Solutions for

Tussentoets Wiskunde 2 (2DD52) Donderdag 27 November 2014, 11:00–12:30

Problem 1. We present a combined solution for both parts (a) and (b).

- We denote the four plant locations by their initial letters G, L, M, N, and we denote the three Soda types Blue, Green, Red by their initial letters B, G, R.
- For $i \in \{G, L, M, N\}$ and $j \in \{B, G, R\}$, we introduce a variable x_{ij} that indicates the amount of soda of type j (measured in m^3) to be produced at plant location i.

(1) The overall expected profit for soda of type j produced at plant i then equals the amount x_{ij} multiplied by the expected profit per m^3 in \in for soda type j. Therefore the objective function is

$$\max Z = 550 (x_{GB} + x_{LB} + x_{MB} + x_{NB}) + 400 (x_{GG} + x_{LG} + x_{MG} + x_{NG}) + 350 (x_{GR} + x_{LR} + x_{MR} + x_{NR})$$

(2) At every plant i, the processed amount of water must not exceed the available quantity:

x_{GB}	$+x_{GG}$	$+x_{GR}$	\leq	400
x_{LB}	$+x_{LG}$	$+x_{LR}$	\leq	900
x_{MB}	$+x_{MG}$	$+x_{MR}$	\leq	550
x_{NB}	$+x_{NG}$	$+x_{NR}$	\leq	350

(3) At every plant i, the amount of worked hours must not exceed the available amount:

$2x_{GB}$	$+4x_{GG}$	$+3x_{GR}$	\leq	1800
$2x_{LB}$	$+4x_{LG}$	$+3x_{LR}$	\leq	3200
$2x_{MB}$	$+4x_{MG}$	$+3x_{MR}$	\leq	2300
$2x_{NB}$	$+4x_{NG}$	$+3x_{NR}$	\leq	1200

(4) For every soda type j, the total produced amount must not exceed the production ceiling:

x_{GB}	$+x_{LB}$	$+x_{MB}$	$+x_{NB}$	\leq	700
x_{GG}	$+x_{LG}$	$+x_{MG}$	$+x_{NG}$	\leq	800
x_{GR}	$+x_{LR}$	$+x_{MR}$	$+x_{NR}$	\leq	300

(5) Finally, all quantities x_{ij} must be non-negative:

 $x_{ij} \ge 0$ for all $i \in \{G, L, M, N\}$ and $j \in \{B, G, R\}$.

Problem 2.

(a) For making all variables non-negative, substitute $x'_2 = -x_2$ and $x'_3 = -x_3$. For getting a maximization problem, multiply the objective function by -1. For getting non-negative right hand sides, multiply the inequalities by -1. For getting equality constraints, introduce slack and surplus variables s_1 , s_2 , s_3 .

This yields the following linear program in standard form:

 $\begin{array}{rcrcrcrcrc} \max W &=& 3x_1 &+ x_2' &+ x_3' \\ \text{s.t.} && -x_1 &+ x_2' &+ x_3' &- s_1 && = & 1 \\ && x_1 &+ x_2' && -s_2 && = & 3 \\ && 2x_1 &- x_2' &- x_3' && + s_3 &= & 2 \\ \text{with} && x_1, x_2', x_3', \ s_1, s_2, s_3 \geq 0 \end{array}$

(b) For the first two constraints, the 2-phase method introduces artificial variables a_1 and a_2 . The objective in the first phase is to maximize $-a_1 - a_2$.

	W	x_1	x'_2	x'_3	s_1	s_2	s_3	a_1	a_2	b
W	1	0	0	0	0	0	0	1	1	0
a_1	0	-1	1	1	-1	0	0	1	0	1
a_2	0	1	1	0	0	-1	0	0	1	3
s_3	0	2	-1	-1	0	0	1	0	0	2

The first row is not in the right shape, as some basic variables have non-zero cost coefficients. Hence we repair it in the following way:

	W	x_1	x'_2	x'_3	s_1	s_2	s_3	a_1	a_2	b
W	1	0	-2	-1	1	1	0	0	0	-4
a_1	0	-1	1	1	-1	0	0	1	0	1
a_2	0	1	1	0	0	-1	0	0	1	3
s_3	0	2	-1	-1	0	0	1	0	0	2

Variable a_1 leaves the basis, and x'_2 enters:

	W	x_1	x'_2	x'_3	s_1	s_2	s_3	a_1	a_2	b
W	1	-2	0	1	-1	1	0	2	0	-2
x'_2	0	-1	1	1	-1	0	0	1	0	1
a_2	0	2	0	-1	1	-1	0	-1	1	2
s_3	0	1	0	0	-1	0	1	1	0	3

Variable a_2 leaves the basis, and s_1 enters:

	W	x_1	x'_2	x'_3	s_1	s_2	s_3	a_1	a_2	b
W	1	0	0	0	0	0	0	1	1	0
x'_2	0	1	1	0	0	-1	0	0	1	3
s_1	0	2	0	-1	1	-1	0	-1	1	2
s_3	0	3	0	-1	0	-1	1	0	1	5

The first phase terminates with $a_1 = a_2 = 0$. We remove the columns for the artificial variables and start the second phase (with the original objective function):

	W	x_1	x'_2	x'_3	s_1	s_2	s_3	b
W	1	-3	-1	-1	0	0	0	0
x'_2	0	1	1	0	0	-1	0	3
s_1	0	2	0	-1	1	-1	0	2
s_3	0	3	0	-1	0	-1	1	5

The first row is not in the right shape, as some basic variables have non-zero cost coefficients. Hence we repair it in the following way:

	W	x_1	x'_2	x'_3	s_1	s_2	s_3	b
W	1	-2	0	-1	0	-1	0	3
x'_2	0	1	1	0	0	-1	0	3
s_1	0	2	0	-1	1	-1	0	2
s_3	0	3	0	-1	0	-1	1	5

Now we see that the reduced cost coefficient of s_2 is negative, while none of the other entries in the corresponding column is positive. We conclude that the LP is unbounded.

(c) The dual of (LP.1) looks as follows:

$$\max V = -y_{1} - 3y_{2} - 2y_{3}$$
s.t.
$$y_{1} - y_{2} - 2y_{3} \leq -3$$

$$y_{1} + y_{2} - y_{3} \geq 1$$

$$y_{1} - y_{3} \geq 1$$
with
$$y_{1}, y_{2} \leq 0; \ y_{3} \geq 0$$
(LP.2)

(d) Since the primal (LP.1) is unbounded, its dual (LP.2) must be infeasible.