Consider the functions

$$f(x_1, x_2, x_3) = (x_1 + x_2)(x_1 + x_3)$$
$$g(x_1, x_2, x_3) = (x_1 + x_2) - (x_1 + x_3)$$
$$h(x_1, x_2, x_3) = (x_1 + x_2) / (x_1 + x_3)$$

Question: Which of these functions are linear?

- A. None.
- B. Only $f(x_1, x_2, x_3)$
- C. Only $g(x_1, x_2, x_3)$
- D. Only $h(x_1, x_2, x_3)$

Consider the functions

$$f(x_1, x_2, x_3) = |x_1|$$

$$g(x_1, x_2, x_3) = \log(x_1 + x_2 + x_3)$$

Question: Which of these functions are linear?

- A. Neither.
- B. Only $f(x_1, x_2, x_3)$
- C. Only $g(x_1, x_2, x_3)$
- D. Both.

Consider the constraints

(1)
$$x_1 + x_2 + x_3 \cdot x_4 \leq 50$$

(2) $x_1 + x_2 + x_3 \leq x_1^2$
(3) $x_1 + x_2 + x_3 < 50$

Question: Which of these constraints are linear?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- A. None.
- B. Only (1)
- C. Only (2)
- D. Only (3)

Consider the constraints

(1)
$$x_1 + x_2 + x_3 \neq 50$$

(2) $x_1 + x_2 + x_3 = 3x_1 + \log(27)$
(3) $1/(x_1 + x_2 + x_3) \geq 250$

Question: Which of these constraints are linear?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- A. None.
- B. Only (1)
- C. Only (2)
- D. Only (3)

Consider the variable definitions

(1)
$$x_1, x_2, x_3 \in \mathbb{Q}$$

(2) $x_1, x_2 \in \mathbb{R} - \{0\}$
(3) $x_1, x_2 \in \mathbb{R}; x_3 \in \{0, 1, 3\}$

Question: Which of these definitions agree with our standard LP problem?

}

- A. None.
- B. Only (1)
- C. Only (2)
- D. Only (3)

Consider the variable definitions

(1)
$$x_1, x_2, x_3 \in \mathbb{R} - (-\infty, 0]$$

(2) $x_1, x_2 \in \mathbb{R} - (1, 2)$
(3) $x_1, x_2, x_3 \in [0, 3]$

Question: Which of these definitions agree with our standard LP problem?

- A. None.
- B. Only (1)
- C. Only (2)
- D. Only (3)

$$\begin{array}{rll} \max & 4x_1 + 8x_2 \\ s.t. & x_1 - x_2 \leq -1 \\ & 2x_1 - x_2 \leq 5 \\ -3x_1 - x_2 \leq -3 \\ & 2x_1 + x_2 \leq -3 \\ & 2x_1 + x_2 \leq 7 \\ & 10x_1 + x_2 \leq 20 \\ & x_1, & x_2 \geq 0 \end{array}$$

Question: Which of the following vectors is feasible?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A.
$$x = (0,0)$$

B. $x = (2,3)$
C. $x = (1,7)$
D. $x = (1,4)$

$$\begin{array}{ll} \max & x_1 + x_2 \\ s.t. & x_1 + x_2 & \leq 8 \\ & 0 \leq x_1, x_2 \leq 6 \end{array}$$

Question: This LP

- A. is infeasible
- B. is unbounded
- C. has infinitely many solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\max x_1 + 2x_2 \\ s.t. x_1 + x_2 \le 8 \\ 0 \le x_1, x_2 \le 6$$

Question: This LP

- A. is infeasible
- B. is unbounded
- C. has infinitely many solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\max x_1 + 2x_2 \\ s.t. x_1 + x_2 \le 8 \\ 0 \le x_1, x_2 \le 1$$

Question: This LP

- A. is infeasible
- B. is unbounded
- C. has infinitely many solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\max x_1 + x_2$$

s.t. $x_1 - x_2 \leq 8$
 $x_1 - x_2 \geq 4$
 $0 \leq x_1, x_2$

Question: This LP

- A. is infeasible
- B. is unbounded
- C. has infinitely many solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

min
$$2x_1 + 3x_2$$

s.t. $x_1 - x_2 \leq 8$
 $x_1 - x_2 \geq 4$
 $0 \leq x_1, x_2$

Question: This LP

- A. is infeasible
- B. is unbounded
- C. has infinitely many solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

min
$$2x_1 + 3x_2$$

s.t. $2x_1 - x_2 \ge 8$
 $x_1 + x_2 \ge 13$
 $0 \le x_1 \le 6$ $0 \le x_2 \le 34$

Question: This LP

- A. is infeasible
- B. is unbounded
- C. has infinitely many solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question: This LP

- A. is infeasible
- B. is unbounded
- C. has infinitely many solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\max x_1 + x_2 + x_3 \\ s.t. x_1 + x_2 - 2x_3 \leq 6 \\ x_1 - 2x_2 + x_3 \leq 7 \\ -2x_1 + x_2 + x_3 \leq 8 \\ 9 \leq x_1, x_2, x_3 \\ \end{array}$$

Question: This LP

- A. is infeasible
- B. is unbounded
- C. has infinitely many solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

TRUE or FALSE?

There exists an LP that has exactly four optimal solutions that are basic feasible (= corner points of the feasible region).

- A. True
- B. False

Solve the following LP with the Simplex method:

	Ζ	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3	b
Ζ	1	-2	-1	-1	0	0	26
<i>s</i> ₁	0	4	4	1	0	0	6
<i>s</i> ₂	0	5	6	1	1	0	16
<i>s</i> 3	0	7	4	1	0	1	10

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question: Which statement is true?

- A. This LP is infeasible
- B. The optimal objective value is 32
- C. The optimal solution has $x_2 = 8$
- D. The optimal solution has $x_2 = 9$

Solve the following LP with the Simplex method:

Question: Which statement is true?

- A. This LP is infeasible
- B. The optimal solution has $x_2 = 0$
- C. The optimal solution has $x_2 = 1/10$
- D. The optimal solution has $x_2 = 1/5$

Solve the following LP with the Simplex method:

	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3	Ь
Ζ	1	-1	-1	0	0	0	0
<i>s</i> ₁	0	3	5	1	0	0	90
s 2	0	9	5	0	1	0	180
<i>s</i> 3	0	0	1	0	0	1	15

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question: Which statement is true?

- A. This LP is infeasible
- B. The optimal objective value is 32
- C. The optimal solution has $x_2 = 8$
- D. The optimal solution has $x_2 = 9$

Solve the following LP with the Simplex method: max $5x_1 + 6x_2 + 9x_3 + 8x_4$ *s.t.* $x_1 + 2x_2 + 3x_3 + x_4 \le 5$ $x_1 + x_2 + 2x_3 + 3x_4 \le 3$ $x_1, x_2, x_3, x_4 \ge 0$

Question: Which statement is true?

- A. The optimal objective value is 15
- B. The optimal objective value is 17
- C. The optimal objective value is 19
- D. The optimal objective value is 21