Multidisciplinary Modelling in the Netherlands

Frank Stappers Lou Somers Michel Reniers

Dept. Mathematics and Computer Science,
Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{ F.P.M.Stappers L.J.A.M.Somers M.A.Reniers }@tue.nl

23-25 June 2008, PROFES 2008 (Rome)
Outline

1. Motivation
2. Approach
3. Current Practise
4. Future development
5. Conclusions
Motivation

- Various disciplines are involved in the development of complex systems.
- Reduce time to market, increase product quality, add features . . .
- Techniques used today have mono-disiplinary focus.
- Integration phase has become problematic.
Motivation

- **TWINS**: Optimizing HW-SW Co Design Flow for Software Intensive System Development
- **Focus**
 - Verification and validation of requirements and architecture models
 - Test-case generation
 - Hard-/software change and configuration management
 - Interdisciplinary ways to improve complex distributed and real-time embedded systems
- **Solution**: *Interdisciplinary modelling*.
- **Opportunity** to investigate current development trajectories.
Approach

6 Industrial partners & 1 Technological partner

- Project requirement analysis
- Use case analysis
- Plenary meetings

Derived 5 topics for investigation:

Testing, formal verification, simulation, model driven development, multi-disciplinary development language

Current practice obtained via questionnaire:

- Design phase
- Integration phase
- System verification phase

\[
\begin{align*}
\text{Observation} & \quad \text{Simulation} \\
\text{Simulation} & \quad \text{Formal verification}
\end{align*}
\]
Design Phase

- Product Development Design (V-model)
 - Extensions are used
 - Easy to understand
 - Difficult to track-and-trace development
 - Difficult to remove inconsistency between the product development design and the actual execution is encountered.

- System Design
 - System requirements
 - Mechanical Behaviour Designs (Matlab/Simulink)
 - Software designs (UML)
 - Statical physical designs (CAD)
 - Electrotechnical designs (PCB tools)
Integration Phase

Problems relate to:
- Every system is unique
- Semantics and definition need to be accurate and complete
- Cross-cutting hierarchical levels
- Unforeseen practical coincidences in system realisation
Integration Phase

Problems relate to:
- Every system is unique
- Semantics and definition need to be accurate and complete
- Cross-cutting hierarchical levels
- Unforeseen practical coincidences in system realisation
System verification Phase

- System design level:
 - Informal manual techniques for consistency checks / simulation
 - Formal verification hardly used
- Realisation level:
 - Informal (use-cases derived) test scenarios
 - Special equipment needed for logging data
 - Conformance testing not is not widely used
Future development

- Development of a multidisciplinary formalism; in which mono-disciplinary models can be systematically exchanged between disciplines.
- Automated formal verification techniques on the modelling and implementation level.
- Control synthesis for hybrid systems with the help of supervisory control.
- Visualisation techniques to gain better insight in complex system behaviour.
Conclusion

- Discipline specific tools are often vendor locked
- Models serve particular purpose and require expert knowledge
- A multidisciplinary model could reduce the system development time
- Cohesion in the methods used by the various disciplines
- Technical solutions are a start for a interdisciplinary modelling
The End

Questions?