Clicker \#A. 1

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	-9	-5	-1	0	0	0	80
s_{1}	0	3	4	0	1	0	0	90
s_{2}	0	-9	4	0	0	1	0	180
s_{3}	0	0	-3	-1	0	0	1	15

Question: This LP

A. is infeasible
B. is unbounded
C. has infinitely many optimal solutions
D. has a unique optimal solution

Clicker \#A. 2

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	3	0	7	0	0	0	0
s_{1}	0	3	4	0	1	0	0	90
s_{2}	0	-9	4	0	0	1	0	180
s_{3}	0	0	-3	-1	0	0	1	15

Question: This LP

A. is infeasible
B. is unbounded
C. has infinitely many optimal solutions
D. has a unique optimal solution

Clicker \#A. 3

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	-3	8	0	0	0	0	54
s_{1}	0	3	4	0	1	0	0	90
s_{2}	0	-9	4	0	0	1	0	80
s_{3}	0	5	-3	0	0	0	1	255

Question: This LP

A. is infeasible
B. is unbounded
C. has infinitely many optimal solutions
D. has a unique optimal solution

Clicker \#A. 4

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	3	0	17	0	9	0	54
s_{1}	0	3	0	1	1	-2	0	90
x_{2}	0	-9	1	1	0	-1	0	80
s_{3}	0	5	0	0	0	0	1	255

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many optimal solutions
D. has a unique optimal solution

Clicker \#A. 5

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	3	0	17	1	9	0	54
s_{1}	0	3	0	0	1	-2	0	90
x_{2}	0	-9	1	0	0	-1	0	80
s_{3}	0	5	0	0	0	0	1	255

Question: This LP
A. is infeasible
B. is unbounded
C. has infinitely many optimal solutions
D. has a unique optimal solution

Clicker \#A. 6

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	0	0	0	0	1	1
s_{1}	0	0	0	0	1	0	0	0
x_{2}	0	0	1	0	0	0	0	0
s_{3}	0	0	0	0	0	0	1	1

Question: This LP

A. is infeasible
B. is unbounded
C. has infinitely many optimal solutions
D. has a unique optimal solution

Clicker \#B. 1

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	b
Z	1	1	0	3	0	0	$2+M$	M	$16-M$
s_{2}	0	5	0	3	0	1	3	-1	4
s_{1}	0	-1	0	-1	1	0	-1	0	2
x_{2}	0	2	1	1	0	0	1	0	8

Question: This LP (specified by tableau for Big-M method)
A. is infeasible
B. is unbounded
C. has an optimal solution
D. none of the above

Clicker \#B. 2

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	b
Z	1	M	0	3	0	0	$2+M$	M	26
s_{2}	0	5	0	3	0	1	$3+M$	-1	4
s_{1}	0	-1	0	-1	1	0	$-1+M$	0	2
x_{2}	0	2	1	1	0	0	$1+M$	0	8

Question: This LP (specified by tableau for Big-M method)
A. is infeasible
B. is unbounded
C. has an optimal solution
D. none of the above

Clicker \#B. 3

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	b
Z	1	1	0	3	0	0	$2+M$	M	-65
s_{2}	0	5	0	3	0	1	3	-1	4
s_{1}	0	-1	0	-1	1	0	-1	0	2
x_{2}	0	2	1	1	0	0	1	0	8

Question: This LP (specified by tableau for Big-M method)
A. is infeasible
B. is unbounded
C. has an optimal solution
D. none of the above

Clicker \#B. 4

	W	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	b
W	1	0	0	0	0	0	1	1	14
x_{1}	0	1	0	3	0	1	3	1	4
s_{1}	0	0	0	-2	1	1	2	1	2
x_{2}	0	0	1	-1	0	-5	2	2	4

Question: This LP (tableau $=$ end of 1st phase in 2-phase method)
A. is infeasible
B. is unbounded
C. has an optimal solution
D. none of the above

Clicker \#B. 5

	W	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	b
W	1	0	0	0	0	0	5	3	-4
x_{1}	0	1	0	3	0	1	3	1	4
s_{1}	0	0	0	-2	1	1	2	1	7
x_{2}	0	0	1	-1	0	-5	2	2	4

Question: This LP (tableau $=$ end of 1st phase in 2-phase method)
A. is infeasible
B. is unbounded
C. has an optimal solution
D. none of the above

Clicker \#C. 1

In the primal LP, the goal is to minimize.
The optimal objective value is $\operatorname{Opt}(p)$.
In the dual LP, the goal is to maximize.
There is a feasible solution with value Feas (d)

Question: How many of the following three cases can actually occur?

- $\operatorname{Opt}(p)=1 \quad$ and $\quad \operatorname{Feas}(d)=3$
- $\operatorname{Opt}(p)=2$ and $\operatorname{Feas}(d)=2$
- $\operatorname{Opt}(p)=3$ and $\operatorname{Feas}(d)=1$
A. 0
B. 1
C. 2
D. 3

Clicker \#C. 2

$$
\begin{aligned}
& \max Z=3 x_{1}+5 x_{2} \\
& \text { s.t. } \\
& \begin{aligned}
x_{1}-3 x_{2} & \geq 4 \\
-x_{1}+2 x_{2} & =12 \\
3 x_{1}+2 x_{2} & \leq 18 \\
x_{2} & \geq 0
\end{aligned}
\end{aligned}
$$

Question: The dual of this LP contains
A. $3 y_{1}+5 y_{2} \leq 4$ and $y_{1} \geq 0$
B. $y_{1}-y_{2}+3 y_{3} \leq 3$ and $y_{2} \geq 0$
C. $y_{1}-y_{2}+3 y_{3}=3$ and y_{1} free
D. $-3 y_{1}+2 y_{2}+2 y_{3} \geq 5$ and $y_{3} \geq 0$

Clicker \#C. 3

$$
\begin{aligned}
& \min Z=3 x_{1}+5 x_{2} \\
& \text { s.t. } \\
& \begin{aligned}
x_{1}-x_{2} & \geq 4 \\
-x_{1}+x_{2} & =4 \\
x_{1}+2 x_{2} & \leq 4 \\
x_{1}, & x_{2}
\end{aligned}
\end{aligned}
$$

Question: The dual of this LP contains
A. $y_{1}-y_{2}+y_{3}=3$ and $y_{2} \geq 0$
B. $y_{1}-y_{2}+y_{3} \leq 3$ and $y_{1} \leq 0$
C. $y_{1}-y_{2}+y_{3} \leq 3$ and $y_{3} \leq 0$
D. $y_{1}-y_{2}+y_{3} \geq 3$ and y_{2} free

Clicker \#C. 4

Consider a primal LP with

- 5 free variables x_{1}, \ldots, x_{5}
- 3 variables $x_{6}, x_{7}, x_{8} \geq 0$
- 3 constraints of type $\leq b_{i}$
- 4 constraints of type $\geq b_{i}$
- 5 constraints of type $=b_{i}$
- goal $=$ min

Question: The dual of this LP contains
A. 3 free variables and 4 constraints of type $\leq c_{i}$
B. 5 free variables and 4 constraints of type $\geq c_{i}$
C. 5 free variables and 5 constraints of type $=c_{i}$
D. 3 free variables and 3 constraints of type $=c_{i}$

Clicker \#D. 1

TRUE or FALSE?

There exists an LP that is equal to its dual.
A. True
B. False

