## Clicker \#A. 1

Consider the functions

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right) \\
& g\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right)-\left(x_{1}+x_{3}\right) \\
& h\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right) /\left(x_{1}+x_{3}\right)
\end{aligned}
$$

Question: Which of these functions are linear?
A. None.
B. Only $f\left(x_{1}, x_{2}, x_{3}\right)$
C. Only $g\left(x_{1}, x_{2}, x_{3}\right)$
D. Only $h\left(x_{1}, x_{2}, x_{3}\right)$

## Clicker \#A. 2

Consider the functions

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}\right| \\
& g\left(x_{1}, x_{2}, x_{3}\right)=\log \left(x_{1}+x_{2}+x_{3}\right)
\end{aligned}
$$

Question: Which of these functions are linear?
A. Neither.
B. Only $f\left(x_{1}, x_{2}, x_{3}\right)$
C. Only $g\left(x_{1}, x_{2}, x_{3}\right)$
D. Both.

## Clicker \#A. 3

Consider the constraints
(1) $x_{1}+x_{2}+x_{3} \cdot x_{4} \leq 50$
(2) $x_{1}+x_{2}+x_{3} \leq x_{1}^{2}$
(3) $x_{1}+x_{2}+x_{3}<50$

Question: Which of these constraints are linear?
A. None.
B. Only (1)
C. Only (2)
D. Only (3)

## Clicker \#A. 4

Consider the constraints
(1) $x_{1}+x_{2}+x_{3} \neq 50$
(2) $x_{1}+x_{2}+x_{3}=3 x_{1}+\log (27)$
(3) $1 /\left(x_{1}+x_{2}+x_{3}\right) \geq 250$

Question: Which of these constraints are linear?
A. None.
B. Only (1)
C. Only (2)
D. Only (3)

## Clicker \#A. 5

Consider the variable definitions
(1) $x_{1}, x_{2}, x_{3} \in \mathbb{Q}$
(2) $x_{1}, x_{2} \in \mathbb{R}-\{0\}$
(3) $x_{1}, x_{2} \in \mathbb{R} ; x_{3} \in\{0,1,3\}$

Question: Which of these definitions agree with our standard LP problem?
A. None.
B. Only (1)
C. Only (2)
D. Only (3)

## Clicker \#A. 6

Consider the variable definitions
(1) $x_{1}, x_{2}, x_{3} \in \mathbb{R}-(-\infty, 0]$
(2) $x_{1}, x_{2} \in \mathbb{R}-(1,2)$
(3) $x_{1}, x_{2}, x_{3} \in[0,3]$

Question: Which of these definitions agree with our standard LP problem?
A. None.
B. Only (1)
C. Only (2)
D. Only (3)

## Clicker \#B. 1

$$
\begin{aligned}
\max & 4 x_{1}+8 x_{2} \\
\text { s.t. } \quad x_{1}-x_{2} & \leq-1 \\
2 x_{1}-x_{2} & \leq 5 \\
-3 x_{1}-x_{2} & \leq-3 \\
2 x_{1}+x_{2} & \leq 7 \\
10 x_{1}+x_{2} & \leq 20 \\
x_{1}, \quad x_{2} & \geq 0
\end{aligned}
$$

Question: Which of the following vectors is feasible?
A. $x=(0,0)$
B. $x=(2,3)$
C. $x=(1,7)$
D. $x=(1,4)$

## Clicker \#B. 2

$$
\begin{aligned}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 8 \\
& 0 \leq x_{1}, x_{2} \leq 6
\end{aligned}
$$

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many solutions
D. has a unique solution

## Clicker \#B. 3

$$
\begin{aligned}
\max & x_{1}+2 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 8 \\
& 0 \leq x_{1}, x_{2} \leq 6
\end{aligned}
$$

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many solutions
D. has a unique solution

## Clicker \#B. 4

$$
\begin{aligned}
\max & x_{1}+2 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 8 \\
& 0 \leq x_{1}, x_{2} \leq 1
\end{aligned}
$$

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many solutions
D. has a unique solution

## Clicker \#B. 5

$$
\begin{aligned}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{1}-x_{2} \leq 8 \\
& x_{1}-x_{2} \geq 4 \\
& 0 \leq x_{1}, x_{2}
\end{aligned}
$$

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many solutions
D. has a unique solution

## Clicker \#B. 6

$$
\begin{array}{ll}
\min & 2 x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}-x_{2} \leq 8 \\
& x_{1}-x_{2} \geq 4 \\
& 0 \leq x_{1}, x_{2}
\end{array}
$$

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many solutions
D. has a unique solution

## Clicker \#B. 7

$$
\begin{aligned}
\min & 2 x_{1}+3 x_{2} \\
\text { s.t. } & 2 x_{1}-x_{2} \geq 8 \\
& x_{1}+x_{2} \geq 13 \\
& 0 \leq x_{1} \leq 6 \quad 0 \leq x_{2} \leq 34
\end{aligned}
$$

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many solutions
D. has a unique solution

## Clicker \#B. 8

$$
\begin{array}{ll}
\max & x_{1}+x_{2}+x_{3} \\
\text { s.t. } & x_{1}+x_{2}+x_{3} \geq 25 \\
& x_{1}+x_{2}-x_{3} \leq 7 \\
& x_{1}-x_{2}+x_{3} \leq 8 \\
& -x_{1}+x_{2}+x_{3} \leq 9 \\
& 0 \leq x_{1}, x_{2}, x_{3}
\end{array}
$$

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many solutions
D. has a unique solution

## Clicker \#B. 9

$$
\begin{aligned}
\max & x_{1}+x_{2}+x_{3} \\
\text { s.t. } & x_{1}+x_{2}-2 x_{3} \leq 6 \\
& x_{1}-2 x_{2}+x_{3} \leq 7 \\
& -2 x_{1}+x_{2}+x_{3} \leq 8 \\
& 9 \leq x_{1}, x_{2}, x_{3}
\end{aligned}
$$

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many solutions
D. has a unique solution

## Clicker \#B. 10

TRUE or FALSE?

There exists an LP that has exactly four optimal solutions that are basic feasible ( $=$ corner points of the feasible region).
A. True
B. False

## Clicker \#C. 1

Solve the following LP with the Simplex method:

|  | $Z$ | $x_{1}$ | $x_{2}$ | $s_{1}$ | $s_{2}$ | $s_{3}$ | $b$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $Z$ | 1 | -2 | -1 | -1 | 0 | 0 | 26 |
| $s_{1}$ | 0 | 4 | 4 | 1 | 0 | 0 | 6 |
| $s_{2}$ | 0 | 5 | 6 | 1 | 1 | 0 | 16 |
| $s_{3}$ | 0 | 7 | 4 | 1 | 0 | 1 | 10 |

Question: Which statement is true?
A. This LP is infeasible
B. The optimal objective value is 32
C. The optimal solution has $x_{2}=8$
D. The optimal solution has $x_{2}=9$

## Clicker \#C. 2

Solve the following LP with the Simplex method:

$$
\begin{aligned}
& \max 2 x_{1}+x_{2} \\
& \text { s.t. } 2 x_{1}+3 x_{2} \leq 3 \\
& x_{1}+5 x_{2} \leq 1 \\
& 2 x_{1}+x_{2} \leq 4 \\
& 4 x_{1}+x_{2} \leq 5 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

Question: Which statement is true?
A. This LP is infeasible
B. The optimal solution has $x_{2}=0$
C. The optimal solution has $x_{2}=1 / 10$
D. The optimal solution has $x_{2}=1 / 5$

## Clicker \#C. 3

Solve the following LP with the Simplex method:

|  | $Z$ | $x_{1}$ | $x_{2}$ | $s_{1}$ | $s_{2}$ | $s_{3}$ | $b$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| $Z$ | 1 | -1 | -1 | 0 | 0 | 0 | 0 |
| $s_{1}$ | 0 | 3 | 5 | 1 | 0 | 0 | 90 |
| $s_{2}$ | 0 | 9 | 5 | 0 | 1 | 0 | 180 |
| $s_{3}$ | 0 | 0 | 1 | 0 | 0 | 1 | 15 |

Question: Which statement is true?
A. This LP is infeasible
B. The optimal objective value is 32
C. The optimal solution has $x_{2}=8$
D. The optimal solution has $x_{2}=9$

## Clicker \#C. 4

Solve the following LP with the Simplex method:

$$
\begin{aligned}
& \max 5 x_{1}+6 x_{2}+9 x_{3}+8 x_{4} \\
& \text { s.t. } x_{1}+2 x_{2}+3 x_{3}+x_{4} \leq 5 \\
& x_{1}+x_{2}+2 x_{3}+3 x_{4} \leq 3 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

Question: Which statement is true?
A. The optimal objective value is 15
B. The optimal objective value is 17
C. The optimal objective value is 19
D. The optimal objective value is 21

