$2 D$ D52 Solutions for Midterm exam

Thursday, 26 November 2015

Problem 1. We present a combined solution for both parts (a) and (b). For $q=1,2,3,4$, we denote

- by x_{q} the number of cars produced in the q-th quarter by regular employees;
- by y_{q} the number of cars produced in the q-th quarter by additionally hired workers;
- by s_{q} the number of cars on stock at the end of the q-th quarter, just before the quarter demand is satisfied and cars are delivered to costumers.
- by t_{q} the number of cars on stock at the end of the q-th quarter, after the quarter demand has been satisfied and cars have been delivered to costumers.
(1) All variables must be non-negative:

$$
x_{q}, y_{q}, s_{q}, t_{q} \geq 0 \quad \text { for } q=1,2,3,4
$$

(2) At most 40 cars can be produced in the q-th quarter by regular employees:

$$
x_{q} \leq 40 \quad \text { for } q=1,2,3,4
$$

(3) At the beginning of the first quarter, there are 10 cars on stock. At the beginning of the q-th quarter $(2 \leq q \leq 4)$, there are t_{q-1} cars from the preceding quarter on stock. During each quarter q, there are $x_{q}+y_{q}$ new cars produced. This yields the following:

$$
\begin{aligned}
& s_{1}=10+x_{1}+y_{1} \\
& s_{2}=t_{1}+x_{2}+y_{2} \\
& s_{3}=t_{2}+x_{3}+y_{3} \\
& s_{4}=t_{3}+x_{4}+y_{4}
\end{aligned}
$$

(4) At the end of each quarter, the demanded cars are removed from stock. As the values t_{q} are non-negative, this also ensures that all demands can be satisfied:

$$
\begin{aligned}
& t_{1}=s_{1}-40 \\
& t_{2}=s_{2}-60 \\
& t_{3}=s_{3}-75 \\
& t_{4}=s_{4}-26
\end{aligned}
$$

(5) Finally, the overall cost of the production plan consists of: the total production cost by regular employees; the total production cost by additionally hired workers; and the total inventory cost. The resulting objective function is

$$
\begin{array}{rll}
\min Z= & 80.000 & \left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
& +100.000 & \left(y_{1}+y_{2}+y_{3}+y_{4}\right) \\
& +8.000 & \left(t_{1}+t_{2}+t_{3}+t_{4}\right)
\end{array}
$$

Problem 2.

(a) For making all variables non-negative, substitute $x_{2}^{\prime}=-x_{2}$.

For getting non-negative right hand sides, multiply the first and third constraint by -1 .
For getting equality constraints, introduce slack and surplus variables s_{1}, s_{2}, s_{3}.
This yields the following linear program in standard form:

$$
\begin{array}{rllll}
\max Z=5 x_{1} & +x_{2}^{\prime} & & \\
\text { s.t. } \quad-x_{1} & +x_{2}^{\prime} & -s_{1} & & =1 \\
& x_{1} & +x_{2}^{\prime} & -s_{2} & =3 \\
2 x_{1} & +x_{2}^{\prime} & & +s_{3} & =2
\end{array}
$$

$$
\text { with } \quad x_{1}, x_{2}^{\prime}, s_{1}, s_{2}, s_{3} \geq 0
$$

(b) Introduce artificial variables a_{1} and a_{2} for the first two constraints. The Big-M method maximizes the auxiliary objective $Z=5 x_{1}+x_{2}^{\prime}-M a_{1}-M a_{2}$.

	Z	x_{1}	x_{2}^{\prime}	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	b
Z	1	-5	-1	0	0	0	M	M	0
a_{1}	0	-1	1	-1	0	0	1	0	1
a_{2}	0	1	1	0	-1	0	0	1	3
s_{3}	0	2	1	0	0	1	0	0	2

The first row is not in the right form, as there are basic variables with non-zero cost coefficient. We repair it in the following way:

	Z	x_{1}	x_{2}^{\prime}	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	b
Z	1	-5	$-1-2 M$	M	M	0	0	0	$-4 M$
a_{1}	0	-1	1	-1	0	0	1	0	1
a_{2}	0	1	1	0	-1	0	0	1	3
s_{3}	0	2	1	0	0	1	0	0	2

Variable a_{1} leaves the basis, and x_{2}^{\prime} enters:

	Z	x_{1}	x_{2}^{\prime}	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	b
Z	1	$-6-2 M$	0	$-1-M$	M	0	$1+2 M$	0	$1-2 M$
x_{2}^{\prime}	0	-1	1	-1	0	0	1	0	1
a_{2}	0	2	0	1	-1	0	-1	1	2
s_{3}	0	3	0	1	0	1	-1	0	1

Variable s_{3} leaves the basis, and s_{1} enters:

	Z	x_{1}	x_{2}^{\prime}	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	b
Z	1	$-3+M$	0	0	M	$M+1$	M	0	$2-M$
x_{2}^{\prime}	0	2	1	0	0	1	0	0	2
a_{2}	0	-1	0	0	-1	-1	0	1	1
s_{1}	0	3	0	1	0	1	-1	0	1

Simplex has terminated, as all reduced cost coefficients are non-negative. The artificial variable a_{2} is in the basis, and the objective value is minus infinity. Therefore the linear program (LP.1) is infeasible.
(c) The dual of (LP.1) looks as follows:

$$
\begin{array}{rllll}
\min W= & -y_{1} & +3 y_{2} & -2 y_{3} \\
& \tag{LP.2}\\
\text { s.t. } & y_{1} & +y_{2} & -2 y_{3} \geq & 5 \\
& y_{1} & -y_{2} & +y_{3} & \leq \\
\hline
\end{array}
$$

with $\quad y_{1} \geq 0 ; y_{2}, y_{3} \leq 0$
(d) As the primal (LP.1) is infeasible, its dual (LP.2) will either be infeasible as well, or otherwise must be unbounded. The point $\left(y_{1}, y_{2}, y_{3}\right)=(0,0,-5 / 2)$ is feasible for (LP.2). Hence (LP.2) is unbounded.

