Cartesian 3D-SHORE with Laplacian Regularization

CONFERENCE PAPER · SEPTEMBER 2014
DOI: 10.13140/2.1.4603.8402

5 AUTHORS, INCLUDING:

Gonzalo Sanguinetti
University of Buenos Aires
15 PUBLICATIONS 88 CITATIONS
SEE PROFILE

Samuel St-Jean
Université de Sherbrooke
7 PUBLICATIONS 1 CITATION
SEE PROFILE

Eleftherios Garyfallidis
Université de Sherbrooke
24 PUBLICATIONS 103 CITATIONS
SEE PROFILE

Maxime Descoteaux
Université de Sherbrooke
143 PUBLICATIONS 2,018 CITATIONS
SEE PROFILE

Available from: Samuel St-Jean
Retrieved on: 13 July 2015
Cartesian 3D-SHORE with Laplacian Regularization

Michael Paquette1, Gonzalo Sanguinetti2, Samuel St-Jean1, Eleftherios Garyfallidis1, Maxime Descoteaux1

1 Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Canada
2 Project Team Athéna, INRIA Sophia Antipolis Méditerranée, France

1 Introduction

The following is a description of the algorithm used to generate submissions to the Sparse Reconstruction Challenge for Diffusion MRI (SPARC dMRI) of the MICCAI 2014 Workshop on Computational Diffusion MRI. A total of three submissions were generated for the challenge \#1 using the three-shells datasets with 20, 30, and 60 gradients per shells (b-values of 1000, 2000, and 3000 \text{ s/mm}^2). We pre-processed the data using a 3D Non-Local Means denoising \cite{1} on each DWIs separately.

2 Method description

We used the 3D-SHORE Cartesian basis \cite{2} with a Tikhonov regularization on the Laplacian to fit the dMRI signal. We solve the optimisation problem \(\min_x \frac{1}{2} \| E - \Phi \cdot c \|_2^2 + \frac{\lambda}{2} \| R \cdot c \|_2^2 \) where \(E \) is the normalized diffusion signal, \(\Phi \) is the system matrix of size (number of q-points)\times(number of basis elements) (eq. 23 in \cite{2}), \(c \) is the coefficient vector and \(R \) is the regularization matrix. We recast this optimization problem as a Quadratic Program and constrained the reconstructed signal at \(q = 0 \) to be 1. We note that the present technique makes no attempt to promote sparsity on the coefficient vector.

For all datasets, we used \(\lambda = 0.005 \) and a maximal radial order \((N_{\text{max}}) \) of 8 for the 30 and 60 gradients per shell datasets and 6 for the 20 gradients per shell dataset in the construction of \(\Phi \).

From the fitted coefficients \(c \), we analytically compute the \(s^{th} \) order “radial moment” of the propagator \(\int_0^\infty P(r u) r^{2+s} \text{d} r \) (eq. 33 in \cite{2}). For example, Tuch’s diffusion ODF (dODF) corresponds to \(s = -2 \) and the classical dODF to \(s = 0 \). The ODFs are computed on a sphere of 5780 points with \(s = 2 \), promoting sharp angular profiles. The maxima extraction is performed discretely on min-max normalized ODFs and points with a relative amplitude \(\geq 0.5 \) that are maximal inside a 25° neighbourhood are considered as true maxima.

The signal estimation is obtained by \(E_{\text{est}} = \Phi \cdot c \) where \(\Phi \) is a new system matrix computed from the desired q-points coordinates.

Figure 1: ODFs estimated from the 3-shells with 60 gradients directions per shell dataset.

References
