	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>s</i> ₁	s 2	s 3	Ь
Ζ	1	-9	-5	-1	0	0	0	80
<i>s</i> ₁	0	3	4	0	1	0	0	90
<i>s</i> ₂	0	-9	4	0	0	1	0	180
<i>s</i> 3	0	0	-3	-1	0	0	1	15

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- A. is infeasible
- B. is unbounded
- C. has infinitely many optimal solutions
- D. has a unique optimal solution

	Z	x_1	<i>x</i> ₂	<i>x</i> 3	s_1	s 2	s 3	b
Ζ	1	3	0	7	0	0	0	0
<i>s</i> ₁	0	3	4	0	1	0	0	90
<i>s</i> ₂	0	-9	4	0	0	1	0	180
<i>s</i> 3	0	0	-3	-1	0	0	1	15

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A. is infeasible
- B. is unbounded
- C. has infinitely many optimal solutions
- D. has a unique optimal solution

	Ζ	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	s 3	Ь
Ζ	1	-3	8	0	0	0	0	54
s_1	0	3	4	0	1	0	0	90
<i>s</i> ₂	0	-9	4	0	0	1	0	80
<i>s</i> 3	0	5	-3	0	0	0	1	255

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- A. is infeasible
- B. is unbounded
- C. has infinitely many optimal solutions
- D. has a unique optimal solution

	Ζ	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>s</i> ₁	<i>s</i> ₂	s 3	b
Ζ	1	3	0	17	0	9	0	54
<i>s</i> ₁	0	3	0	1	1	-2	0	90
<i>x</i> ₂	0	-9	1	1	0	-1	0	80
<i>s</i> 3	0	5	0	0	0	0	1	255

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- A. is infeasible
- B. is unbounded
- C. has infinitely many optimal solutions
- D. has a unique optimal solution

	Ζ	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>s</i> ₁	<i>s</i> ₂	s 3	b
Ζ	1	3	0	17	1	9	0	54
<i>s</i> ₁	0	3	0	0	1	-2	0	90
<i>x</i> ₂	0	-9	1	0	0	-1	0	80
s 3	0	5	0	0	0	0	1	255

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- A. is infeasible
- B. is unbounded
- C. has infinitely many optimal solutions
- D. has a unique optimal solution

	Z	x_1	<i>x</i> ₂	<i>x</i> 3	s_1	s 2	s 3	b
Ζ	1	0	0	0	0	0	1	1
<i>s</i> ₁	0	0	0	0	1	0	0	0
<i>x</i> ₂	0	0	1	0	0	0	0	0
<i>s</i> 3	0	0	0	0	0	0	1	1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- A. is infeasible
- B. is unbounded
- C. has infinitely many optimal solutions
- D. has a unique optimal solution

	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	a_1	a ₂	b
Ζ	1	1	0	3	0	0	2 + M	М	16 – <i>M</i>
<i>s</i> ₂	0	5	0	3	0	1	3	-1	4
<i>s</i> ₁	0	-1	0	-1	1	0	-1	0	2
<i>x</i> ₂	0	2	1	1	0	0	1	0	8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question: This LP (specified by tableau for Big-M method)

- A. is infeasible
- B. is unbounded
- C. has an optimal solution
- D. none of the above

	Ζ	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	a_1	a ₂	Ь
Ζ	1	М	0	3	0	0	2 + M	М	26
<i>s</i> ₂	0	5	0	3	0	1	3 + <i>M</i>	-1	4
<i>s</i> ₁	0	-1	0	-1	1	0	-1 + M	0	2
<i>x</i> ₂	0	2	1	1	0	0	1 + M	0	8

Question: This LP (specified by tableau for Big-M method)

- A. is infeasible
- B. is unbounded
- C. has an optimal solution
- D. none of the above

	Ζ	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	a_1	a ₂	b
Ζ	1	1	0	3	0	0	2 + M	М	-65
<i>s</i> ₂	0	5	0	3	0	1	3	-1	4
<i>s</i> ₁	0	-1	0	-1	1	0	-1	0	2
<i>x</i> ₂	0	2	1	1	0	0	1	0	8

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question: This LP (specified by tableau for Big-M method)

- A. is infeasible
- B. is unbounded
- C. has an optimal solution
- D. none of the above

	W	x_1	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	a_1	<i>a</i> 2	b
W	1	0	0	0	0	0	1	1	14
<i>x</i> ₁	0	1	0	3	0	1	3	1	4
<i>s</i> ₁	0	0	0	-2	1	1	2	1	2
<i>x</i> ₂	0	0	1	-1	0	-5	2	2	4

Question: This LP (tableau = end of 1st phase in 2-phase method)

- A. is infeasible
- B. is unbounded
- C. has an optimal solution
- D. none of the above

	W	x_1	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	a_1	<i>a</i> 2	b
W	1	0	0	0	0	0	5	3	-4
<i>x</i> ₁	0	1	0	3	0	1	3	1	4
<i>s</i> ₁	0	0	0	-2	1	1	2	1	7
<i>x</i> ₂	0	0	1	-1	0	-5	2	2	4

Question: This LP (tableau = end of 1st phase in 2-phase method)

- A. is infeasible
- B. is unbounded
- C. has an optimal solution
- D. none of the above

Clicker #C.1

In the primal LP, the goal is to minimize. The optimal objective value is Opt(p).

In the dual LP, the goal is to maximize. There is a feasible solution with value Feas(d)

Question: How many of the following three cases can actually occur?

- Opt(p) = 1 and Feas(d) = 3
- Opt(p) = 2 and Feas(d) = 2
- Opt(p) = 3 and Feas(d) = 1

A. 0 B. 1 C. 2 D. 3

Question: The dual of this LP contains

A.
$$3y_1 + 5y_2 \le 4$$
 and $y_1 \ge 0$
B. $y_1 - y_2 + 3y_3 \le 3$ and $y_2 \ge 0$
C. $y_1 - y_2 + 3y_3 = 3$ and y_1 free

D. $-3y_1 + 2y_2 + 2y_3 \ge 5$ and $y_3 \ge 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question: The dual of this LP contains

A.
$$y_1 - y_2 + y_3 = 3$$
 and $y_2 \ge 0$
B. $y_1 - y_2 + y_3 \le 3$ and $y_1 \le 0$
C. $y_1 - y_2 + y_3 \le 3$ and $y_3 \le 0$
D. $y_1 - y_2 + y_3 \ge 3$ and y_2 free

Consider a primal LP with

- 5 free variables x_1, \ldots, x_5
- 3 variables $x_6, x_7, x_8 \ge 0$
- 3 constraints of type $\leq b_i$
- 4 constraints of type $\geq b_i$
- 5 constraints of type $= b_i$

▶ goal = min

Question: The dual of this LP contains

- A. 3 free variables and 4 constraints of type $\leq c_i$
- B. 5 free variables and 4 constraints of type $\geq c_i$
- C. 5 free variables and 5 constraints of type $= c_i$
- D. 3 free variables and 3 constraints of type $= c_i$

TRUE or FALSE?

There exists an LP that is equal to its dual.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A. True
- B. False