Clicker \#A. 1

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	5	0	2	7	0	-14
x_{1}	0	1	-2	0	1	-5	0	9
x_{3}	0	0	4	1	4	1	0	18
s_{3}	0	0	-3	0	9	0	1	5

Question: The optimal solution for the dual of this LP has
A. $y_{1}=0$ and $s_{3}=0$
B. $y_{3}=0$ and $y_{1}=2$
C. $y_{2}=0$ and $y_{1}=2$
D. $y_{1}=0$ and $y_{2}=7$

Clicker \#A. 2

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	5	0	2	7	0	-32
x_{1}	0	1	-2	0	1	-5	0	9
x_{3}	0	0	0	1	4	1	0	18
s_{3}	0	0	-3	0	9	0	1	5

Question: The dual of this LP
A. is infeasible
B. is unbounded
C. has optimal objective value 32
D. has optimal objective value -32

Clicker \#A. 3

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	-5	0	2	7	0	-14
x_{1}	0	1	-2	0	1	-5	0	9
x_{3}	0	0	0	1	4	1	0	18
s_{3}	0	0	-3	0	9	0	1	5

Question: The dual of this LP
A. is infeasible
B. is unbounded
C. has optimal objective value 14
D. has optimal objective value -14

Clicker \#A. 4

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	3	0	17	1	9	0	29
s_{1}	0	2	0	5	1	-2	0	58
x_{2}	0	-9	1	3	0	-1	0	80
s_{3}	0	5	0	1	0	0	1	255

Question: The dual of this LP
A. is infeasible
B. is unbounded
C. has optimal objective value 29
D. has optimal objective value -29

Clicker \#B. 1
$2 x_{1}+3 x_{2}+x_{3} \leq 5$
$4 x_{1}+x_{2}+2 x_{3} \leq 11$
$3 x_{1}+4 x_{2}+2 x_{3} \leq 8$

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	3	0	1	0	1	$?$
s_{2}	0	0	-5	0	-2	1	0	$?$
x_{3}	0	0	-1	1	-3	0	2	$?$
x_{1}	0	1	2	0	+2	0	-1	$?$

Question: (Tableau is optimal for LP with given constraints.)
A. Then one of the four questionmarks is 2
B. Then one of the four questionmarks is 3
C. Then one of the four questionmarks is 4
D. Then one of the four questionmarks is 5

Clicker \#B. 2

	Z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	b
Z	1	-3	$? ?$	0	0	0	0
s_{1}	0	1	0	1	0	0	4
s_{2}	0	0	$? ?$	0	1	0	12
s_{3}	0	3	$?!?$	0	0	1	18

	Z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	b
Z	1	0	0	0	$1 \frac{1}{2}$	1	36
s_{1}	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2
x_{2}	0	0	$? ?$	0	$\frac{1}{2}$	0	6
x_{1}	0	1	$? ?$	0	$-\frac{1}{3}$	$\frac{1}{3}$	2

Question: (Starting tableau and final tableau)
A. Then ?!? is 1
B. Then ?!? is 2
C. Then ?!? is 3
D. Then ?!? is 4

Clicker \#C. 1

Consider LP with objective

$$
\text { minimize } 3 x_{1}-5 x_{2}+x_{3}+x_{4}
$$

subject to a system of constraints.
The point $(1,5,9,6)$ is feasible for the primal LP.

Question: Which of the following statements could possibly be true?
A. The dual LP is infeasible
B. The dual LP is unbounded
C. The optimal objective value of the dual $L P$ is -6
D. The optimal objective value of the dual LP is at least -5

Clicker \#C. 2

Consider LP with objective

$$
\operatorname{minimize} 2 x_{1}+x_{2}-x_{3}+x_{4}
$$

subject to a system of constraints.
The point $(1,3,5,2)$ is feasible for both the primal and the dual LP.

Question: Which objective is possible for the dual LP?
A. maximize $y_{1}+y_{2}+y_{3}+y_{4}$
B. maximize $2 y_{1}+y_{2}-y_{3}-y_{4}$
C. minimize $2 y_{1}+y_{2}-y_{3}+y_{4}$
D. maximize $2 y_{1}+2 y_{2}-y_{3}+y_{4}$

Clicker \#C. 3

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+x_{3} \leq 3 \\
& 4 x_{1}+x_{2}+2 x_{3} \leq 1 \\
& 3 x_{1}+4 x_{2}+2 x_{3} \leq 8
\end{aligned}
$$

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	3	0	1	0	2	$?$
s_{2}	0	0	-5	0	$?$	1	0	$?$
x_{3}	0	0	-1	1	$?$	0	2	$?$
x_{1}	0	1	2	0	$?$	0	1	$?$

Question: (Tableau is optimal for LP with given constraints.)
A. Then $2 x_{1}+3 x_{2}+x_{3}<3$ is possible
B. Then $4 x_{1}+x_{2}+2 x_{3}<1$ is possible
C. Then $3 x_{1}+4 x_{2}+2 x_{3}<8$ is possible
D. None of the above

Clicker \#C. 4

$$
\begin{array}{r}
2 x_{1}+3 x_{2}+x_{3} \leq 7 \\
x_{1}+x_{2}+2 x_{3} \leq 13 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 7
\end{array}
$$

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	3	0	1	0	2	$?$
s_{2}	0	0	-5	0	-2	1	0	$?$
x_{3}	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
x_{1}	$?$	$?$	8	$?$	$?$	$?$	$?$	2

Question: In this optimal tableau,
A. variable x_{3} has value 1
B. variable x_{3} has value 2
C. variable x_{3} has value 3
D. variable x_{3} has value 4

Clicker \#C. 5

$$
\begin{array}{rr}
x_{1}+3 x_{2}+2 x_{3} & \leq 13 \\
x_{1}+x_{2}+x_{3} & \leq 11 \\
x_{1}+2 x_{2}+3 x_{3} & \leq 18
\end{array}
$$

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	2	0	3	0	2	$?$
s_{2}	0	0	-5	0	$?$	1	0	$?$
x_{3}	0	0	$?$	1	$?$	0	2	$?$
x_{1}	0	1	2	0	$?$	0	1	$?$

Question: (Tableau is optimal for LP with given constraints.)
A. Then $x_{1}+x_{3}=8$
B. Then $x_{1}+x_{3}=9$
C. Then $x_{1}+x_{3}=10$
D. None of the above

Clicker \#C. 6

$$
\begin{aligned}
2 x_{1}+3 x_{2}+x_{3} & \leq 6 \\
4 x_{1}+2 x_{2}+2 x_{3} & \leq 12 \\
x_{1}+4 x_{2}+3 x_{3} & \leq 7
\end{aligned}
$$

	Z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	b
Z	1	0	3	0	1	0	$?$	17
s_{2}	0	0	8	0	-2	1	0	$?$
x_{3}	0	0	$?$	1	-3	0	2	2
x_{1}	0	1	$?$	0	+2	0	1	2

Question: (Final tableau for LP.)
A. Then $y_{3}=1$ is possible
B. Then $y_{3}=2$ is possible
C. Then $y_{3}=3$ is possible
D. None of the above

Clicker \#D. 1

Consider the transportation problem

8	9	21	6	9
22	1	13	9	3
3	4	5	1	6
5	4	5	d_{4}	

Question: If total supply equals total demand,
A. then $d_{4}=2$
B. then $d_{4}=3$
C. then $d_{4}=4$
D. none of the above

Clicker \#D. 2

Here is a basic feasible solution for a transportation problem:

9	$?$	$?$	$?$	9
$?$	3	2	$?$	5
$?$	$?$	$?$	4	4
9	3	2	4	

$X=$ number of questionmarks that are in the basis.
$Y=$ number of questionmarks that are non-zero.
Question:
A. Then $X=1$ and $Y=5$
B. Then $X=2$ and $Y=0$
C. Then $X=3$ and $Y=8$
D. Then $X=3$ and $Y=6$

Clicker \#D. 3

Here is a basic feasible solution for a transportation problem:

7	1	$?$	$?$	8
$?$	2	3	$?$	5
$?$	$?$	$?$	3	4
7	3	3	4	

$X=$ number of questionmarks that are in the basis.
$Y=$ number of questionmarks that are non-zero.

Question:

A. Then $X=1$ and $Y=1$
B. Then $X=1$ and $Y=2$
C. Then $X=2$ and $Y=1$
D. None of the above.

Clicker \#D. 4

While we are solving an instance of the transportation problem, we encounter a chain reaction that involves exactly R entries.

Question: Which of the following options is a possible value for R ?
A. $\quad R=2$
B. $R=7$
C. $R=12$
D. $R=17$

Clicker \#D. 5

Consider the transportation problem

1	4	5	7
9	9	1	1
9	1	2	2
3	3	4	

North-West corner rule generates starting solution of cost NW. Minimum Cost rule generates starting solution of cost MC.

Question:

A. $N W-M C=-1$
B. $N W-M C=0$
C. $N W-M C=1$
D. $N W-M C=2$

Clicker \#D. 6

We use the North-West corner rule to compute a starting solution for an $m \times m$ assignment problem.

Let X denote the number of 0 -entries in this solution.
Let Y denote the number of 1-entries in this solution.
Let Z denote the number of entries ≥ 2 in this solution.

Question:

A. Then $X=m$ and $Y=m$ and $Z>0$.
B. Then $X=m-1$ and $Y=m$ and $Z=0$.
C. Then $X=m$ and $Y=m-1$ and $Z=0$.
D. Then $X=m-1$ and $Y=m-1$ and $Z \neq 0$.

