with types (ii) or (iii). If dmax increases, then a type (ii) modification
must have occurred, which means that types (i), (iii), and (iv) did not occur.

Overall, we have at most one range increase of type (i), at most one range change
from any of the types (ii), (iii), (iv), and at most one change of type (v). There can
be at most one decrease among these three changes, because if type (v) is a decrease,
then types (ii) and (iii) did not occur. Finally, there can be at most two increases,
because if type (v) is an increase, then types (i), (iii), and (iv) did not occur.

From now on we assume without loss of generality that the source s is located
at x = 0. We will need the following lemma before we can proceed to prove the
performance guarantee.

Lemma 6.7. Let I \subset \BbbR 1 be an interval of length \Delta 1 at distance \Delta 2 from the
source, that is, I = [\Delta 2,\Delta 2 + \Delta 1] or I = [ - \Delta 1  - \Delta 2, - \Delta 2] for some \Delta 2 > 0. Let
Pcheap(I) be the set of all cheap points that are in I and whose successor lies in I as
well. Then

\sum 
p\in P\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{p}(I)

\rho st(p)
2 \leqslant \delta (\Delta 1 +\Delta 2)\Delta 1.

Proof. Let p\in Pcheap(I). Since p is cheap we have

\rho st(p) = | p succ(p)| \leqslant \delta \cdot | s succ(p)| .

Since succ(p)\in I, we have | s succ(p)| \leqslant \Delta 1 +\Delta 2, and so \rho st(p)\leqslant \delta (\Delta 2 +\Delta 1). Hence,\sum 
p\in P\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{p}(I)

\rho st(p)
2 \leqslant \delta (\Delta 2 +\Delta 1) \cdot 

\sum 
p\in P\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{p}(I)

\rho st(p) \leqslant \delta (\Delta 2 +\Delta 1)\Delta 1.

We now prove the approximation ratio of our source-based range assignment. Let
OPT= cost2(\rho opt(P )) denote the cost of the optimal range assignment on P .

Lemma 6.8. For any point set P in \BbbR 1 and any 1/2< \delta < 1 we have

cost2(\rho sb(P ))\leqslant c\delta \cdot OPT, where c\delta :=max
\Bigl( 
1 + \delta + (1+5\delta )(1 - \delta )2

\delta 2 , 1
\delta 2 + 1

2

\Bigr) 
.

Proof. The worst approximation ratio is achieved by a set P with points to both
sides of the source---indeed, if we only have points to the right of s, say, then adding
an additional point slightly to the left of s will change neither the cost of an optimal
solution nor the cost of \rho sb. So from now on we assume that P has points to both
sides of s. In the following, with a slight abuse of notation, we will use the notation p
both for the point p \in P and its value (that is, its x-coordinate when identifying \BbbR 1

with the x-axis). For example, to indicate that a point p lies to the left of another
point p\prime we may write p < p\prime . We will assume without loss of generality that s= 0.
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sq` rPmid PrightPleft

Fig. 10. The cost of \rho \mathrm{o}\mathrm{p}\mathrm{t} on P\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}\cup P\mathrm{m}\mathrm{i}\mathrm{d}\cup P\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} is at least the cost of \rho \mathrm{s}\mathrm{b} on this set. Note that
\ell and/or r can lie exactly at the end of the range of q, that is, | q\ell | = \rho \mathrm{o}\mathrm{p}\mathrm{t}(q) and/or | qr| = \rho \mathrm{o}\mathrm{p}\mathrm{t}(q)---in
fact, one of this cases must happen. Note: color appears only in the online article.

s p∗i p∗i+1q

xz
empty

Fig. 11. Relative position of the points s, q, p\ast i , p
\ast 
i+1 in Case 1. Costs of the points in the

green regions are included in C\mathrm{s}\mathrm{b} and C\mathrm{o}\mathrm{p}\mathrm{t}. The cost for the other regions is analyzed in the text.
Note: color appears only in the online article.

Let \rho opt(P ) be an optimal range assignment that induces a broadcast tree \scrB with
the structure of Theorem 2.1, and let q denote the root-crossing point in \scrB . Let p\ast i
denote a crucial point in P , and let p\ast i+1 = succ(p\ast i ). If p\ast i = s, then we define p\ast i+1

to be a successor of s at maximum distance from s, so that in this case we also have
dmax = | sp\ast i+1| . Thus \rho sb(s) = dmax = | sp\ast i+1| .

Let \ell and r be the leftmost and the rightmost points that are within range of q in
the optimal solution, respectively. Let Pleft := \{ p \in P : p\leqslant \ell \} be the set of all points
to the left of \ell plus \ell itself, and let Pright := \{ p \in P : p \geqslant r\} . Finally, let Pmid be
the set of points in-between s and q, excluding both s and q; see Figure 10. We now
define

Csb :=
\sum 

p\in P\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}\cup P\mathrm{m}\mathrm{i}\mathrm{d}\cup P\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}

\rho sb(p)
2 and Copt :=

\sum 
p\in P\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}\cup P\mathrm{m}\mathrm{i}\mathrm{d}\cup P\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}

\rho opt(p)
2

as the costs incurred by \rho sb and \rho opt on the sets just defined. Observe that Copt \geqslant Csb,
because \rho opt(p) = \rho st(p) for all p \in Pleft \cup Pmid \cup Pright, and \rho sb(p) \leqslant \rho st(p) for all
p\in P \setminus \{ s\} .

We now analyze the costs incurred by \rho sb and \rho opt on the remaining points. We
assume without loss of generality that q \leqslant s, and we let x := | qs| denote the distance
from q to s. Furthermore, we define z := \rho opt(q). Note that z \geqslant x. We divide the
analysis into several cases, depending on the relative position of s, q, p\ast i , p

\ast 
i+1.

Case 1: p\ast i and p\ast i+1 lie to the right of s (possibly p\ast i = s) and inside the range of
q in the optimal solution.

See Figure 11 for an illustration. Since p\ast i is crucial we have | p\ast i p\ast i+1| > \delta \cdot | sp\ast i+1| 
and so

| sp\ast i | = | sp\ast i+1|  - | p\ast i p\ast i+1| <
\biggl( 
1

\delta 
 - 1

\biggr) 
| p\ast i p\ast i+1| =

\biggl( 
1 - \delta 

\delta 

\biggr) 
| p\ast i p\ast i+1| \leqslant 

\biggl( 
1 - \delta 

\delta 

\biggr) 
(z  - x).

We now bound the cost of the points p \not \in Pleft \cup Pmid \cup Pright. Theses are the points
s, q, p\ast i , p

\ast 
i+1 plus the points in the red regions in Figure 11. Note that \rho sb(p

\ast 
i ) = 0.

By applying Lemma 6.7 with \Delta 1 \leqslant ( 1 - \delta 
\delta )(z - x) and \Delta 2 = 0, we see that the cost

incurred by \rho sb due to the points strictly in-between s and p\ast i is less than or equal to
(1 - \delta )2

\delta (z  - x)2. By applying Lemma 6.7 with \Delta 1 = z and \Delta 2 = x, the cost incurred
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sq

xz

p∗i
p∗i+1

empty

Fig. 12. Relative position of the points s, q, p\ast i , p
\ast 
i+1 in Case 2. Note: color appears only in the

online article.

by \rho sb due to the points in the region left of and including q and within the range of
q is at most \delta z(z+x). Finally, the cost incurred by \rho sb due to the points to the right
of and including p\ast i+1 and within the range of q is at most (z  - x - | sp\ast i+1| )2. Since
\rho sb(s) = | sp\ast i+1| we obtain

cost2(\rho sb(P ))\leqslant | sp\ast i+1| 2 + \delta z(z + x) +
(1 - \delta )2

\delta 
(z  - x)2

+ (z  - x - | sp\ast i+1| )2 +Csb.

Obviously, cost2(\rho opt(P ))> z2 +Copt. Since Csb \leqslant Copt and x\leqslant z we conclude

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant 

(z  - x - | sp\ast i+1| )2 + | sp\ast i+1| 2

z2
+ \delta 

x

z
+

(1 - \delta )2

\delta 

\leqslant 
(z  - x)2

z2
+ \delta 

x

z
+

(1 - \delta )2

\delta 

\leqslant 1 + \delta +
(1 - \delta )2

\delta 
< c\delta .

Case 2: p\ast i lies to the left of q but within the range of q and p\ast i+1 lies outside the
range of q.

See Figure 12 for an illustration. As before, since p\ast i is crucial we have | p\ast i p\ast i+1| >
\delta \cdot | sp\ast i+1| and so

| sp\ast i | = | sp\ast i+1|  - | p\ast i p\ast i+1| <
\biggl( 
1 - \delta 

\delta 

\biggr) 
| p\ast i p\ast i+1| .

Applying Lemma 6.7 with \Delta 1 +\Delta 2 = | sp\ast i | and \Delta 1 = | qp\ast i | \leqslant z, we see that the cost
incurred by \rho sb due to the points in the region between and including q and p\ast i is at
most (1 - \delta )| p\ast i p\ast i+1| z. Applying Lemma 6.7 with \Delta 1 = z - x and \Delta 2 = 0, we see that
the cost incurred by \rho sb due to the points in the region to the right of s and within
the range of q is at most \delta (z - x)2. Furthermore, the cost incurred by \rho sb due to the
range of s is equal to | sp\ast i+1| 2.

Let C\ast 
opt :=Copt  - | p\ast i p\ast i+1| 2. Note that in Case 2, p\ast i is the leftmost point in the

range of q (the point \ell in Figure 10) and so it is included in Pleft. Since \rho sb(p
\ast 
i ) = 0

this implies C\ast 
opt \geqslant Csb. Hence,

cost2(\rho opt(P ))> z2 + | p\ast i p\ast i+1| 2 +C\ast 
opt.

Moreover,

cost2(\rho sb(P )) = | sp\ast i+1| 2 + (1 - \delta )| p\ast i p\ast i+1| z + \delta (z  - x)2 +Csb.
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822 MARK DE BERG, ARPAN SADHUKHAN, AND FRITS SPIEKSMA

Since Csb \leqslant C\ast 
opt we thus get

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant 

| sp\ast i+1| 2 + (1 - \delta )| p\ast i p\ast i+1| z + \delta (z  - x)2

z2 + | p\ast i p\ast i+1| 2
.

Now if | p\ast i p\ast i+1| \geqslant z, and using that x\leqslant z, we find

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant 

| sp\ast i+1| 2

| p\ast i p\ast i+1| 2
+

(1 - \delta )| p\ast i p\ast i+1| z
z2 + | p\ast i p\ast i+1| 2

+
\delta (z  - x)2

2z2

\leqslant 
1

\delta 2
+

1 - \delta 

2
+

\delta 

2

=
1

2
+

1

\delta 2
.

On the other hand, if | p\ast i p\ast i+1| < z we have | sp\ast i+1| < | p\ast i p\ast i+1| /\delta < z/\delta and so we get

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant 

| sp\ast i+1| 2

z2 + | p\ast i p\ast i+1| 2
+

(1 - \delta )| p\ast i p\ast i+1| z
z2 + | p\ast i p\ast i+1| 2

+
\delta (z  - x)2

z2

<
| p\ast i p\ast i+1| z

(z2 + | p\ast i p\ast i+1| 2)\delta 2
+

(1 - \delta )| p\ast i p\ast i+1| z
z2 + | p\ast i p\ast i+1| 2

+
\delta (z  - x)2

z2

\leqslant 
1

2\delta 2
+

1 - \delta 

2
+ \delta .

So we have,

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant max

\Bigl( 1

2
+

1

\delta 2
,

1

2\delta 2
+

1 - \delta 

2
+ \delta 
\Bigr) 
=

1

\delta 2
+

1

2
\leqslant c\delta .

Case 3: p\ast i , p
\ast 
i+1 lie to the left of q and inside the range of q.

See Figure 13 for an illustration. As before, since p\ast i is crucial we have | sp\ast i | <\bigl( 
1 - \delta 
\delta 

\bigr) 
| p\ast i p\ast i+1| , which in Case 3 implies x \leqslant (1 - \delta )

\delta z and | qp\ast i | \leqslant 
(1 - \delta )

\delta z. Applying
Lemma 6.7 with \Delta 1 = | qp\ast i | and \Delta 2 = x, we see that the cost incurred by \rho sb due to

the points in the region between and including q and p\ast i is at most \delta \cdot z(x+ (1 - \delta )
\delta z)\cdot (1 - \delta )

\delta .
Applying Lemma 6.7 with \Delta 1 = z  - x and \Delta 2 = 0, we see that the cost incurred by
\rho sb due to the points in the region to the right of s and within the range of q is at
most \delta (z  - x)2. Finally, the cost incurred by \rho sb due to the points in the region left
of p\ast i+1 and within the range of q is at most (z + x - | sp\ast i+1| )2. Hence,

cost2(\rho opt(P ))> z2 +Copt

and

cost2(\rho sb(P ))\leqslant | sp\ast i+1| 2 + \delta (z  - x)2 + \delta \cdot (1 - \delta )

\delta 
\cdot z
\biggl( 
x+

(1 - \delta )

\delta 
z

\biggr) 
+ (z + x - | sp\ast i+1| )2 +Csb.

sq

xz

p∗ip∗i+1
empty

Fig. 13. Relative position of the points s, q, p\ast i , p
\ast 
i+1 in Case 3. Costs of the points in the

green regions are included in C\mathrm{s}\mathrm{b} and C\mathrm{o}\mathrm{p}\mathrm{t}. The cost for the other regions is analyzed in the text.
Note: color appears only in the online article.
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Since Csb \leqslant Copt this implies

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant 

| sp\ast i+1| 2 + (z + x - | sp\ast i+1| )2 + \delta (z  - x)2 + \delta (1 - \delta )
\delta z(x+ (1 - \delta )

\delta z)

z2

\leqslant 
(z + x)2 + \delta (z  - x)2 + (1 - \delta )xz + (1 - \delta )2

\delta z2

z2

\times (note that | sp\ast i+1| 2 + (z + x - | sp\ast i+1| )2 < (z + x)2)

=
(1 + \delta + (1 - \delta )2

\delta )z2 + (3 - 3\delta )zx+ (1+ \delta )x2

z2

= (1+ \delta )
x2

z2
+ (3 - 3\delta )

x

z
+ 1+ \delta +

(1 - \delta )2

\delta 
.

Now define f(y) := (1 + \delta )y2 + (3 - 3\delta )y + 1+ \delta + (1 - \delta )2

\delta , then the last term is equal
to f(x/z). Observe that f is quadratic in y and that 0\leqslant x/z \leqslant (1 - \delta )/\delta . Hence,

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant max(f(0), f((1 - \delta )/\delta ))

=max

\biggl( 
1 + \delta +

(1 - \delta )2

\delta 
,1 + \delta + (1+ 5\delta )

(1 - \delta )2

\delta 2

\biggr) 
= 1+ \delta + (1+ 5\delta )

(1 - \delta )2

\delta 2

\leqslant c\delta .

Case 4: p\ast i , p
\ast 
i+1 lie to the left of q but outside the range of q; or p\ast i , p

\ast 
i+1 lie in the

region [s, q].
See Figure 14 for an illustration. Since p\ast i is crucial we have | sp\ast i+1| < | p\ast i p\ast i+1| /\delta .

Clearly the cost incurred by \rho sb due to the points in the region to the left of q and
within the range of q is at most z2. Applying Lemma 6.7 with \Delta 1 = z - x and \Delta 2 = 0,
the cost incurred by \rho sb due to the points in the region to the right of s and within
the range of q is at most \delta (z - x)2. Finally, the cost incurred by \rho sb due to the range
of s is | sp\ast i+1| 2. Define C\ast 

opt :=Copt  - | p\ast i p\ast i+1| 2 and observe that C\ast 
opt \geqslant Csb. Then

cost2(\rho opt(P ))> z2 + | p\ast i p\ast i+1| 2 +C\ast 
opt

and

cost2(\rho sb(P ))\leqslant | sp\ast i+1| 2 + z2 + \delta (z  - x)2 +Csb

sq

x

p∗i+1

empty
p∗i

z

q

z

p∗i s
empty

p∗i+1

x

or

Fig. 14. The two options for relative position of the points s, q, p\ast i , and p\ast i+1 in Case 4.
Note: color appears only in the online article.
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q

z

p∗i p∗i+1s

x

or

empty

sq

xz

p∗i p∗i+1

empty

Fig. 15. The two options for the relative position of the points s, q, p\ast i , and p\ast i+1 in Case 5.
Note: color appears only in the online article.

with Csb \leqslant C\ast 
opt. Since x\leqslant z we thus obtain

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant frac| sp\ast i+1| 2 + z2 + \delta (z  - x)2z2 + | p\ast i p\ast i+1| 2

\leqslant 
1
\delta 2 | p

\ast 
i p

\ast 
i+1| 2| + (1+ \delta )z2

z2 + | p\ast i p\ast i+1| 2

\leqslant max

\biggl( 
1 + \delta ,

1

\delta 2

\biggr) 
< c\delta .

Case 5: p\ast i lies to the right of s and within the range of q and p\ast i+1 lies to the
right of s and outside the range of q; or p\ast i , p

\ast 
i+1 lie to the right of s and outside the

range of q.
See Figure 15 for an illustration. As before, we have | sp\ast i | <

(1 - \delta )
\delta | p\ast i p\ast i+1| and

| sp\ast i+1| < 1
\delta | p

\ast 
i p

\ast 
i+1| . Clearly the cost incurred by \rho sb due to the points in the region

to the left of q and within the range of q is at most z2, and the cost incurred by \rho sb
due to the points in the region right of s and within the range of q is at most | sp\ast i | 2 <
(1 - \delta )2

\delta | p\ast i p\ast i+1| 2. Finally, the cost incurred by \rho sb due to source s is | sp\ast i+1| 2 which
is at most 1

\delta 2 | p
\ast 
i p

\ast 
i+1| 2. Define C\ast 

opt := Copt  - | p\ast i p\ast i+1| 2 and observe that C\ast 
opt \geqslant Csb.

Then

cost2(\rho opt(P ))> z2 + | p\ast i p\ast i+1| 2 +C\ast 
opt

and

cost2(\rho sb(P ))\leqslant | sp\ast i+1| 2 + z2 +
(1 - \delta )2

\delta 
| p\ast i p\ast i+1| 2 +Csb.

Since Csb \leqslant C\ast 
opt and \delta < 1 we conclude

cost2(\rho sb(P ))

cost2(\rho opt(P ))
\leqslant 

| sp\ast i+1| 2 + z2 + (1 - \delta )2

\delta | p\ast i p\ast i+1| 2

z2 + | p\ast i p\ast i+1| 2

\leqslant 
( 1
\delta 2 + (1 - \delta )2

\delta )| p\ast i p\ast i+1| 2 + z2

z2 + | p\ast i p\ast i+1| 2

\leqslant 
(1 - \delta )2

\delta 
+

1

\delta 2

< c\delta .

We conclude that the approximation ratio is bounded by c\delta in all cases.
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We now want to choose \delta so as to minimize c\delta =max(1+\delta + (1+5\delta )(1 - \delta )2

\delta 2 , 1
\delta 2 +

1
2 ).

The first term is minimized at the real root of the polynomial 6\delta 3  - 3\delta  - 2, whose
approximate value is 0.92711; this gives a value that is approximately 1.97. For this
value of \delta the first term dominates the second one, leading to the following theorem.

Theorem 6.9. There exists a 3-stable 1.97-approximation algorithm for the
dynamic broadcast range-assignment problem in \BbbR 1 for \alpha = 2.

7. Concluding remarks. We studied the dynamic broadcast range-assignment
problem from a stability perspective, introducing the notions of k-stable algorithms
and SASs. Our results provide a fairly complete picture of the problem in \BbbR 1, in
\BbbS 1, and in \BbbR 2. In particular, we presented a SAS in \BbbR 1 that has an asymptotically
optimal stability parameter, and showed that the problem does not admit a SAS in
\BbbS 1 and \BbbR 2. Future work can focus on improving the (upper and/or lower bounds for)
approximation ratios that we have obtained for algorithms with a constant stability
parameter. While generalizing the structure theorem that exists for \BbbR 1 to \BbbR 2 will
be difficult, weaker properties of an optimal solution in \BbbR 2 (or in \BbbR d, d \geqslant 2) could
be obtained. Also one can work on good approximation algorithms with bounded
stability parameter on the circle.

Acknowledgment. We thank the reviewers of an earlier version of the paper
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