Solutions for

Tussentoets Wiskunde 2 (2DD52) Donderdag 27 November 2014, 11:00-12:30

Problem 1. We present a combined solution for both parts (a) and (b).

- We denote the four plant locations by their initial letters G, L, M, N, and we denote the three Soda types Blue, Green, Red by their initial letters B, G, R.
- For $i \in\{G, L, M, N\}$ and $j \in\{B, G, R\}$, we introduce a variable $x_{i j}$ that indicates the amount of soda of type j (measured in m^{3}) to be produced at plant location i.
(1) The overall expected profit for soda of type j produced at plant i then equals the amount $x_{i j}$ multiplied by the expected profit per m^{3} in $€$ for soda type j. Therefore the objective function is

$$
\begin{aligned}
\max Z= & 550\left(x_{G B}+x_{L B}+x_{M B}+x_{N B}\right) \\
+ & 400\left(x_{G G}+x_{L G}+x_{M G}+x_{N G}\right) \\
+ & 350\left(x_{G R}+x_{L R}+x_{M R}+x_{N R}\right)
\end{aligned}
$$

(2) At every plant i, the processed amount of water must not exceed the available quantity:

$$
\begin{aligned}
& x_{G B}+x_{G G}+x_{G R} \leq 400 \\
& x_{L B}+x_{L G}+x_{L R} \leq 900 \\
& x_{M B}+x_{M G}+x_{M R} \leq 550 \\
& x_{N B}+x_{N G}+x_{N R} \leq 350
\end{aligned}
$$

(3) At every plant i, the amount of worked hours must not exceed the available amount:

$$
\begin{aligned}
& 2 x_{G B}+4 x_{G G}+3 x_{G R} \leq 1800 \\
& 2 x_{L B}+4 x_{L G}+3 x_{L R} \leq 3200 \\
& 2 x_{M B}+4 x_{M G}+3 x_{M R} \leq 2300 \\
& 2 x_{N B}+4 x_{N G}+3 x_{N R} \leq 1200
\end{aligned}
$$

(4) For every soda type j, the total produced amount must not exceed the production ceiling:

$$
\begin{array}{r}
x_{G B}+x_{L B}+x_{M B}+x_{N B} \leq 700 \\
x_{G G}+x_{L G}+x_{M G}+x_{N G} \leq 800 \\
x_{G R}+x_{L R}+x_{M R}+x_{N R} \leq 300
\end{array}
$$

(5) Finally, all quantities $x_{i j}$ must be non-negative:

$$
x_{i j} \geq 0 \quad \text { for all } i \in\{G, L, M, N\} \text { and } j \in\{B, G, R\}
$$

Problem 2.

(a) For making all variables non-negative, substitute $x_{2}^{\prime}=-x_{2}$ and $x_{3}^{\prime}=-x_{3}$.

For getting a maximization problem, multiply the objective function by -1 .
For getting non-negative right hand sides, multiply the inequalities by -1 .
For getting equality constraints, introduce slack and surplus variables s_{1}, s_{2}, s_{3}.
This yields the following linear program in standard form:

$$
\begin{array}{rllll}
\max W= & 3 x_{1} & +x_{2}^{\prime} & +x_{3}^{\prime} & \\
& & & \\
\text { s.t. } & -x_{1} & +x_{2}^{\prime} & +x_{3}^{\prime} & -s_{1} \\
& x_{1} & +x_{2}^{\prime} & & -s_{2} \\
& 2 x_{1} & -x_{2}^{\prime} & -x_{3}^{\prime} & \\
& & +s_{3} & =3 \\
& & & \\
\text { with } & x_{1}, x_{2}^{\prime}, x_{3}^{\prime}, s_{1}, s_{2}, s_{3} \geq 0 & &
\end{array}
$$

(b) For the first two constraints, the 2-phase method introduces artificial variables a_{1} and
a_{2}. The objective in the first phase is to maximize $-a_{1}-a_{2}$.

	W	x_{1}	x_{2}^{\prime}	x_{3}^{\prime}	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	b
W	1	0	0	0	0	0	0	1	1	0
a_{1}	0	-1	1	1	-1	0	0	1	0	1
a_{2}	0	1	1	0	0	-1	0	0	1	3
s_{3}	0	2	-1	-1	0	0	1	0	0	2

The first row is not in the right shape, as some basic variables have non-zero cost coefficients. Hence we repair it in the following way:

	W	x_{1}	x_{2}^{\prime}	x_{3}^{\prime}	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	b
W	1	0	-2	-1	1	1	0	0	0	-4
a_{1}	0	-1	1	1	-1	0	0	1	0	1
a_{2}	0	1	1	0	0	-1	0	0	1	3
s_{3}	0	2	-1	-1	0	0	1	0	0	2

Variable a_{1} leaves the basis, and x_{2}^{\prime} enters:

	W	x_{1}	x_{2}^{\prime}	x_{3}^{\prime}	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	b
W	1	-2	0	1	-1	1	0	2	0	-2
x_{2}^{\prime}	0	-1	1	1	-1	0	0	1	0	1
a_{2}	0	2	0	-1	1	-1	0	-1	1	2
s_{3}	0	1	0	0	-1	0	1	1	0	3

Variable a_{2} leaves the basis, and s_{1} enters:

	W	x_{1}	x_{2}^{\prime}	x_{3}^{\prime}	s_{1}	s_{2}	s_{3}	a_{1}	a_{2}	b
W	1	0	0	0	0	0	0	1	1	0
x_{2}^{\prime}	0	1	1	0	0	-1	0	0	1	3
s_{1}	0	2	0	-1	1	-1	0	-1	1	2
s_{3}	0	3	0	-1	0	-1	1	0	1	5

The first phase terminates with $a_{1}=a_{2}=0$. We remove the columns for the artificial variables and start the second phase (with the original objective function):

	W	x_{1}	x_{2}^{\prime}	x_{3}^{\prime}	s_{1}	s_{2}	s_{3}	b
W	1	-3	-1	-1	0	0	0	0
x_{2}^{\prime}	0	1	1	0	0	-1	0	3
s_{1}	0	2	0	-1	1	-1	0	2
s_{3}	0	3	0	-1	0	-1	1	5

The first row is not in the right shape, as some basic variables have non-zero cost coefficients. Hence we repair it in the following way:

	W	x_{1}	x_{2}^{\prime}	x_{3}^{\prime}	s_{1}	s_{2}	s_{3}	b
W	1	-2	0	-1	0	-1	0	3
x_{2}^{\prime}	0	1	1	0	0	-1	0	3
s_{1}	0	2	0	-1	1	-1	0	2
s_{3}	0	3	0	-1	0	-1	1	5

Now we see that the reduced cost coefficient of s_{2} is negative, while none of the other entries in the corresponding column is positive. We conclude that the LP is unbounded.
(c) The dual of (LP.1) looks as follows:

$$
\begin{array}{rlrll}
\max V=-y_{1} & -3 y_{2}-2 y_{3} \\
& & \\
\text { s.t. } & y_{1} & -y_{2} & -2 y_{3} & \leq-3 \\
& y_{1} & +y_{2} & -y_{3} & \geq 1 \\
& y_{1} & & -y_{3} & \geq 1
\end{array}
$$

with

$$
y_{1}, y_{2} \leq 0 ; y_{3} \geq 0
$$

(d) Since the primal (LP.1) is unbounded, its dual (LP.2) must be infeasible.

