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optimization is relevant but also to have 
shown that there is as much relevance as 
there is fun!

Introduction
While this text may serve as an appetizer 
to the field of combinatorial optimization, 
it is neither an introduction to it nor does 
it contain proofs or theorems. There are 
excellent books that achieve these goals; 
I refer to the sources at the end of this 
section.

It is good, however, to have a basic 
understanding of combinatorial optimiza-
tion (CO). The field of CO can be seen as 
a collection of problems sharing particular 
characteristics. Two well-known examples 
of such problems are the assignment prob-
lem and the traveling salesman problem; 
books have been devoted to each of these 
problems. Here, I use the assignment prob-
lem as our leading example to illustrate 
what the field of CO is about. Indeed, if 
ever there is a single problem that signi-
fies the success of CO, it is the assignment 
problem.

In the assignment problem, one is given 
two n-sets L and R (n N! ) and, for every 

A final story features the perhaps mundane 
subject of scheduling thousands of soccer 
matches; again, tools from combinatorial 
optimization allow efficient schedules to 
be constructed.

Jointly, these stories illustrate the per-
vasiveness of combinatorial optimization 
in today’s society. From designing train 
timetables to scheduling classes at high 
schools and universities, from organizing 
conferences to analyzing social networks, 
our world is filled with discrete decisions. 
The stories that I chose to include here 
concern recent topics that I have worked 
on. Many colleagues have been involved, 
and it was a pleasure and a privilege work-
ing with them. And actually, dear reader, af-
ter you have read this text, I not only hope 
to have convinced you that combinatorial 

Prologue
This is a set of stories. Each of these sto-
ries intends to illustrate the relevance of 
combinatorial optimization in practice. 
Each of these stories also aims to illus-
trate the power of mathematical rigor. One 
story describes how techniques from the 
field of combinatorial optimization impact 
the lives of patients with kidney failure for 
the better. Another story shows how com-
binatorial optimization can help us to ar-
rive at an objective seating arrangement 
for newly-elected members of parliament. 
Yet another story describes how transpor-
tation over inland waterways is affected by 
locks; here, it is shown that the solutions 
of mathematical models can help in de-
ciding upon the optimal speeds of freight 
ships, thereby decreasing (CO2) emissions. 
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Story 1: kidney exchange
Kidney failure is a disease that affects one 
in ten persons worldwide. In the age cat-
egory 65+, it is estimated that one in five 
persons suffer from kidney failure, explain-
ing why aging societies have a higher prev-
alence of kidney failure than other societ-
ies. In the Netherlands, over 2000 patients 
are on a waiting list to receive a kidney. 
The waiting list maintained by EuroTrans-
plant contains over 10 000 patients waiting 
for a kidney.

The last stage of this disease is called 
End Stage Renal Disease (ESRD), and a 
person with ESRD cannot survive without 
either dialysis or a kidney transplant. The 
two main causes of kidney failure are di-
abetes and high-blood pressure; the in-
creasing prevalence of both diabetes and 
high-blood pressure (caused by lifestyle 
habits that are only slowly changing), as 
well as the absence of artificial kidneys, 
unfortunately ensures that ESRD is a se-
rious, growing disease not likely to disap-
pear.

As it happens, a healthy individual 
has two kidneys, and can live a normal 
life with a single kidney. This is a unique 

exists an algorithm that finds an optimum 
solution in kn3 computational steps for 
some k N! .

In the next four sections, four stories 
will unfold. As different as the forthcoming 
stories are, their common denominator is 
that (i) the optimization problems behind 
them possess a defining characteristic: the 
presence of a finite, yet huge number of 
solutions; and that (ii) the challenge is to 
find a good solution as fast as possible.

Sources
The trilogy by Schrijver [46] is a landmark in 
the field. Other books that give an overview of 
CO are Cook et al. [11], Nemhauser and Wolsey 
[36], and Korte and Vygen [26]. Although CO is 
a relatively young field of science, it has a rich 
history — an account of that history is given in 
Schrijver [47].

In particular, there is a fascinating story be-
hind the assignment problem that goes back to 
works of Carl Gustav Jacob Jacobi (1804–1851). 
I refer to Kuhn [27] for a description of this his-
tory, and to Burkard et al. [10] for a book on 
the assignment problem. A classic book on the 
traveling salesman problem is the one edited by 
Lawler et al. [29]; a more recent one is the book 
by Applegate et al. [2].

An overview of open problems in the field is 
given by Woeginger [54].

pair of elements ( , )r L R#, ! , a cost-coef-
ficient c ,r,  is given. The problem is to se-
lect n pairs, each consisting of an element 
from L and an element from R, such that 
each element of L R,  is present in some 
selected pair while the sum of the cost- 
coefficients of the selected pairs is min-
imal. The number of solutions for an as-
signment problems equals n!. This proper-
ty of the assignment problem, i.e. having 
a finite number of solutions, is in fact the 
defining property of combinatorial optimi-
zation problems: an optimization problem 
is a combinatorial optimization problem 
when the number of solutions is finite. 
That means that finding a best solution, 
i.e. a solution with minimum cost, may 
not be a trivial task: indeed, enumerat-
ing all solutions, even for moderate val-
ues of n and using the fastest processor, 
can be quite impractical, i.e. may take too 
much time. We have arrived at the basic 
challenge associated with each CO prob-
lem: amidst a finite yet huge number of 
solutions, we must find a good solution 
as fast as possible. Returning to the as-
signment problem, it is an example of a 
problem that is efficiently solvable: there 

optimization

Frits Spieksma
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There are many, many challenges in this 
field. Apart from ethical and medical con-
siderations, it is a fact that different coun-
tries have wildly differing rules for organ 
donation. For instance, only 2-cycles are al-
lowed in France and some countries allow 
the inclusion of compatible pairs whereas 
other countries don’t. Such issues are rel-
evant as there is an increasing awareness 
that allowing exchanges across borders 
may have a positive impact on the quality 
of the solutions. And, of course, the set 
of precise rules that govern the exchanges 
has a huge impact on the solutions pos-
sible.

When it comes to mathematical optimi-
zation, at least three challenges exist:

–– Dynamics. A crucial question is: how 
often should one try to find a set of 
transplants, i.e. with what frequency 
should one solve model (1)? Once ev-
ery month? Or after a sufficient number 
of changes to the pool? The answer to 
this question depends on the frequency 
with which the pool changes; the phe-
nomenon is referred to as ‘thickening 
the market’. Of course, one argument 
to wait is that after some time, more 
changes may improve the quality of the 
solution. An argument not to wait is 
that any opportunity to realize an addi-
tional transplant should not be missed. 
A fast-growing amount of literature 
analyzes this situation under various 
assumptions — it seems that a greedy 
approach (i.e. solving whenever the sit-
uation has changed) is preferable.

–– Recourse. As described above, the ab-
sence of an arc does indeed mean that 
there is no compatibility between the 
donor of one pair and the patient of 
another pair. However, the presence of 
an arc does not guarantee compatibil-
ity; it basically means that there is a 
good chance that there is compatibility. 
An in-depth screening of the two per-
sons involved may reveal that the two 
are incompatible after all. This opens 
the door to many questions. One vari-
ant associates a probability to each arc, 
representing the likelihood of compat-
ibility. Then, prior to identifying a set 
of exchanges, one needs to determine 
which arcs to screen in depth in order 
to determine their status. Finding these 
arcs is an optimization question in itself 
and when the true status of in-depth 

(who correspond to nodes in the graph) 
with a kidney (and their donors donating 
one). In fact, a moment of reflection will 
convince the reader that there is no reason 
to restrict one’s attention to 2-cycles: any 
cycle in this graph represents a feasible set 
of transplants.

In practice, however, there are argu-
ments that favor short cycles. Also, in prac-
tice, there are persons who are willing to 
donate a kidney to any patient (so-called 
non-directed donors), and instead of cy-
cles, this leads to the feature of chains of 
interest in the graph. An important differ-
ence between a chain and a cycle is tempo-
ral: while the exchanges that follow from a 
cycle need to be carried out simultaneous-
ly, the exchanges that follow from a chain 
offer the opportunity to choose well-suited 
moments for each individual exchange.

Let us now turn to a formal definition of 
a basic version of the optimization prob-
lem in a KEP. An instance of the problem 
is defined by a simple, directed graph 
( , )G V A= , and by an integer K (denoting 

the maximum cycle length). Each vertex in 
V represents a patient-donor pair; an arc 
( , )i j A!  represents a possible transplant 
of a kidney from the donor associated with 
vertex i V!  to the patient associated with 
vertex j V! . Let C be the set of all direct-
ed cycles of, at most, length K and let wc 
be the length of cycle c in G. The optimi-
zation problem is now to select a set of 
vertex-disjoint cycles in G which maximizes 
the total number of arcs contained in the 
selected cycles. Clearly, this is a problem 
in CO as the number of solutions is finite. 
Solving this problem, and its generaliza-
tions (which include non-directed donors, 
weights and uncertainty) is of paramount 
relevance, and is being done by several 
(supra-)national institutions, hospitals and 
special-purpose organizations.

Here is a mathematical formulation 
of the problem using binary variables zc, 
which equal 1 if and only if cycle c C!  is 
selected.

,

{ , } .

w z

z i V

z c C
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0 1
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for each
:
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Notice that different formulations exist. 
The one chosen here is the one that I find 
most elegant to state; it is not the one 
most suited for computational purposes.

feature of this organ and opens the door 
for the donation of a kidney by a healthy, 
living individual to a patient with ESRD. 
The presence of individuals willing to do-
nate a kidney and the presence of patients 
in need of one gives rise to an allocation 
problem; I will now describe how the appli-
cation of sophisticated techniques from CO 
allows us to redistribute available kidneys 
from living donors in order to improve the 
quality of many patients’ lives. As a dis-
claimer, let me point out that gross sim-
plifications are made in this description; 
more precise and elaborate descriptions 
can be found in the sources at the end of 
this section.

Let us consider a person with ESRD, re-
ferred to as the patient. In many cases, a 
patient has found a person (a family mem-
ber, or a close friend) willing to donate her 
or his kidney to the patient, opening up 
the possibility of significantly improving 
the patient’s quality of life. However, a do-
nor must be compatible with the patient 
in order for the intended transplant to be 
possible. Compatibility is determined by 
blood type and by immunological proper-
ties of the patient-donor pair. In case the 
patient-donor pair is incompatible, they 
may decide to enter a so-called Kidney Ex-
change Program (KEP). In fact, they may 
decide to enter a KEP even if they are com-
patible. Such a program consists of a pool 
of patient-donor pairs. The idea is that, 
when viewed from the entering pair (let’s 
call them pair A), there is a possibility that 
there is one pair present among the donor- 
patient pairs currently in the pool (let’s call 
them pair B) whose donor is compatible 
with the patient of pair A, and whose pa-
tient is compatible with the donor of pair A. 
Then, an exchange is possible: the patient 
of pair A receives a kidney from the do-
nor of pair B, and the patient of pair B 
receives a kidney from the donor of pair 
A. The first actual exchange of this type 
occurred in 1992 in South Korea; since 
then, this practice has steadily become 
more popular.

An exchange of this type is called a 
2-cycle. Indeed, when building a graph 
that has a node for each patient-donor 
pair in the pool and an arc from one node 
to another node if the donor of the first 
node is compatible with the patient of the 
other node, it becomes clear that a set of 
disjoint 2-cycles in this graph represents 
a set of exchanges that leave the patients 
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should be seated in each other’s vicini-
ty; this allows them to pass information 
and notes quickly and discreetly. Thus, 
to facilitate intra-party communication, 
neighboring seats (to be defined later) 
are as much as possible allocated to 
MPs of the same party.

–– Not all seats are equally important. 
Seats in the front have more visibility 
and allow direct access to the debating 
spot. Usually, large parties (i.e. parties 
with more MPs than others) occupy 
one or more front seats. Seats in the 
back may be considered less important, 
while seats with access to a corridor 
may be preferred over seats between 
other seats. Note that there are parlia-
ments in which each seat has access to 
a corridor.

–– Many democracies have parties that 
are labeled somewhere on a ‘left-right’ 
spectrum. This left-right positioning is 
often reflected in the allocation of seats. 
Phrased more generally, MPs from differ-
ent parties that are considered to hold 
similar views are allocated to neighbor-
ing positions in the parliament.

–– Historical habits: particular seats that 
are allocated to a specific MP of some 
party for historical or traditional rea-
sons.

In some parliaments, clear rules exist 
that yield a seat-allocation. For instance, 
in the US Senate, senators are ordered by 
seniority and, starting with the oldest sen-
ator, each senator gets to choose a seat 
with Republicans on the right and Dem-
ocrats on the left side of the chamber; in 
Iceland, as mentioned above, a draw de-
termines which MPs sit where. Most par-
liaments, however, do not have an explicit 
rule to arrive at a seat-allocation.

I now propose a mathematical model 
to find a seat-allocation. In doing so, let 
us primarily focus on the amount of intra- 
party communication that is possible. 
However, the model is flexible and can 
take all kinds of parliament-specific wish-
es and constraints into account. Thus, the 
objective here is to find a seat-allocation 
with maximum communication. A way to 
precisely model communication between 
different seats in a parliament is to define 
the concept of neighboring seats. Let us 
call two distinct seats neighboring when 
direct contact (in the form of whispering or 
passing notes) between two MPs in these 

ment meet, discuss, vote, gossip and do 
all the things that members of parliament 
are supposed to do. I assume that each MP 
receives a particular seat in the parliament; 
this is actually common practice in many 
parliaments (but not in all: notable excep-
tions are the House of Representatives in 
the USA and the House of Commons in the 
UK. In these parliaments, there is a first-
come-first-serve policy for every meeting). 
The question is how to distribute MPs over 
the seats in the parliament so as to opti-
mize the functioning of the parliament; let 
us refer to a distribution of MPs over seats 
as a seat-allocation.

While at first sight the question of 
who sits where may appear an innocent 
one, there have been intense debates and 
rows about this matter in recent years. In 
fact, it has been argued that as voters be-
come more and more polarized, the views 
of their chosen representatives seem to 
diverge more and more. In a number of 
cases, the discussions have indeed already 
started with the particular seating that 
the parliament opts for in a newly-elected 
parliament. In other words, finding a seat- 
allocation may be a source of intense de-
bates. In such a belligerent atmosphere, a 
model-based proposal for the seating of 
the parliament has a huge advantage over 
human-made proposals: neutrality.

Another interesting observation which 
underlines how seat-allocations are far 
from innocent is the following. The vot-
ing behavior of an MP is influenced by 
the voting behavior of the MP’s physical 
neighbors. Indeed, in Iceland (the country 
with the oldest parliament functioning to-
day), seats for MPs are allocated randomly, 
independent of party affiliation. This has 
created the opportunity to statistically test 
whether neighbors of an MP have an im-
pact on the MP’s voting behavior, and it 
turns out that the answer is affirmative: not 
only voting behavior, but even the choice 
of words is influenced by one’s neighbors 
(see sources at the end of this section).

Let us list a number of properties pres-
ent in almost all seat-allocations in parlia-
ments all over the world:

–– MPs from the same party are seated in 
clusters. This reflects how communica-
tion between MPs of the same party 
should be an important factor when 
determining a seat-allocation. More 
concretely, members of the same party 

screened arcs is revealed, it will have 
implications for the final solution, i.e. 
recourse is needed to arrive at a feasi-
ble set of exchanges.

–– Fairness. As the quality of a match de-
pends on properties of a patient, the 
absence or presence of certain prop-
erties may benefit a particular class of 
patients. More concretely, it has been 
observed that patients with blood type 
O have disadvantages in the allocation 
of kidneys. Also, ethnic imbalances in 
the allocation may result. Improving 
models and methods while taking into 
account an accepted notion of fairness 
is a major challenge.

Sources
Facts about the prevalence of ESRD can be found 
in Heaf [22] and on the following sites: https://
www.kidney.org/kidneydisease/global-facts-about-
kidney-disease and http://www.healthdata.org.

Statistics about the number of kidney trans-
plants are tracked by the World Health Organi-
zation [55], https://www.who.int/transplantation/
gkt/statistics/en. Numbers for the Dutch situation 
are maintained by the Dutch Transplant Founda-
tion, see: http://www.transplantatiestichting.nl/
publicaties-en-naslag/nts-jaarverslagen.

Elaborate descriptions of the working of a 
KEP can be found in Gentry et al. [15] and An-
derson et al. [1]. For an overview of kidney ex-
change programs in Europe, see Biró et al. [8]. 
Mathematical formulations of the optimization 
problem are surveyed in Mak-Hau [31], see also 
Glorie et al. [17] and Dickerson et al. [13].

The computational complexity and approx-
imability of the underlying optimization problem 
is studied in Biró et al. [6].

The issue of thickening the market is dis-
cussed in Ashlagi et al. [3] and Ashlagi et al. [4]. 
Recourse has received attention in Blum et al. 
[9] and Smeulders et al. [48]. Fairness issues, 
as well as the impact of a new kidney alloca-
tion system employed by UNOS on racial/ethnic 
disparities in waiting times, are investigated in 
Glander et al. [16] and Melanson et al. [33].

This story is based on Smeulders et al. [48].

Story 2: seating members of parliament
A key institute in old and modern democra-
cies is the parliament: a collection of per-
sons that have been elected to represent 
the people and whose main task is to con-
trol legislative power. Let us refer to these 
elected persons as members of parliament 
or MPs. Almost always, members of par-
liament are grouped into different parties 
and members of the same party share a 
basic point of view on how society should 
be organized. To exercise their right and 
duty of controlling power, there is a phys-
ical location where the members of parlia-
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sented by blue links in Figure 1) and which pairs 
of seats facilitate fair communication (represent-
ed by red links in Figure 1). When two seats fa-
cilitating easy (fair) communication are assigned 
to members of the same party, 2 (1) points are 
gained. Of course, the idea is that seat-alloca-
tions with more points are better (in terms of 
communication) than seat-allocations with fewer 
points. Our objective is to find a seat-allocation 
with a maximum number of points.

Given the results of the elections for the 
Eerste Kamer, Figure 2 displays an optimum 
seat-allocation. This seat-allocation was found 
by solving an integer program; optimality of the 
solution was proved using combinatorial argu-
ments. Additional conditions or preferences can 
easily be incorporated into this integer program, 
see Tuin [52].

It should be clear that this idea can be ap-
plied to any parliament where MPs have a fixed 
seat. It is interesting to observe that the par-
ticular physical lay-out of the seats in the par-
liament matters for this objective; most parlia-
ments have a (half-)circular shape in which sets 
of seats are separated by corridors. A very nice 
overview of the shape and other properties of 
existing parliaments around the world is found 
in [56].

This story is based on Spieksma [49].

Story 3: transportation via inland waterways
Since ancient times, rivers have been used 
as a way of transporting goods and peo-
ple. History lessons from high school de-
scribe how a tribe called the Batavi, while 
moving along the Rhine, populated a delta 
around 40 BC now known as the Nether-
lands. Much older examples exist: docu-
ments from before 2500 BC show that the 
river Nile was routinely used for transport-
ing goods.

And in fact, the Rhine, the Nile and 
many other rivers and canals are still being 
used today as means to bring goods and 

cate pairs of neighboring seats to members 
of the same party. Let me point out that 
one may hypothetically wish to achieve an 
opposite objective in order to counterbal-
ance polarization. Then, one might want 
to minimize the given objective function 
(see the discussion above). Furthermore, 
constraints (5)–(9) ensure that a feasible 
seat-allocation is found. If desired, many 
other constraints can be added. Also, one 
may use more fine-grained ways to define 
the concept of neighboring seats.

A crucial advantage of a model-based 
proposal for a seat-allocation is its neutral-
ity; once there is agreement on the basic 
principles that should guide the seat-allo-
cation, the outcome of the corresponding 
model should be perceived as unbiased. 
Admittedly, as far as I am aware, no ex-
isting parliament uses optimization tech-
niques to find a seat-allocation; however, 
the tools are there!

Sources
Seat-allocations have been contested, see an ar-
ticle in the NRC [53] or the ‘seat wars’ described 
by the BBC [5]. The impact of neighboring MPs 
on the voting behavior of Icelandic MPs has 
been described in Saia [45], see also Harmon 
et al. [21].

Let us illustrate the above by considering 
a specific parliament: on 20 March 2019 there 
were provincial elections in the Netherlands. As a 
consequence, 75 fresh members of the so-called 
Eerste Kamer were chosen on 27 May 2019; 
they had their first meeting in mid-June. Here, 
the following question will be answered: who 
will sit where? In other words, when maximizing 
intra-party communication, which member of 
parliament (MP) will receive which chair?

This question is approached as follows. First, 
let us determine which pairs of seats in the 
parliament facilitate easy communication (repre-

seats is possible. In practice, this means 
that two seats that are positioned next to 
each other on the same row or that are 
positioned such that one seat is directly 
behind another seat are called neighbor-
ing. Of course, deciding whether two seats 
are neighboring can be a debatable choice 
in some cases.

[Again, the reader may skip the next 
paragraph without consequences for read-
ability]. Let P stand for the set of parties 
and let S denote the set of seats in the 
parliament. Party p P!  must receive sp 
seats in the parliament. Let us use N to 
denote the set of pairs of seats that are 
neighbors, i.e.
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This model is an integer programming 
model that maximizes a particular objec-
tive function representing intra-party com-
munication. Objective (4) attempts to allo-

Figure 1  Eerste Kamer, where connections in blue (red) indicate easy (fair) communication. Figure 2  Optimum seat-allocation of the Eerste Kamer.
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Figure 3  The lock at Ternaaien.

age estimated in millions of euro’s per 
week.

–– Delayed repairs to the locks in the Mis-
sissippi caused an unexpected closure 
of Lock 52 in the Mississippi river in 
September 2017, leading to 475 ships 
being unable to pass. The total costs 
were estimated at 640 million dollars.

However, even under normal circum-
stances, locks act as bottlenecks when the 
waterway traffic density is high and may 
induce waiting time for ships that pass 
through these canals and waterways. Effi-
cient lock schedules can contribute to the 
attractiveness of waterway transport and 
help to maximize the impact of expensive 
infrastructural investments.

An optimization problem thus arises 
when a set of ships has to pass a series 
of locks along a waterway. A precise de-
scription of the corresponding situation is 
as follows.

Consider a set of { , , , }L1 2L f=  locks 
indexed consecutively along a canal or a 
river. These locks partition the waterway 
into L 1-  segments. Each lock L, !  has 
a capacity C,, indicating how many ships 
the lock can hold, and has a lockage time 
P,, denoting the time that lock , needs to 
transfer ships through the lock. The dis-
tance between locks , and 1, +  is denoted 
by R, for each \{ }LL, ! .

Ships arrive at lock 1 and need to pass 
all locks, with their final lock being lock L; 
let us use S to denote the set of ships. 
Each ship s S!  arrives at lock 1 at arriv-
al time As and must have passed through 
lock L by the deadline Ds. There is a mini-
mum speed (Vs

min) and a maximum speed 
(Vs

max) for each ship s S! . A ship can pick 
an individual speed on each segment of 
the waterway; within a segment, a con-
stant speed of each ship is assumed.

The emissions of a ship are a function 
of its speed: the faster the ship travels, 
the more emissions it produces. Literature 
suggests this relation is cubic; here, I sim-
ply assume that there is a given function 
( )E vs  that describes the emission in tons 

per kilometer for ship s S!  that travels 
with speed v. The goal is to minimize total 
emissions by selecting a speed for each 
individual ship while identifying feasi-
ble lockages and ensuring that each ship 
meets its deadline. Time is discretized; let 
us use T  to denote the set of times at 
which lockages can start.

–– Sustainability. Emissions caused by 
freight ships are quite low compared 
to other modes of transportation. The 
average load capacity of a freight ship 
equals around 1500 tons; this is equiva-
lent to 60 trucks. As a consequence, the 
energy consumption of transport over 
water is less than 20% of that of road 
transport. It is clear that transport over 
inland waterways can play a prominent 
role in the attempts to mitigate the ef-
fects of climate change.

These advantages explain the rising 
amount of transport over inland water-
ways; this also induces a greater pressure 
on the associated infrastructure, notably 
locks. On many inland waterways, locks are 
required to ensure a suitable water level for 
navigation and to give ships the opportuni-
ty to overcome the difference in water level. 
In addition, locks can be used to bypass 
obstacles such as waterfalls or dams, and 
may serve as protection against floods; the 
latter type of lock is often found in harbors.

The presence of locks is usually taken 
for granted. Only when something is amiss 
does the (economic) relevance of locks be-
comes clear. I will give two examples:

–– On 3 January 2012 a door of a lock in 
the Twente Canal (the Netherlands) fell 
down unexpectedly due to metal fa-
tigue. This resulted in economic dam-

persons from their origin to their destina-
tion. Of course, the emergence of motor-
ized transport like cars, trucks, trains and 
aviation has allowed for much faster and 
(seemingly) more efficient ways of trans-
porting goods than transport over inland 
waterways (we will use the phrase ‘inland 
waterways’ to denote the set of rivers and 
canals over which transportation is possi-
ble). Yet in recent decades, some advan-
tages of transportation over inland water-
ways have become more pronounced. Here 
are some of these advantages (see the end 
of this section for sources providing more 
information).

–– Predictability. While transportation by 
truck may be hampered by unexpected 
traffic jams, causing large variations in 
travel times, inland waterway transpor-
tation is extremely reliable. In contrast 
to transportation over roads where con-
gestion has become the norm, the ca-
pacity of rivers and canals has not been 
reached by far, and there is potential 
for a significant increase in additional 
traffic.

–– Safety. The number of fatal accidents 
that arise in inland waterway transpor-
tation is dwarfed by the deaths arising 
from road transportation, train transpor-
tation and even transportation by air. 
Transportation over inland waterways is 
simply the safest mode of transport.
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lar strengths, has limited travel times and 
ends with a champion and relegation. In 
this story, a problem is identified that fo-
cuses on the capacity of a club, measured 
by the number of matches that can take 
place simultaneously at the club’s venue.

As testified above, the challenge here is 
to deal with the dimensions of the prob-
lem: thousands of teams belonging to hun-
dreds of clubs need feasible schedules that 
allow the club’s capacities to be satisfied. 
In order to cope with this huge number of 
matches, a league organizer typically uses 
the following approach (see sources at the 
end of this section). First, a league format 
and a league size are chosen. Usually, a 
so-called Double Round Robin format is 
preferred (meaning that each pair of teams 
meet twice), with a league size consisting 
of 6, 8, 10 or 12 teams. Indeed, leagues 
of even sizes make sense, as other- 
wise there is a team in each weekend that 
cannot play. Second, all teams are clustered 
into leagues of the chosen size. Although it 
is true that the total number of teams need 
not be an exact multiple of the league size, 
an even league size allows the vast major-
ity of the teams to play each round. Fur-
thermore, it is common practice to (i) use 
a kind of geographical clustering in order 
to avoid excessive travel distances, (ii) en-
sure that teams of the same strength/age 

Story 4: scheduling multiple leagues
Driving around the country on a Saturday 
or Sunday morning, one is amazed by the 
amount of activity on sport fields. Soccer, 
hockey, korfball ... thousands of young-
sters compete against one another in a 
seemingly very organized way: referees are 
present, coaches are present, the teams 
are present, and everybody seems to fill 
the right role at the right time. To give an 
impression of the numbers involved: in the 
Netherlands alone, there are approximately 
500 000 male youngsters and 100 000 fe-
male youngsters associated with the Royal 
Dutch Football Association (KNVB); cor-
responding numbers for the Royal Dutch 
Hockey Association (KNHB) are 105 000 
female youngsters and 45 000 male young-
sters. A large number of these youngsters 
find their way to the sporting pitch every 
weekend.

This observation leads to the following 
question: how does every individual know 
where to go? How are all these matches 
chosen on a particular weekend morning? 
How does one ensure that there aren’t six 
matches scheduled for teams of a club that 
only has five pitches available?

Clearly, some amount of planning is 
needed to realize a satisfying competi-
tion. A satisfying competition is one that 
features matches between teams of simi-

Let us use the following variables. Let 
v ,s , denote the speed of ship s S!  at seg-
ment \{ }LL, ! . Further, let x , ,s t,  denote a 
binary variable that equals 1 if lock , starts 
a lockage containing ship s at time t.
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Notice that the model is nonlinear: both 
the objective function (10) and the con-
straints (14) are nonlinear.

Observe that the above model can be 
generalized to include all kinds of practi-
cal situations: travel in two directions, the 
possibility of not allowing ships to over-
take one another, locks having multiple 
chambers. In addition, other objectives, 
such as flow time, can be modelled.

Sources
The potential of inland waterways for environ-
mentally friendly transport has been addressed 
in reports of the European Commission (see [14] ) 
and in a report on the New York State Canal 
System (see Goodban Belt LLC [18] ) for the state 
of New York. 

Data concerning the economic damage of 
lock failures can be found in The Economist [38].

Mathematical optimization techniques ap-
plied to the scheduling of a single lock can be 
found in Passchyn et al. [40]; the complexity of 
scheduling a sequence of locks is addressed in 
Passchyn and Spieksma [42]. In practice, opti-
mization techniques have been applied to the 
Welland Canal (Petersen and Taylor [43] ), the 
Kiel Canal (Lübbecke et al. [30], Meisel and 
Fagerholt [32] ) and to the Mississippi (Nauss 
[35] ); see Passchyn [39] for more examples.

This story is based on Passchyn et al. [41].

Rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14

h1 H A H A H A H A H A H A H A

h2 A H H A H A H H A A H A H A

h3 A H A A H A H H A H H A H A

h4 A H A H A A H H A H A H H A

h5 A H A H A H A H A H A H A H

h6 H A A H A H A A H H A H A H

h7 H A H H A H A A H A A H A H

h8 H A H A H H A A H A H A A H

Table 1  A HAP-set for a league consisting of eight teams.

Rounds

1 2 3 4 5 6 7

1 vs 2 3 vs 1 1 vs 4 5 vs 1 1 vs 6 7 vs 1 1 vs 8

8 vs 3 5 vs 7 2 vs 3 6 vs 8 2 vs 5 5 vs 3 2 vs 7

7 vs 4 2 vs 6 7 vs 6 4 vs 2 3 vs 4 8 vs 2 3 vs 6

6 vs 5 4 vs 8 8 vs 5 7 vs 3 8 vs 7 6 vs 4 4 vs 5

Table 2  The first seven rounds of a schedule compatible with the HAP-set from Figure 4 where team i has been assigned 
to hi, , ,i 1 8f= .
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schedule exists for a given HAP-set is a well-re-
searched topic, see Miyashiro et al. [34] and 
Goossens and Spieksma [20].

Optimization techniques that schedule a sin-
gle league have been used abundantly in prac-
tice, most notably in professional soccer (Goos-
sens and Spieksma [20] ) and baseball (Trick et 
al. [51] ), see Knust [25] for an overview of this 
literature.

The HAP-set portrayed in Table 1 is an exam-
ple of a so-called flexible HAP-set, see Lambers 
et al. [28].

This story is based on Davari et al. [12].

Epilogue
A field of science which is relevant is nei-
ther immune nor oblivious to develop-
ments in practice. The last decade has seen 
a tremendous increase in the availability of 
data and in the power to infer structures 
and insights from these data. In fact, one 
could argue that the continuous dissem-
ination of rational / scientific solutions to 
address needs in society has sparked this 
growth in data availability.

In any case, these detailed data offer 
the potential to compute solutions that in-
corporate, more so than before, properties 
from at least two themes: (i) dynamics and 
(ii) fairness. Receiving routing advice on 
your daily commute in order to circumvent 
a traffic jam caused by an accident that 
happened ten minutes ago, for instance, 
is an example of the inclusion of dynamic 
properties. Likewise, detailed knowledge 
about the properties of the existing allo-
cation procedures in kidney exchange can 
help to establish what fairness means in 
this context and offers a way to increase 
fairness in kidney allocation.

In the four stories above, I have shown 
how practical combinatorial optimiza-
tion can be. However, this should not be 
taken as an argument against theory. To 
achieve relevance, a deep understanding 
of the theoretical properties of combina-
torial optimization problems is needed. 
Indeed, the perceived quality of solutions 
used in practice will depend on our abili-
ty to incorporate new aspects such as dy-
namics and fairness. To be able to do so, 
we require new insights and new theory on 
what it means to be fair and /or dynamic. 
Models will be fine-tuned and new tech-
niques (such as machine learning) will 
be investigated and better understood. 
I am looking forward to working with the 
members of the Combinatorial Optimiza-
tion Group to further contribute to these 
developments!	 s

set of rounds is { , , , ( )}k1 2 2 1f -  and is 
denoted by R. Finally, each club c C!  has 
a given capacity ,c rd  , which corresponds 
to the number of matches club c can host 
in round r.

Capacity violations happen whenever 
the number of teams of a club that play 
home in some round exceeds the club’s ca-
pacity in that round. The violation of a club 
in a round is measured by a scalar value 
that is either zero (if there is no violation) 
or equal to the number of teams that play 
home in that round minus the club’s capac-
ity (if there is a violation).

The multi-league sports scheduling 
problem (MSP) is now to find an assign-
ment of teams to HAPs, such that the total 
capacity violation (i.e. the summation of 
violations over all clubs and all rounds) is 
minimized.

Let us introduce binary variables x ,t h, 
which equal one if team t T!  is assigned to 
HAP h H!  and zero otherwise, and auxilia-
ry variables z ,c r that represent the amount 
of violations for club c C!  in round r R! . 
An assignment is feasible if and only if 
the teams in each league are assigned 
to different HAPs. Given the set of HAPs 
and the set of rounds, one can compute 
(in a pre-processing step) parameters U ,h r, 
which equal one if the team assigned to 
HAP h H!  plays home in round r R!  and 
zero otherwise. The following mixed inte-
ger program formulates MSP.
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Various extensions of this model can be 
relevant as well. The presence of HAP-sets 
that are league-specific, the existence of 
leagues of different sizes or existing con-
straints between specific teams of a club 
are all examples of meaningful extensions.

Sources
Information about membership numbers can be 
found in KNVB [24] and KNHB [23]. Toffolo et 
al. [50] discuss the problem of grouping teams 
into leagues. The issue of deciding whether a 

category are in a same league, and (iii) to 
avoid teams of the same club being pres-
ent in the same league. Thirdly, and most 
crucially for this story, the league organiz-
er assigns teams to so-called Home-Away 
Patterns (called a HAP-set, see Table 1 for 
an illustration). From this assignment, a 
feasible schedule follows. As an illustration 
of the latter procedure, consider the HAP-
set depicted in Table 1; it reflects a specific 
HAP-set for a league consisting of eight 
teams. Although a priori, different sched-
ules (or none) might be compatible with 
the given HAP-set, Table 2 simply gives one 
such schedule which is compatible with 
the HAP-set from Table 1.

To summarize this discussion: in or-
der to efficiently find schedules for many 
leagues, the league organizer (assuming a 
given partition of teams into leagues, and 
the presence of a HAP-set) uses a two-step 
approach:

–– Step    1: assign teams to HAPs.
–– Step   2: next, use a table such as the 

one depicted in Table 2 to find the ac-
tual schedule.

Here, the focus is on Step 1. Since an as-
signment of teams to HAPs dictates when 
each team plays home, a solution to Step 1 
specifies how many matches are played at 
the club’s venue in each round for each 
club. This is important as the capacity of a 
club in terms of the number of matches it 
can host in a round is typically bounded. In 
fact, it is assumed that a capacity is given 
for each club in each round; in practice, 
this number follows from the number of 
available pitches, the set of possible start-
ing times and the availability of material 
and referees. The goal is to find, for each 
league, an assignment of teams to HAPs 
which minimizes the total capacity viola-
tion across the clubs.

We describe the problem formally. A set 
T of teams ( | |n T=  ), a set L of leagues 
( | |m L=  ) and a set C of clubs are given. 
Also given are two partitions of the set T; 
one partition { , ..., }T Tm1r r  of the set T indi-
cates which teams belong to which league; 
notice that, for each L, ! , | |T k=,r , with 
k even since each league consists of the 
same even number of teams. Another par-
tition of the set T is { , ..., }T T| |C1t t , describ-
ing which teams belong to which club. In 
addition, k HAPs are given, each of length 
( )k2 1- , which jointly form a feasible, com-

plementary HAP-set denoted by H . The 
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