2DD52 Solutions for Midterm exam

Problem 1. We present a combined solution for both parts (a) and (b). For q = 1, 2, 3, 4, we denote

- by x_q the number of cars produced in the q-th quarter by regular employees;
- by y_q the number of cars produced in the q-th quarter by additionally hired workers;
- by s_q the number of cars on stock at the end of the q-th quarter, just before the quarter demand is satisfied and cars are delivered to costumers.
- by t_q the number of cars on stock at the end of the q-th quarter, after the quarter demand has been satisfied and cars have been delivered to costumers.
- (1) All variables must be non-negative:

 $x_q, y_q, s_q, t_q \ge 0$ for q = 1, 2, 3, 4

(2) At most 40 cars can be produced in the q-th quarter by regular employees:

 $x_q \le 40$ for q = 1, 2, 3, 4

(3) At the beginning of the first quarter, there are 10 cars on stock. At the beginning of the q-th quarter $(2 \le q \le 4)$, there are t_{q-1} cars from the preceding quarter on stock. During each quarter q, there are $x_q + y_q$ new cars produced. This yields the following:

s_1	=	10	+	x_1	+	y_1
s_2	=	t_1	+	x_2	+	y_2
s_3	=	t_2	+	x_3	+	y_3
s_4	=	t_3	+	x_4	+	y_4

(4) At the end of each quarter, the demanded cars are removed from stock. As the values t_q are non-negative, this also ensures that all demands can be satisfied:

 $t_1 = s_1 - 40$ $t_2 = s_2 - 60$ $t_3 = s_3 - 75$ $t_4 = s_4 - 26$

(5) Finally, the overall cost of the production plan consists of: the total production cost by regular employees; the total production cost by additionally hired workers; and the total inventory cost. The resulting objective function is

min Z = 80.000
$$(x_1 + x_2 + x_3 + x_4)$$

+ 100.000 $(y_1 + y_2 + y_3 + y_4)$
+ 8.000 $(t_1 + t_2 + t_3 + t_4)$

Problem 2.

(a) For making all variables non-negative, substitute $x'_2 = -x_2$. For getting non-negative right hand sides, multiply the first and third constraint by -1. For getting equality constraints, introduce slack and surplus variables s_1 , s_2 , s_3 .

This yields the following linear program in standard form:

 $\max Z = 5x_1 + x'_2$ s.t. $-x_1 + x'_2 - s_1 = 1$ $x_1 + x'_2 - s_2 = 3$ $2x_1 + x'_2 + s_3 = 2$ with $x_1, x'_2, s_1, s_2, s_3 \ge 0$

(b) Introduce artificial variables a_1 and a_2 for the first two constraints. The Big-M method maximizes the auxiliary objective $Z = 5x_1 + x'_2 - Ma_1 - Ma_2$.

	Z	x_1	x'_2	s_1	s_2	s_3	a_1	a_2	b
Z	1	-5	-1	0	0	0	M	M	0
a_1	0	-1	1	-1	0	0	1	0	1
a_2	0	1	1	0	-1	0	0	1	3
s_3	0	2	1	0	0	1	0	0	2

The first row is not in the right form, as there are basic variables with non-zero cost coefficient. We repair it in the following way:

	Z	x_1	x'_2	s_1	s_2	s_3	a_1	a_2	b
\overline{Z}	1	-5	-1 - 2M	M	M	0	0	0	-4M
a_1	0	-1	1	-1	0	0	1	0	1
a_2	0	1	1	0	-1	0	0	1	3
s_3	0	2	1	0	0	1	0	0	2

Variable a_1 leaves the basis, and x'_2 enters:

	Z	x_1	x'_2	s_1	s_2	s_3	a_1	a_2	b
Z	1	-6 - 2M	0	-1 - M	M	0	1+2M	0	1-2M
x'_2	0	-1	1	-1	0	0	1	0	1
a_2	0	2	0	1	-1	0	-1	1	2
s_3	0	3	0	1	0	1	-1	0	1

Variable s_3 leaves the basis, and s_1 enters:

	Z	x_1	x'_2	s_1	s_2	s_3	a_1	a_2	b
Z	1	-3 + M	0	0	M	M+1	M	0	2-M
x'_2	0	2	1	0	0	1	0	0	2
a_2	0	-1	0	0	-1	-1	0	1	1
s_1	0	3	0	1	0	1	-1	0	1

Simplex has terminated, as all reduced cost coefficients are non-negative. The artificial variable a_2 is in the basis, and the objective value is minus infinity. Therefore the linear program (LP.1) is infeasible.

(c) The dual of (LP.1) looks as follows:

min
$$W = -y_1 + 3y_2 - 2y_3$$

s.t. $y_1 + y_2 - 2y_3 \ge 5$
 $y_1 - y_2 + y_3 \le -1$
with $y_1 \ge 0; \ y_2, y_3 \le 0$ (LP.2)

(d) As the primal (LP.1) is infeasible, its dual (LP.2) will either be infeasible as well, or otherwise must be unbounded. The point $(y_1, y_2, y_3) = (0, 0, -5/2)$ is feasible for (LP.2). Hence (LP.2) is unbounded.