Soundness-preserving reduction rules for reset workflow nets

M.T. Wynn a,*, H.M.W. Verbeek b, W.M.P. van der Aalst a,b, A.H.M. ter Hofstede a, D. Edmond a

a Business Process Management Group, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia
b Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

ABSTRACT

The application of reduction rules to any Petri net may assist in its analysis as its reduced version may be significantly smaller while still retaining the original net’s essential properties. Reset nets extend Petri nets with the concept of a reset arc, allowing one to remove all tokens from a certain place. Such nets have a natural application in business process modelling where possible cancellation of activities need to be modelled explicitly and in workflow management where such process models with cancellation behaviours should be enacted correctly. As cancelling the entire workflow or even cancelling certain activities in a workflow has serious implications during execution (for instance, a workflow can deadlock because of cancellation), such workflows should be thoroughly tested before deployment. However, verification of large workflows with cancellation behaviour is time consuming and can become intractable due to the state space explosion problem. One way of speeding up verification of workflows based on reset nets is to apply reduction rules. Even though reduction rules exist for Petri nets and some of its subclasses and extensions, there are no documented reduction rules for reset nets. This paper systematically presents such reduction rules. Because we want to apply the results to the workflow domain, this paper focuses on reset workflow nets (RWF-nets), i.e. a subclass tailored to the modelling of workflows. The approach has been implemented in the context of the workflow system YAWL.

1. Introduction

The analysis of a non-trivial concurrent process is a complicated task. There are a number of different approaches to deal with this complexity. Reducing a specification, while preserving its essential properties with respect to a particular analysis problem, is one such approach. There exists a body of research that addresses the concept of reduction in the area of Petri nets (see, e.g., [4,13]) and its various subclasses (see, e.g., free-choice nets [6]) and extensions (see, e.g., timed petri nets [14]).

Reset nets [5,8–11] extend Petri nets with the concept of a reset arc, a type of arc that connects a place and a transition and whose semantics is to remove all tokens from that place when the transition fires. The complexity introduced by a reset arc (when compared with Petri nets in general) is threefold: (1) as the transition removes all tokens and not just one, place invariants do not hold for such nets, (2) the reset action can be ineffective if a place does not contain any tokens at the exact time when the transition fires and the reset action is carried out, and (3) a reset arc can affect any place in the entire net (i.e., its effect is global), unlike normal arcs of a transition which can only influence their input and output places (i.e., their effect is local). As a result, the notion of reachability is undecidable for reset nets with more than two reset arcs [9].

* Corresponding author.
E-mail addresses: m.wynn@qut.edu.au (M.T. Wynn), h.m.w.verbeek@tue.nl (H.M.W. Verbeek), w.m.p.v.d.aalst@tue.nl (W.M.P. van der Aalst), a.terhofstede@qut.edu.au (A.H.M. ter Hofstede), d.edmond@qut.edu.au (D. Edmond).

0020-0255/$ - see front matter Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2008.10.033
Reset nets form a natural foundation for workflow languages with explicit support for cancellation. Cancellation is an important concept in workflow management (see, e.g., [3]) where the execution of some activities may lead to the termination of other activities in certain circumstances. Cancellation can be triggered by either a customer request (e.g., a customer wishes to withdraw a credit card application) or by exceptions (e.g., an order cannot be processed due to insufficient stock level). In general, cancellation results in one of two outcomes: disabling some scheduled activities or stopping currently running activities. The complicating factor is that due to concurrency issues, the cancellation action may or may not result in cancelling certain activities, i.e., the process may be in a state before or after the part that is supposed to be cancelled. This can introduce deadlocks (the state where a business process is stuck and cannot proceed). As it is important to detect errors in workflows before their deployment, it is desirable to speed up the analysis of workflows if possible. When this analysis is performed on reset nets, corresponding to the workflows involved, this boils down to being able to perform efficient reset net analysis. While there are potentially a number of avenues that could be explored in order to achieve this, one approach is the application of reduction rules for reset nets.

When reducing a net it is imperative that certain essential properties are preserved. In the area of workflow verification, soundness is such a property. Soundness is a correctness notion of workflows that requires that a workflow can always terminate, that when termination is signalled no other tokens remain elsewhere in the net, and that it does not contain any dead tasks [15]. A reset workflow net (RWF-net) is a reset net with three structural restrictions: there is exactly one source node, one sink node and every node in the graph is on a directed path from the source node to the sink node. See Fig. 1 for an example of a sound RWF-net. In Fig. 1, transition \( t \) can remove tokens from places \( a, b, \) and \( c \) when it fires (denoted by double-headed arcs). By applying reduction rules, it is possible to reduce the net while preserving the soundness property of the net as shown in Fig. 2, where transition \( y \) corresponds to transition \( t \) and its successors in the original net and place \( v \) replaces all three places \( a, b, \) and \( c \).

In this paper a number of soundness-preserving reduction rules for RWF-nets are documented and proven correct. They are inspired by reduction rules provided for Petri nets in [4,13] and for free-choice Petri nets provided in [6]. As mentioned before, there are no documented reduction rules for reset nets that preserve soundness in the current literature, and as it turns out, one has to be careful in determining the conditions under which certain types of reductions can be applied. For example, because of the nature of reset arcs removing all tokens when a transition fires, it is possible that an incorrect net that does not satisfy the proper completion criterion (i.e. tokens can be left in the net when it reaches the end) becomes sound when there is a reset arc to remove the leftover tokens before completion. Another interesting finding is that strict conditions are necessary for reset net reduction rules (for instance, two places can only be reduced to one if and only if both places are reset by the same transition). Hence, the presence of reset arcs does not offer new possibilities for reduction, rather it limits them. Also, a reset arc can never be abstracted entirely from a reset net. That is, if a net contains reset arcs, it is not possible to obtain a reduced net without any reset arc. Hence, the goal of reduction is to reduce the number of reset arcs when these arcs are connected to more than one place or transition and as a result, to reduce the complexity introduced by multiple reset arcs.

The contributions of the paper are as follows:

- The set of reset net reduction rules represents a practical contribution to achieve a more efficient verification of complex workflows with cancellation behaviours. The rules have been implemented as part of the verification functionality of the workflow language YAWL.\(^1\)

---

\(^1\) www.yawl-system.com.
The reduction rules presented in this paper have wider applicability than the area of workflow verification. They are equally applicable to other business process modelling languages that support cancellation such as the business process modelling notation (BPMN), the business process execution language (BPEL) and the unified modelling language (UML).

The paper also aims to make a contribution to the body of theory in reset nets. The set of reduction rules presented in this paper are liveness and boundedness preserving as well as soundness preserving.

The organisation of the rest of the paper is as follows. Section 2 provides the formal foundation by introducing reset nets and RWF-nets. Section 3 introduces a simplified credit card application process with cancellation feature and demonstrates how it can be modelled as a RWF-net. Section 4 describes a set of reduction rules for RWF-nets. Section 5 briefly mentions the implementation of the rules in the workflow language YAWL. Section 6 discusses the related work and Section 7 concludes the paper.

2. Preliminaries

This section contains a number of background definitions to make the paper self-contained. A reset net is a Petri net with special reset arcs, that can clear the tokens in selected places, and are represented as doubled-headed arrows (see Fig. 3).

Definition 1 (Reset net [8]). A reset net is a tuple \((P,T,F,R)\) where \(P\) is a (non-empty finite) set of places, \(T\) is a set of transitions, \(P \cap T = \emptyset, F \subseteq (P \times T) \cup (T \times P)\) is the set of arcs and \(R : T \rightarrow \wp(P)\) provides the reset places for the transitions.

Let \(N\) be a reset net and \(x \in (P \cup T)\), we use \(\bullet x\) and \(\bullet x\) to denote the set of inputs and outputs. If the net involved cannot be understood from the context, we explicitly include it in the notation and we write \(\bullet x\) and \(\bullet x\). Relation \(F\) implies a function and \(F(x,y)\) evaluates to 1 if \((x,y) \in F\) and 0 otherwise. We write \(F^R\) for the reflexive transitive closure of \(F\). The notation \(R(t)\) for a transition \(t\) returns the (possibly empty) set of places that it resets. We also write \(R^{-}(p)\) for a place \(p\), which returns the set of transitions that can reset \(p\). A marking is defined as \(M = (P,T,F)\) and \(M \subseteq \wp(P)\) is aWF-net iff the following three conditions hold: (1) \(M \in N(M)\) and (2) if transition \(t \in T\) and markings \(M_1, M_2 \in M(N)\) exist such that \(M_1, M_2 \in M(N)\) and \(M_1 \subseteq M_2\), then \(M_2 \in N(M)\). Workflow nets (WF-nets) forms a subclass of Petri nets with unique input and output places, that can be used to represent workflow processes [15]. This notion can be extended to reset nets.

Definition 2 (Forward firing). Let \(N = (P,T,F,R)\) be a reset net, \(t \in T\) and \(M, M' \in M(N)\). Transition \(t\) is enabled at \(M\), denoted as \(M(t)\), if for all \(p \in \bullet t : M(p) \geq 1\). We denote \(M^N_{\bullet t} M\) iff \(M(t)\) and

\[
M'(p) = \begin{cases} 
M(p) - F(p,t) + F(t,p) & \text{if } p \in P \setminus R(t), \\
F(t,p) & \text{if } p \in R(t).
\end{cases}
\]

If there is no confusion regarding the net, the expression is abbreviated as \(M \rightarrow^t M'\). The calculus is driven by the reachability set of the net \(N\) from marking \(M\), denoted as \(N[M]\), is the minimal set that satisfies the following conditions: (1) \(M \in N[M]\) and (2) if transition \(t \in T\) and markings \(M_1, M_2 \in M(N)\) exist such that \(M_1, M_2 \in N[M]\) and \(M_1 \subseteq M_2\), then \(M_2 \in N[M]\). Workflow nets (WF-nets) forms a subclass of Petri nets with unique input and output places, that can be used to represent workflow processes [15]. This notion can be extended to reset nets.

Definition 3 (WF-net and RWF-net). Let \(N = (P,T,F)\) be a Petri net. The net \(N\) is a WF-net iff the following three conditions hold: (1) there exists exactly one \(i \in P\) such that \(i = \emptyset\), and (2) there exists exactly one \(o \in P\) such that \(o = \emptyset\), and (3) for all \(n \in P \cup T: (i, n) \in F^R\) and \((n, o) \in F^R\). Let \(N = (P,T,F,R)\) be a reset net. The net \(N\) is an RWF-net iff \((P,T,F)\) is a WF-net.
thus conclude that from marking $M$ one token in place $o$ to complete the net properly. Suppose we have an RWF-net for which the first item of soundness (option to complete) second requirement follows from the first [12]. The option to complete requirement states that it should always be possible dead transitions (Definition 4).

Reachability is not decidable for an arbitrary reset net [9], and the empty marking cannot be reached. Hence, the second requirement has to hold as well. Therefore, the soundness definition for an RWF-net is based on the soundness definition for WF-nets [1]. In this definition, the second requirement follows from the first [12]. The option to complete requirement states that it should always be possible to complete the net properly. Suppose we have an RWF-net for which the first item of soundness (option to complete) holds. Assume that the second does not hold, i.e., that there is some marking $M$ reachable from $M_i$ such that $M > M_n$. The option to complete guarantees us that from $M$ we can reach $M_n$. As the tokens in $o$ cannot enable any transition in the net, we thus conclude that from marking $M - M_n$, we can reach the empty marking. As all transitions have non-empty postsets, the empty marking cannot be reached. Hence, the second requirement has to hold as well. Therefore, the soundness definition without the second requirement is sufficient and is equivalent to the original definition. In the next section, we prove for some of our reduction rules for RWF-nets that soundness is preserved by showing that the rules preserve the option to complete and no dead transitions criteria. The soundness property of a WF-net without reset arcs can be determined from its reachability graph and is decidable [1]. Reachability is not decidable for an arbitrary reset net [9], and soundness has been shown to be undecidable for RWF-nets as well [16]. Nevertheless, it is still desirable to be able to perform soundness analysis whenever possible.

3. An illustrative example: credit card application process

In this section, we illustrate a simplified version of a credit card application process using a RWF-net. To showcase the capability of reset arcs, we assume that an applicant can request to cancel the credit card application at any point in time until a decision has been made on the application. We first present the process model using the YAWL notation (see Fig. 4) and we then present an equivalent RWF-net for the process (see Fig. 5). In Section 4, we use this example to demonstrate step-by-step reduction of the model using the proposed reduction rules. In Section 5, the analysis results for this process model using the implementation in YAWL are discussed.

The process starts when an applicant submits a credit card application (with the proposed amount). Upon receiving an application (ra), a credit clerk checks whether the submitted application is complete (cc). If not, the clerk requests additional information from the applicant (rm) and waits until this information is received (ri) before proceeding. At the same time a timer is set (to) so that if a certain period elapses before requested information is received, another request for information is sent again. For a complete application, the clerk first checks the requested loan amount (cl). It is then followed by additional checks to validate the applicant’s income and credit history. Different checks are performed depending on whether the requested loan is large (pl) or small (ps). The validated application is then passed on to a manager to make a decision (md). In the case of acceptance, the credit card approval activity can start (sa). The applicant is notified of the decision (na) and at the same time is asked for his/her preference on any extra features (wx). The applicant can choose extra features such as rewards program or secondary cardholders (cf) before a credit card is produced and delivered (dc). This indicates the completion of the approval activity (ca) and the process ends. For a rejected application, the applicant is notified of the rejection (nj) and the process ends. An interesting feature of this process is that an applicant is allowed to cancel an ongoing application at any time after it was received (ra) and before the manager is ready to make a decision (md).

---

2 Note the overloading of $i$ and $o$: they are now used to denote a multiset containing one element.
Fig. 4 depicts a YAWL model of the credit card application process. A task in YAWL is depicted as a rectangle and a place (which represents a state in between tasks) is depicted as a circle. A YAWL model has a unique start point and a unique end point. We will not go through every element of the model but select a number of typical examples for illustration. Firstly, the task check for completeness uses XOR-split to capture the checking result and XOR-join to capture further check after additional information is received. Next, the place waiting models a deferred choice between task receive more info and task time out. Thirdly, the place ongoing application models a deferred choice between task process cancel request and task make decision. Finally, in the process model, task process cancel request with its associated cancellation region (shown within the dotted lines) captures the withdrawal of an ongoing application before approve/reject decision is made. That is, when task process cancel request is carried out, all tokens from places in the cancellation region are removed and all tasks that are currently executing in the cancellation region are stopped.

Fig. 5 depicts an equivalent RWF-net of the credit card application process. In general, a YAWL task is mapped to a start transition and an end transition with a place in between. For instance, the task receive application (ra) is modelled as one start transition (ras) and one end transition (rae) with an intermediate place to connect the two transitions. The XOR-split and join behaviour of a YAWL task is modelled using a separate transition for each path. For instance, the two possible paths to start task check for completeness are depicted as ccs1 and ccs2 and the two possible paths after completing check for completeness task are shown as cce1 and cce2. If a task has a cancellation region associated with it, its end transition will have reset arcs (e.g., the end transition of process cancel request (cne) has reset arcs). If a task is in the cancellation region of another task, all tokens from its intermediate place are removed (e.g., task check for completeness is in the cancellation region of task process cancel request and hence, the end transition of process cancel request (cne) will have a reset arc from the intermediate place between transitions ccs1 and cce1). If a place in the YAWL model is in the cancellation region of a task, then its corresponding place in the RWF-net also has a reset arc from that place to the end transition of the task (e.g., place waiting (wt) has a reset arc to transition cne). To make the diagram more readable, we use a region instead of drawing separate reset arcs from every place in the region to transition cne.

4. Reduction rules for RWF-nets

In this section, we present seven soundness-preserving reduction rules for RWF-nets. For sake of clarity, we have taken a two-step approach: first the reduction rule for WF-nets, then the extension for RWF-nets. The style of this section is taken from Desel and Esparza [6].

The soundness of WF-nets has been shown to correspond to boundedness and liveness properties of the short-circuited WF-net [1]. Therefore, if a reduction rule for a WF-net preserves boundedness and liveness, then it also preserves soundness. We show that as a reduction rule for a WF-net is boundedness and liveness preserving, it is also soundness preserving. However, soundness of RWF-nets does not correspond to boundedness and liveness. It is possible that an unbounded RWF-net is sound due to the presence of reset arcs. In Fig. 6, place q is an unbounded place and therefore, the net is unbounded. Transition c resets both preceding places when it fires. As a result, it is not possible for tokens to be left in either p or q when the net completes. Hence, the net is sound and we cannot prove that a reduction rule for RWF-nets preserves soundness by showing that it preserves boundedness and liveness. Therefore, we will show that reduction rules for RWF-nets preserve soundness by proving that they preserve occurrence sequences and hence, preserve the criteria for soundness: the option to complete, and no dead transitions.
Next, we present the first of the seven reduction rules for RWF-nets, the Fusion of series transitions rule, and prove that the soundness property holds for a WF-net and then for an RWF-net.

Please note that the presentation of the rest of the reduction rules follow the exact same structure as the first rule. Our intention is to fully formalise these rules for completeness, for future reference and to present them in a standardised manner for ease of understanding. The reader that wishes to concentrate on the essence of the rules can look at the figures and the conditions and constructions for reset arc extensions of each rule, while the reader that also wishes to convince themselves of the technical correctness of these rules can look at the lemmas, the theorems, and the soundness proofs.

### 4.1. Fusion of series transitions

The **fusion of series transitions rule for WF-nets** ($\phi_{\text{FST}}$) allows for the merging of two sequential transitions $t$ and $u$ with one place $p$ in between these two transitions into only one transition $v$. The rule requires that there is only one input $t$ and output $u$ for the place $p$, $p$ is the only input of $u$, and there are no direct connections between outputs of $t$ and outputs of $u$. The last requirement ensures that there will only be one arc connecting the new transition $v$ to outputs of $t$ in the reduced net. See the example in **Fig. 7** for an application of the $\phi_{\text{FST}}$ rule. Transitions $t$ and $u$ have been merged into a new transition $v$ in the right net. Note that transitions $u$ and $x$ cannot be merged as $x$ has two input places ($q$ and $r$).

#### Definition 5 (Fusion of series transitions rule for WF-nets: $\phi_{\text{FST}}$)

Let $N_1$ and $N_2$ be two WF-nets, where $N_1 = (P_1, T_1, F_1)$ and $N_2 = (P_2, T_2, F_2)$, $(N_1, N_2) \in \phi_{\text{FST}}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, a place $p \in P_1$, two transitions $t, u \in T_1$, and a transition $v \in T_2 \setminus T_1$ such that:

**Conditions on $N_1$:**

1. $p = \{t\}$ ($t$ is the only input of $p$).
2. $u = \{p\}$ ($p$ is the only input of $u$).
3. $t \cap u = \emptyset$ (any output of $t$ is not an output of $u$ and vice versa).

**Construction of $N_2$:**

4. $P_2 = P_1 \setminus \{p\}$.
5. $T_2 = (T_1 \setminus \{t, u\}) \cup \{v\}$.
6. $F_2 = (F_1 \cap ((P_2 \times T_2) \cup (T_2 \times P_2))) \cup (\bullet t \times \{v\}) \cup \{v\} \times (\{t \bullet u \bullet \} \setminus \{p\})$.

#### Theorem 1 (The $\phi_{\text{FST}}$ rule is soundness preserving)

Let $N_1$ and $N_2$ be two WF-nets such that $(N_1, N_2) \in \phi_{\text{FST}}$. Then $N_1$ is sound iff $N_2$ is sound.

**Proof.** The $\phi_{\text{FST}}$ rule is boundedness and liveness preserving [13]. Soundness of a WF-net corresponds to boundedness and liveness of the short-circuited WF-net [1]. 

The **fusion of series transitions rule for RWF-nets** ($\phi^R_{\text{FST}}$) extends the $\phi_{\text{FST}}$ rule by introducing reset arcs. The rule also allows for the merging of two sequential transitions $t$ and $u$ with one place $p$ in between them into a single transition $v$. **Fig. 8** visualises the $\phi^R_{\text{FST}}$ rule. Additional requirements (required to allow for reset arcs) are that place $p$ and output places of $u$ should

![Fig. 6. An example of an unbounded RWF-net which is sound.](image)

![Fig. 7. Reduction of a WF-net using the $\phi_{\text{FST}}$ rule.](image)
Definition 6 (Fusion of series transitions rule for RWF-nets: \( \phi_{\text{FST}}^R \)). Let \( N_1 \) and \( N_2 \) be two RWF-nets, where \( N_1 = (P_1, T_1, F_1, R_1) \) and \( N_2 = (P_2, T_2, F_2, R_2) \). \( (N_1, N_2) \in \phi_{\text{FST}}^R \) if there exists an input place \( i \in P_1 \cap P_2 \), an output place \( o \in P_1 \cap P_2 \), a place \( p \in P_1 \), two transitions \( t, u \in T_1 \), and a transition \( \nu \in T_2 \setminus T_1 \) such that:

Extension of the \( \phi_{\text{FST}} \) rule:

1. \( ((P_1, T_1, F_1), (P_2, T_2, F_2)) \in \phi_{\text{FST}} \) (Note that, by definition, the \( t, u, \nu \), and \( p \) mentioned in this definition have to coincide with the \( t, u, \nu \), and \( p \) as mentioned in the definition of \( \phi_{\text{FST}} \).)

Conditions on \( R_1 \):

2. \( R_1(p) = \emptyset \) \((p \text{ is not a reset place})\).
3. \( R_1(u) = \emptyset \) \((u \text{ does not reset})\).
4. For all \( q \in u \cdot R_1(q) = \emptyset \) \((\text{any output place of } u \text{ is not a reset place})\).

Construction of \( R_2 \):

5. \( R_2 = \{(z, R_1(z)) | z \in T_2 \cap T_1 \} \cup \{(\nu, R_1(t))\} \).

We now present two lemmas that show that occurrence sequences in \( N_1 \) and \( N_2 \) correspond to one another. These lemmas are then used to prove that the \( \phi_{\text{FST}}^R \) rule preserves the three criteria of soundness: option to complete, proper completion, and no dead transitions.

Lemma 1 (Under the \( \phi_{\text{FST}}^R \) rule, sequences in \( N_1 \) correspond to sequences in \( N_2 \)). Let \( N_1 \) and \( N_2 \) be two RWF-nets such that \( (N_1, N_2) \in \phi_{\text{FST}}^R \), let \( \sigma_1 \in T_1 \) and \( M_1 \in \mathcal{M}(N_1) \) be such that \( i \xrightarrow{\sigma_1} M_1 \), and \( \sigma_2 = \alpha(\sigma_1) \), where \( \alpha \in T_1 \rightarrow T_2 \) is defined as follows:

- \( \alpha(\epsilon) = \epsilon \),
- \( \alpha(\sigma) = v \alpha(\sigma) \),
- \( \alpha(u \sigma) = \alpha(\sigma) \), and
- \( \alpha(x \sigma) = x \alpha(\sigma) \), where \( x \in T_1 \setminus \{t, u\} \).
Thus, \( \alpha \) removes every occurrence of \( u \) from the sequence, and replaces every occurrence of \( t \) with \( v \). Then \( i^{N_2,\sigma_2}_t M_2 \), where \( M_2(x) = M_1(x) + M_1(p) \) for every \( x \in P_2 \) and \( M_2(x) = M_1(x) \) for every \( x \notin P_2 \).

**Proof.** By induction on the length of \( \sigma_1 \).

**Base** Assume \( \sigma_1 = \varepsilon \). Clearly, \( i^{N_2,\varepsilon}_t i \) and also \( i^{N_2,\varepsilon}_t i \).

**Step** Assume the theorem holds for some \( \sigma_1 \), let \( M_1 \) be such that \( i^{N_1,\sigma_1}_t M_1 \), and let \( M_2 \) be such that \( i^{N_2,\sigma_1}_t M_2 \). We prove that it also holds if we extend \( \sigma_1 \) by one transition.

- First, assume that we extend \( \sigma \) by \( t \). \( t \) and \( v \) have the same preset, thus we can extend \( \alpha(\sigma) \) by \( v \). \( t \) adds a token to \( p \), whereas \( v \) adds tokens to its postset, which does not violate the where-clause.
- Second, assume that we extend \( \sigma \) by \( u \). It is obvious that \( v \) does not violate the where-clause.
- Third, assume that we extend \( \sigma \) by \( x \), where \( x \in P_1 \setminus \{t, u\} \). As all places in \( N_2 \) contain at least as many tokens as their counterparts in \( N_1 \) (the where-clause), we know that \( x \) is enabled in \( N_2 \) as well. Furthermore, \( x \) does not violate the where-clause. \( \square \)

**Lemma 2** (Under the \( \phi^R_{\text{FST}} \) rule, sequences in \( N_2 \) correspond to sequences in \( N_1 \)). Let \( N_1 \) and \( N_2 \) be two RWF-nets such that \( (N_1, N_2) \in \phi^R_{\text{FST}}, \) let \( \sigma_2 \in T_2 \) and \( M_2 \in M(N_2) \) be such that \( i^{N_1,\sigma_2}_t M_2 \), and \( \sigma_1 = \beta(\sigma_2) \), where \( \beta \in T_2 \rightarrow T_1 \) is defined as follows:

- \( \beta(\varepsilon) = \varepsilon \),
- \( \beta(u\sigma) = tu\beta(\sigma) \), and
- \( \beta(x\sigma) = x\beta(\sigma) \), if \( x \in T_2 \setminus \{v\} \).

Thus, \( \beta \) replaces every occurrence of \( v \) with \( tu \). Then \( i^{N_1,\sigma_1}_t M_1 \), where \( M_1(p) = 0 \) and \( M_1(x) = M_2(x) \) for every \( x \in P_1 \setminus \{p\} \).

**Proof.** By induction on the length of \( \sigma_2 \).

**Base** Assume \( \sigma_2 = \varepsilon \). Clearly, \( i^{N_2,\varepsilon}_t i \) and also \( i^{N_2,\varepsilon}_t i \).

**Step** Assume the theorem holds for some \( \sigma_2 \), let \( M_2 \) be such that \( i^{N_2,\sigma_2}_t M_2 \), and let \( M_1 \) be such that \( i^{N_1,\beta(\sigma_2)}_t M_1 \). We prove that it also holds if we extend \( \sigma_2 \) by one transition.

- First, assume that we extend \( \sigma \) by \( v \). It is obvious that \( M_1(t) \) in \( N_1 \), and that afterwards \( u \) is also enabled. Furthermore, the combination \( tu \) and \( v \) does not violate the where-clause.
- Second, assume that we extend \( \sigma \) by \( x \) such that \( x \in T_2 \setminus \{v\} \). Again it is obvious that \( M_1(x) \) in \( N_1 \), and that \( x \) does not violate the where-clause. \( \square \)

**Theorem 2** (The \( \phi^R_{\text{FST}} \) rule preserves the option to complete). Let \( N_1 \) and \( N_2 \) be two RWF-nets such that \( (N_1, N_2) \in \phi^R_{\text{FST}} \). Then \( N_1 \) has the option to complete if and only if \( N_2 \) has the option to complete.

**Proof.** Let \( \alpha \) and \( \beta \) be as defined in Lemmas 1 and 2.

\( \Rightarrow \) Assume that \( N_2 \) does not have the option to complete, that is, there exists some \( M_2 \in N_2(i) \) such that \( o \notin N_2[M_2] \). Thus, there exists a \( \sigma_2 \in T_2 \) such that \( i^{N_2,\sigma_2}_t M_2 \) but no \( \sigma_2 \in T_2 \) exists such that \( M_2 \rightarrow o \). As a result, \( i^{N_1,\beta(\sigma_2)}_t M_1 \), for a well-defined \( M_1 \). Now assume that \( N_1 \) does have the option to complete. As a result, there exists a \( \sigma_1 \) such that \( i^{N_1,\beta(\sigma_2)}_t M_1 \). But then \( i^{N_2,\alpha(\sigma_2,\sigma_1)}_t o \), which contradicts the assumption that no \( \sigma_2 \in T_2 \) exists such that \( M_2 \rightarrow o \). Thus, \( N_1 \) does not have the option to complete. \( \equiv \) Similar to \( \Rightarrow \). \( \square \)

**Theorem 3** (The \( \phi^R_{\text{FST}} \) rule preserves dead transitions). Let \( N_1 \) and \( N_2 \) be two RWF-nets such that \( (N_1, N_2) \in \phi^R_{\text{FST}} \). Then \( N_1 \) has proper completion if and only if \( N_2 \) has proper completion.

**Proof.** Let \( \alpha \) and \( \beta \) be as defined in Lemmas 1 and 2 and the observation that proper completion follows from the option to complete.

\( \Rightarrow \) Assume that \( \alpha \) contains no dead transitions, that is, for every \( t \in T_2 \) there exists some \( M_2 \in N_2[i] \) such that \( M_2 \uparrow t \). Let \( t_2 \) be an arbitrary transition from \( T_2 \), and let \( M_2 \in N_2[i] \) be such that \( M_2 \uparrow t_2 \). Then there exists a \( \sigma_2 \in T_2 \) such that \( i^{N_2,\sigma_2}_t M_2 \). As a result, \( i^{N_1,\beta(\sigma_2)}_t M_1 \) and \( M_1 \uparrow t_2 \). As \( T_2 = T_1 \cup \{t\} \), only transition \( t \) can still be dead. However, \( t \) can only be dead if all transitions that mark \( p \) are dead, and these transitions exist (as \( p \neq i \)). \( \equiv \) Assume that \( N_1 \) contains no dead transitions, that is, for every \( t_1 \in T_1 \) there exists some \( M_1 \in N_1[i] \) such that \( M_1 \uparrow t_1 \). Let \( t_1 \) be an arbitrary transition from \( T_1 \), excluding \( t \), and let \( M_1 \in N_1[i] \) be such that \( M_1 \uparrow t_1 \). Then there exists a \( \sigma_1 \in T_1 \) such that \( i^{N_1,\sigma_1}_t M_1 \). As a result, \( i^{N_2,\alpha(\sigma_2,\sigma_1)}_t M_2 \) and \( M_2 \uparrow t_1 \). Thus, \( N_2 \) contains no dead transitions. \( \square \)
Theorem 4 (The $\phi_{\text{FSP}}$ rule is soundness preserving). Let $N_1$ and $N_2$ be two RWF-nets such that $(N_1, N_2) \in \phi_{\text{FSP}}$. $N_1$ is sound iff $N_2$ is sound.

Proof. Follows from Theorems 2 and 3. $\square$

In this section, we have shown how the $\phi_{\text{FSP}}$ rule is derived by first listing out the application conditions for a WF-net and then proposing additional conditions to deal with reset arcs in an RWF-net. The $\phi_{\text{FSP}}$ Rule has been shown to be soundness preserving by providing the proofs that the rule preserves the criteria for soundness.

4.2. Fusion of series places

The fusion of series places rule for WF-nets ($\phi_{\text{FSP}}$) allows for the merging of two sequential places $p$ and $q$ with one transition $t$ in between them into a single place $r$. The rule requires that there is only one output arc from $p$ to $t$, exactly one input $p$ and one output $q$ for $t$, and that there are no direct connections between inputs of $p$ and inputs of $q$. The last requirement ensures that there will only be one arc connecting inputs of $p$ in the original net to the new place $r$ in the reduced net (no weighted arcs). Furthermore, the rule is not applicable to places that are either an input place $i$ or an output place $o$ of the net. See the example in Fig. 10 for an application of the $\phi_{\text{FSP}}$ rule.

Definition 7 (Fusion of series places rule for WF-nets: $\phi_{\text{FSP}}$). Let $N_1$ and $N_2$ be two WF-nets, where $N_1 = (P_1, T_1, F_1)$ and $N_2 = (P_2, T_2, F_2)$. $(N_1, N_2) \in \phi_{\text{FSP}}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, two places $p, q \in P_1 \setminus \{i, o\}$, a transition $t \in T_1$, and a place $r \in P_2 \setminus P_1$ such that:

- Conditions on $N_1$:
  1. $\bullet t = \{p\}$ ($p$ is the only input of $t$).
  2. $t \bullet = \{q\}$ ($q$ is the only output of $t$).
  3. $p \bullet = \{t\}$ ($t$ is the only output of $p$).
  4. $p \land q = \emptyset$ (any input of $p$ is not an input of $q$ and vice versa).

- Construction of $N_2$:
  5. $P_2 = (P_1 \setminus \{p, q\}) \cup \{r\}$.
  6. $T_2 = T_1 \setminus \{t\}$.
  7. $F_2 = (T_1 \cap (P_2 \times T_2) \cup (T_2 \times P_2))) \cup ((t \bullet (p \cup q) \setminus \{t\}) \times \{r\}) \cup (\{r\} \times q \bullet)$.

The fusion of series places rule for RWF-nets ($\phi_{\text{FSP}}$) extends the $\phi_{\text{FSP}}$ rule by introducing reset arcs and strengthening the conditions. The rule also allows for the merging of two sequential places $p$ and $q$ with one transition $t$ in between them into a single place $r$. Fig. 11 visualises the $\phi_{\text{FSP}}$ rule. The first additional requirement is that the transition $t$ should not have any reset arcs. See Fig. 12a for a counter-example where $t$ has reset arcs. Transition $t$ can reset place $u$ in the left net but this behaviour is ignored in the right net. Transition sequence $xt$ leads to a deadlock as $t$ will remove a token from $u$ when it fires, and $u$ does not exist in the right net. As a result, the left net is not sound whereas the right net is. The second additional requirement is that the two places must be reset by the same set of transitions (if any). If $p$ and $q$ are not reset places, then it is clear that the rule holds. If a transition resets place $p$, it must also reset place $q$ as we are interested in merging these two places. See Fig. 12b for a counter-example: transition sequence $xtyz$ leads to an unsound net on the left (a leftover token in $q$), whereas the right net is sound. If all requirements for the $\phi_{\text{FSP}}$ rule are satisfied, places $p$ and $q$ are merged into a new place $r$ which takes on the same reset arcs as $p$ and $q$.

Definition 8 (Fusion of series places rule for RWF-nets: $\phi_{\text{FSP}}$). Let $N_1$ and $N_2$ be two RWF-net s, where $N_1 = (P_1, T_1, F_1, R_1)$ and $N_2 = (P_2, T_2, F_2, R_2)$. $(N_1, N_2) \in \phi_{\text{FSP}}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, two places $p, q \in P_1 \setminus \{i, o\}$, a transition $t \in T_1$, and a place $r \in P_2 \setminus P_1$ such that:

![Fig. 10. Reduction of a WF-net using the $\phi_{\text{FSP}}$ rule.](image-url)
Lemma 3 criteria of soundness: the option to complete, proper completion, and dead transitions.

Next, we show that the FSP rule preserves the three criteria of soundness: the option to complete, proper completion, and dead transitions.

Construction of $R_2$:  
1. $R_2 = \{ (z, R_1(z) \cap P_2) : z \in T_2 \cap T_1 \} \cup \{ (z, (R_1(z) \cap P_2) \cup \{r\}) : z \in R_1^+(p) \}.^{3}$

The $FSP^R$ rule is soundness preserving as the occurrence sequences in the original net and the reduced net correspond to each other. The proof is similar to the soundness proof given for $FSP^R$ rule.

Next, we show that the $FSP^R$ rule is soundness preserving. We first present two lemmas that show that occurrence sequences in $N_1$ and $N_2$ correspond to one another. These lemmas are then used to prove that the $FSP^R$ rule preserves the three criteria of soundness: the option to complete, proper completion, and dead transitions.

Lemma 3 (Under the $FSP^R$ rule, sequences in $N_1$ correspond to sequences in $N_2$). Let $N_1$ and $N_2$ be two RWF-nets such that $(N_1, N_2) \in \Phi_{FSP}^R$. Let $\sigma_1 \in T_1$ and $M_1 \in \mathcal{M}(N_1)$ be such that $i^{N_1, \sigma_1} M_1$, and $\sigma_2 = \alpha(\sigma_1)$, where $\alpha \in T_1 \rightarrow T_2$ is defined as follows: $\alpha(x) = \epsilon$, $\alpha(t\sigma) = \alpha(\sigma)$, and $\alpha(x\sigma) = xx(\alpha(\sigma))$, where $x \in T_1 \setminus \{t\}$. Thus, $\alpha$ removes every occurrence of $t$ from the sequence. Then $i^{N_2, \sigma_2} M_2$, where $M_2(r) = M_1(p) + M_1(q)$ and $M_2(x) = M_1(x)$ for every $x \in P_2 \setminus \{r\}$.

Proof. By induction on the length of $\sigma_1$.

Base Assume $\sigma_1 = \epsilon$. Clearly, $i^{N_1, \epsilon} i$ and also $i^{N_2, \epsilon} i$.

Step Assume the theorem holds for some $\sigma_1$, let $M_1$ be such that $i^{N_1, \sigma_1} M_1$, and let $M_2$ be such that $i^{N_2, \alpha(\sigma_1)} M_2$. We prove that it also holds if we extend $\sigma_1$ by one transition. First, assume that we extend $\sigma$ by $t$. It is easy to see that this extension does not have any effect on $\alpha(\sigma_1)$. Therefore, we need to prove that firing $t$ does not violate the where-clause (i.e., $M_2(r) = M_1(p) + M_1(q)$ and $M_2(x) = M_1(x)$ for every $x \in P_2 \setminus \{r\}$). As $t$ moves only one token from $p$ to $q$ and does not reset any place, this is straightforward. Second, assume that we extend $\sigma$ by an $x \in P_1 \setminus \{t\}$. First, we need to prove

---

3 $\oplus$ represents function override where $f : A \rightarrow B$ and $g : A \rightarrow B$, $f \oplus g = \{(a, b) | a \in \text{dom}(g) \} \cup \{(a, b) | a \in \text{dom}(f) \setminus \text{dom}(g)\}$. 

---
that $M_2(x)$ in $N_2$. As $r$ contains at least as many tokens as $q$, and $M_2(x) = M_1(x)$ for every $x \in P_2 \setminus \{r\}$, we conclude that this is indeed the case. Next, we need to prove that firing $x$ in both nets does not violate the where-clause. This is straightforward as well, as any transition that adds a token to $p$ also adds a token to $r$ and any transition that removes a token from $q$ also removes a token from $r$, and the remaining transitions are identical. \hfill \qed

\textbf{Lemma 4} (Under the $FSP$ rule, sequences in $N_2$ correspond to sequences in $N_1$). Let $N_1$ and $N_2$ be two RWF-nets such that $(N_1, N_2) \in \Phi_{FSP}$, let $\sigma_2 \in \tau_2$ and $\sigma_1 \in \tau_1(N_2)$ be such that $\iota^{N_2, \sigma_2} M_2$, and $\sigma_1 = \beta(\sigma_2)$, where $\beta \in \tau_2 \rightarrow \tau_1$ is defined as follows: $\beta(\epsilon) = \epsilon$, $\beta(x \sigma) = x \beta(\sigma)$, if $p \in X$, and $\beta(x \sigma) = x \sigma$, if $p \notin X \cup N_1$. Thus, $\beta$ introduces an extra token whenever place $p$ is marked. As a result, place $p$ is unmarked as soon as possible. Then $\iota^{N_1, \sigma_1} M_1$, where $M_1(p) = 0, M_1(q) = M_2(r)$ and $M_1(x) = M_2(x)$ for every $x \in P_1 \setminus \{p, q\}$.

\textbf{Proof.} By induction on the length of $\sigma_2$.

- \textbf{Base} Assume $\sigma_2 = \epsilon$. Clearly, $\iota^{N_2, \sigma_2} i$ and also $i^{N_1, \sigma_1} i$.
- \textbf{Step} Assume the theorem holds for some $\sigma_2$, let $M_2$ be such that $\iota^{N_2, \sigma_2} M_2$, and let $M_1$ be such that $\iota^{N_1, \beta(\sigma_2)} M_1$. We prove that it also holds if we extend $\sigma_2$ by one transition. First, assume that we extend $\sigma$ by an $x$ such that $p \notin X \cup N_1$. It is obvious that $M_1(x)$ in $N_1$, and that afterwards $t$ is also enabled. Furthermore, both $x$ and $t$ do not violate the where-clause (i.e., where $M_1(p) = 0, M_1(q) = M_2(r)$ and $M_1(x) = M_2(x)$ for every $x \in P_1 \setminus \{p, q\}$). Second, assume that we extend $\sigma$ by an $x$ such that $p \notin X \cup N_1$. Again it is obvious that $M_1(x)$ in $N_1$, and that $p$ does not violate the where-clause. \hfill \qed

\textbf{Theorem 5} (The $FSP$ rule is soundness preserving). Let $N_1$ and $N_2$ be two RWF-nets such that $(N_1, N_2) \in \Phi_{FSP}$. $N_1$ is sound iff $N_2$ is sound.

\textbf{Proof.} Let $\alpha$ and $\beta$ be as defined in Lemmas 3 and 4.

- The $FSP$ rule preserves the option to complete. The proof is similar to the proof of Theorem 2, but with different $\alpha$ and $\beta$.
- The $FSP$ rule preserves dead transitions. The proof is similar to the proof of Theorem 3, but with different $\alpha$ and $\beta$. \hfill \qed

4.3. Fusion of parallel places

The fusion of parallel places rule for WF-nets ($\phi_{PP}$) is a generalization of the fusion of parallel places rule for Petri nets by Murata [13]. The rule allows for the merging of multiple places (at least two) with the same inputs and outputs into a single place $q$. See the example in Fig. 13 for an application of the $\phi_{PP}$ rule. Places $p_1$ and $p_2$ have the same input set $\{t_1, t_2, t_3\}$ and the same output set $\{x_1, x_2\}$. The reduced net contains a new place $q$ that has the same input and output sets as places $p_1$ and $p_2$.

\textbf{Definition 9} (Fusion of parallel places rule for WF-nets: $\phi_{PP}$). Let $N_1$ and $N_2$ be two WF-nets, where $N_1 = (P_1, T_1, F_1)$ and $N_2 = (P_2, T_2, F_2)$. $(N_1, N_2) \in \phi_{PP}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, places $Q \subseteq P_1$ where $|Q| \geq 2$ and a place $q \in P_2 \setminus P_1$ such that:

- Conditions on $N_1$:
  1. For all $px, py \in Q$: $\bullet px = \bullet py$ (input transitions for all places in $Q$ are identical).
  2. For all $px, py \in Q$: $px \bullet = py \bullet$ (output transitions for all places in $Q$ are identical).

- Construction of $N_2$:
  3. $P_2 = (P_1 \setminus Q) \cup \{q\}$.
  4. $T_2 = T_1$.
  5. $F_2 = (F_1 \cap ((P_2 \times T_2) \cup (T_2 \times P_2))) \cup (\bullet p \times \{q\}) \cup (\{q\} \times p \bullet)$ where $p \in Q$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig13.png}
\caption{Reduction of a WF-net using the $\phi_{PP}$ rule.}
\end{figure}
The fusion of parallel places rule for RWF-nets \( \phi_{RFP} \) extends the \( \phi_{FPP} \) rule by introducing reset arcs. The rule also allows for the merging of places in \( Q \) (i.e., \( p_1 \) to \( p_L \)) that have the same inputs and outputs into a single place \( q \). The additional requirement is that these places are reset by the same set of transitions. If none of the places are reset places, then it is obvious that the rule holds. If one is a reset place, then other places should also be reset by the same set of transitions. Fig. 14 visualises the \( \phi_{RFP} \) rule. As all places in \( Q = \{ p_1, \ldots, p_L \} \) have the same input, output and reset arcs, these identical places can be merged into a single place while preserving the soundness property. Place \( q \) in the reduced net has the same input, output and reset arcs as any place in \( Q \).

**Definition 10** (Fusion of parallel places rule for RWF-nets: \( \phi_{RFP} \)). Let \( N_1 \) and \( N_2 \) be two RWF-nets, where \( N_1 = (P_1, T_1, F_1, R_1) \) and \( N_2 = (P_2, T_2, F_2, R_2) \). \( (N_1, N_2) \in \phi_{RFP} \) if there exists an input place \( i \in P_1 \cap P_2 \), an output place \( o \in P_1 \cap P_2 \), places \( Q \subseteq P_1 \) where \( |Q| \geq 2 \) and a place \( q \in P_2 \setminus P_1 \) such that:

**Extension of the \( \phi_{FPP} \) rule:**

1. \( ((P_1, T_1, F_1), (P_2, T_2, F_2)) \in \phi_{FPP} \) (Note that, by definition, the \( i, o, Q, \) and \( q \) mentioned in this definition have to coincide with the \( i, o, Q, \) and \( q \) as mentioned in the definition of \( \phi_{FPP} \).)

**Condition on \( R_1 \):**

2. For all \( px, py \in Q : R_1(px) = R_1(py) \) (all places in \( Q \) are being reset by the same transitions).

**Construction of \( R_2 \):**

3. \( R_2 = \{ z \in T_2 \cap T_1 \mid (z, T_1(z) \cap P_2) \cup \{ q \} \mid z \in R_1^{-1}(p) \land p \in Q \} \).

**Theorem 6** (The \( \phi_{RFP} \) rule is soundness preserving). Let \( N_1 \) and \( N_2 \) be two RWF-nets such that \( (N_1, N_2) \in \phi_{RFP} \). \( N_1 \) is sound iff \( N_2 \) is sound.

**Proof.** It is easy to see that the state spaces of both nets are identical, except that the markings differ: A marking in the state space of \( N_1 \) contains places \( Q \), and every one of them contains \( n \) tokens, whereas a marking in the state space of \( N_2 \) contains one place \( q \) which contains \( n \) tokens. \( \square \)

4.4. Fusion of parallel transitions

The fusion of parallel transitions rule for WF-nets (\( \phi_{FPT} \)) is a generalization of the fusion of parallel transitions rule for Petri nets by Murata [13]. The rule allows for the merging of multiple transitions (at least two) that have the same inputs and

![Fig. 14. Fusion of parallel places rule for RWF-nets: \( \phi_{RFP} \).](image1)

![Fig. 15. Reduction of a WF-net using the \( \phi_{FPT} \) rule.](image2)
outputs into a single transition. See the example in Fig. 15 for an application of the $\phi_{\text{FPT}}$ rule. Transitions $t_1$ and $t_2$ have the same input set $\{p_1, p_2, p_3\}$ and the same output set $\{x_1, x_2\}$. The reduced net contains a new transition $v$ that has the same input and output sets as $t_1$ and $t_2$.

**Definition 11** (Fusion of parallel transitions rule for WF-nets: $\phi_{\text{FPT}}$). Let $N_1$ and $N_2$ be two WF-nets, where $N_1 = (P_1, T_1, F_1)$ and $N_2 = (P_2, T_2, F_2)$. $(N_1, N_2) \in \phi_{\text{FPT}}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, transitions $V \subseteq T_1$ where $|V| \geq 2$, and a transition $v \in T_2 \setminus T_1$ such that:

Conditions on $N_1$:

1. For all $tx, ty \in V : \bullet tx = \bullet ty$ (input places for all transitions in $V$ are identical).
2. For all $tx, ty \in V : ty\bullet = ty\bullet$ (output places for all transitions in $V$ are identical).

Construction of $N_2$:

3. $P_2 = P_1$.
4. $T_2 = (T_1 \setminus V) \cup \{v\}$.
5. $F_2 = (F_1 \cap ((P_2 \times T_2) \cup (T_2 \times P_2))) \cup (\{v\} \times N_1) \cup (\{t\} \times \{v\})$ where $t \in V$.

The fusion of parallel transitions rule for RWF-nets (\(\phi^R_{\text{FPT}}\)) extends the $\phi_{\text{FPT}}$ rule by introducing reset arcs. The rule allows for the merging of transitions $V$ (i.e., $t_1$ to $t_2$) that have the same inputs and outputs into a single transition $\nu$. The additional requirement is that these transitions should reset the same set of places (if any). If no transition has reset arcs, then it is obvious that the rule holds. If one transition resets a place, then other transitions must also reset the same place. Fig. 16 visualises the $\phi^R_{\text{FPT}}$ rule. As all transitions in $V = \{t_1, \ldots, t_\nu\}$ now have the same input, output and reset arcs, these identical transitions could be merged into a single transition while preserving the soundness property. Transition $\nu$ in the reduced net has the same input, output and reset arcs as any transition $t \in V$.

**Definition 12** (Fusion of parallel transitions rule for RWF-nets: $\phi^R_{\text{FPT}}$). Let $N_1$ and $N_2$ be two RWF-nets, where $N_1 = (P_1, T_1, F_1, R_1)$ and $N_2 = (P_2, T_2, F_2, R_2)$. $(N_1, N_2) \in \phi^R_{\text{FPT}}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, transitions $V \subseteq T_1$ where $|V| \geq 2$, and a transition $\nu \in T_2 \setminus T_1$ such that:

Extension of the $\phi_{\text{FPT}}$ rule:

1. $((P_1, T_1, F_1), (P_2, T_2, F_2)) \in \phi_{\text{FPT}}$ (Note that, by definition, the $i$, $o$, $V$, and $\nu$ mentioned in this definition have to coincide with the $i$, $o$, $V$, and $\nu$ as mentioned in the definition of $\phi_{\text{FPT}}$.)

Condition on $R_1$:

2. For all $tx, ty \in V : R_1(tx) = R_1(ty)$ (all transitions in $V$ reset the same places).

Construction of $R_2$:

3. $R_2 = \{(z, R_1(z)) | z \in T_2 \cap T_1\} \cup \{(\nu, R_1(\nu))\}$, where $\nu \in V$.

**Theorem 7** (The $\phi^R_{\text{FPT}}$ rule is soundness preserving). Let $N_1$ and $N_2$ be two RWF-nets such that $(N_1, N_2) \in \phi^R_{\text{FPT}}$, $N_1$ is sound iff $N_2$ is sound.

**Proof.** It is obvious that the state spaces of both nets are identical, except that some edges differ: where the state space of $N_1$ contains edges for transitions $t_1$ up to $t_\nu$, the state space of $N_2$ only contains one edge for transition $\nu$. \(\square\)

![Fig. 16. Fusion of parallel transitions rule for RWF-nets: $\phi^R_{\text{FPT}}$.](image-url)
4.5. Elimination of self-loop transitions

The elimination of self-loop transitions rule for WF-nets ($\phi_{ELT}$) rule allows the removal of a self-loop transition. A self-loop transition is one that has one input place which is also the only output place of the transition. See the example in Fig. 17 for an application of the $\phi_{ELT}$ rule. Transition $t$ has been abstracted from in the reduced net as $p$ is the only input place and the only output place of $t$.

**Definition 13** (Elimination of self-loop transitions for WF-nets: $\phi_{ELT}$). Let $N_1$ and $N_2$ be two WF-nets, where $N_1 = (P_1, T_1, F_1)$ and $N_2 = (P_2, T_2, F_2)$. $(N_1, N_2) \in \phi_{ELT}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, a place $p \in P_1 \cap P_2$, and a transition $t \in T_1$ such that:

1. $\bullet t = \{p\}$ ($p$ is the only input place of $t$).
2. $t\bullet = \{p\}$ ($p$ is the only output place of $t$).

Construction of $N_2$:

3. $P_2 = P_1$.
4. $T_2 = T_1 \setminus \{t\}$.
5. $F_2 = (F_1 \cap ((P_2 \times T_2) \cup (T_2 \times P_2)))$.

The elimination of self-loop transitions rule for RWF-nets ($\phi^R_{ELT}$) extends the $\phi_{ELT}$ rule by introducing reset arcs. The rule also allows removal of a transition $t$ which has a single place as its input and its output. The additional requirement is that transition $t$ has no reset arcs. Fig. 18 visualises the $\phi^R_{ELT}$ rule.

**Definition 14** (Elimination of self-loop transitions rule for RWF-nets: $\phi^R_{ELT}$). Let $N_1$ and $N_2$ be two RWF-nets, where $N_1 = (P_1, T_1, F_1, R_1)$ and $N_2 = (P_2, T_2, F_2, R_2)$. $(N_1, N_2) \in \phi^R_{ELT}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, a place $p \in P_1 \cap P_2$, and a transition $t \in T_1$ such that:

Extension of the $\phi_{ELT}$ rule:

1. $\left((P_1, T_1, F_1), (P_2, T_2, F_2)\right) \in \phi_{ELT}$ (Note that, by definition, the $i$, $o$, $t$, and $p$ mentioned in this definition have to coincide with the $i$, $o$, $t$, and $p$ as mentioned in the definition of $\phi_{ELT}$.)

Condition on $R_1$:

2. $R_1(t) = \emptyset$ ($t$ does not reset).

Construction of $R_2$:

3. $R_2 = \{(z, R_1(z)) | z \in T_2 \cap T_1\}$.

**Theorem 8** (The $\phi^R_{ELT}$ rule is soundness preserving). Let $N_1$ and $N_2$ be two RWF-nets such that $(N_1, N_2) \in \phi^R_{ELT}$. $N_1$ is sound iff $N_2$ is sound.
We have presented five reduction rules for RWF-nets based on the reduction rules defined by Murata \cite{13}. We have omitted the sixth rule, “elimination of self-loop places” as this rule requires a place to be marked in an initial marking of a net. For WF-nets and RWF-nets, this is not possible as the input place \( i \) is the only place that could be marked in an initial marking. By definition, \( i \) cannot be a self-loop (i.e., it cannot have any incoming arcs \( \bullet i = \emptyset \)) and therefore, this rule is not applicable to WF-nets and RWF-nets. In addition to the “Murata rules” we also present two additional rules.

### 4.6. Abstraction

The abstraction rule for WF-nets (\( \phi_A \)) is based on the Abstraction rule from Desel and Esparza \cite{6}. The rule allows the removal of a place \( s \) and a transition \( t \), where \( s \) is the only input of \( t \), \( t \) is the only output of \( s \) and there is no direct connection between the inputs of \( s \) with the outputs of \( t \). See the example in Fig. 19 for an application of the \( \phi_A \) rule. The reduced net abstracts from place \( s \) and transition \( t \) and provides direct connections between the inputs of \( s \) with the outputs of \( t \).

**Definition 15 (Abstraction rule for WF-nets: \( \phi_A \)).** Let \( N_1 \) and \( N_2 \) be two WF-nets, where \( N_1 = (P_1, T_1, F_1) \) and \( N_2 = (P_2, T_2, F_2) \). \((N_1, N_2) \in \phi_A\) if there exists an input place \( i \in P_1 \cap P_2 \), an output place \( o \in P_1 \cap P_2 \), places \( Q \subseteq P_1 \cap P_2 \), a place \( s \in P_1 \setminus Q \), transitions \( U \subseteq T_1 \cap T_2 \), and a transition \( t \in T_1 \setminus U \) such that:

- Conditions on \( N_1 \):
  1. \( \bullet t = \{s\} \) (\( s \) is the only input of \( t \)).
  2. \( s^* = \{t\} \) (\( t \) is the only output of \( s \)).
  3. \( s = U \) (transitions in \( U \) are input transitions for \( s \)).
  4. \( t = Q \) (transitions in \( Q \) are output transitions for \( t \)).
  5. \( (s \times t^*) \cap F = \emptyset \) (any input of \( s \) is not connected to an output of \( t \) and vice versa).

- Construction of \( N_2 \):
  6. \( P_2 = P_1 \setminus \{s\} \).
  7. \( T_2 = T_1 \setminus \{t\} \).
  8. \( F_2 = (F_1 \cup (P_2 \times T_2)) \cup (Q \times s \times t^*) \).

The abstraction rule for RWF-nets (\( \phi^R_A \)) extends the \( \phi_A \) rule by introducing reset arcs. The rule allows for the removal of a place \( s \) and a transition \( t \), where \( s \) is the only input of \( t \), \( t \) is the only output of \( s \) and there is no direct connection between the inputs of \( s \) with the outputs of \( t \). Additional requirements are that transition \( t \) does not reset any place, place \( s \) is not reset by any transition, and outputs for \( t \) are not reset by any transition. Input transitions for place \( s \) can have reset arcs. Fig. 20 visualises the \( \phi^R_A \) rule.

**Definition 16 (Abstraction rule for RWF-nets: \( \phi^R_A \)).** Let \( N_1 \) and \( N_2 \) be two RWF-nets, where \( N_1 = (P_1, T_1, F_1, R_1) \) and \( N_2 = (P_2, T_2, F_2, R_2) \). \((N_1, N_2) \in \phi^R_A\) if there exists an input place \( i \in P_1 \cap P_2 \), an output place \( o \in P_1 \cap P_2 \), places \( Q \subseteq P_1 \cap P_2 \), a place \( s \in P_1 \setminus Q \), transitions \( U \subseteq T_1 \cap T_2 \), and a transition \( t \in T_1 \setminus U \) such that:

- Extension of the \( \phi^R_A \) rule:
  1. \( ((P_1, T_1, F_1), (P_2, T_2, F_2)) \in \phi_A \) (Note that, by definition, the \( i, o, s, t, Q, \) and \( U \) mentioned in this definition have to coincide with \( i, o, s, t, Q, \) and \( U \) as mentioned in the definition of \( \phi_A \)).
Conditions on $R_1$:

2. $R_1^-(s) = \emptyset$ (s is not a reset place).
3. $R_1^+(t) = \emptyset$ (t does not reset).
4. For all $q \in t^*: R_1^-(q) = \emptyset$ (all output places for t are not reset places).

Construction of $R_2$:

5. $R_2 = \{ (z, R_1(z) \cap P_2) | z \in T_2 \cap T_1 \}$.

**Theorem 9** (The $\phi^R_1$ rule is soundness preserving). Let $N_1$ and $N_2$ be two RWF-nets such that $(N_1, N_2) \in \phi^R_1$, $N_1$ is sound iff $N_2$ is sound.

**Proof.** This rule is quite close to the $\phi^R_1$ rule (i.e., the fusion of two subsequent transitions), except that it allows for $s$ ($p$ for the $\phi^R_{FS}$) to have multiple inputs. Using the $\phi^R_{FS}$ rule, the proof is quite simple. It is obvious that we can replace $s$ and $t$ by $s_1, \ldots, s_N$ and $t_1, \ldots, t_N$ in such a way that $s_i = \{ u_i \}$, $s = \{ t_i \}$, $s_i = \{ s_i \}$, and $t_i = Q$ while preserving soundness. Next, we can use the $\phi^R_{FS}$ rule to reduce every $s_i$ and $t_i$. Fig. 21 visualises the proof of the $\phi^R_1$ rule. □

The other two linear dependency rules described by Desel and Esparza [6] to remove nonnegative linearly dependent places and nonnegative linearly dependent transitions are that all places in $N_1$ and $N_2$ are reset by the same set of transitions and all transition pairs in $V_1$ and $V_2$ also reset the same places. Formal definitions of the $\phi_{FS}$ and the $\phi_{FS}$ rule follow the same structure as the other rules. Note that the name of the rule may be a bit misleading. This rule only applies to subnets having the structure shown in Fig. 22. The reason that this rule has been added is that it is very effective in reducing YAWL models (cf. [16]).

**Definition 17** (Fusion of equivalent subnets rule for WF-nets: $\phi_{FE}$). Let $N_1$ and $N_2$ be two WF-nets, where $N_1 = (P_1, T_1, F_1)$ and $N_2 = (P_2, T_2, F_2)$. $(N_1, N_2) \in \phi_{FE}$ if there exists an input place $i \in P_1 \cap P_2$, an output place $o \in P_1 \cap P_2$, places $Q_1, Q_2 \subseteq P_1 \cap P_2$, $Q_2 \subseteq P_1$ where $|Q_2| \geq 2$, $r \in P_2 \setminus P_1$, transitions $V_1, V_2 \subseteq T_1$, and $V_3, V_4 \subseteq T_2 \setminus T_1$ such that:

Conditions on $N_1$:

1. $V_1 = \{ t^i_1, q_1 \in Q_1 \wedge q_2 \in Q_2 \}$ (every transition of $V_1$ is of the form $t^i_1, q_1 \in Q_1 \wedge q_2 \in Q_2$).
2. $V_2 = \{ t^i_2, q_1 \in Q_1 \wedge q_2 \in Q_2 \}$ (every transition of $V_2$ is of the form $t^i_2, q_1 \in Q_1 \wedge q_2 \in Q_2$).
3. For all $p \in Q_2 : \bullet p \subseteq V_1 \wedge p \subseteq V_2$ (preset and postset of all places in $Q_2$ are from $V_1$ and $V_2$, respectively).
4. For all $t^i_2, q_1 \in V_1 : \bullet t^i_2, q_2 \in V_2$ (preset of $t^i_2, q_1$ is $q_1$ and postset is $q_2$).
5. For all $t^i_2, q_1 \in V_1 : \bullet t^i_2, q_1 \in V_2$ (preset of $t^i_2, q_2$ is $q_2$ and postset is $q_1$).

Construction of $N_2$:

6. $P_2 = (P_1 \setminus Q_2) \cup \{ r \}$.
7. $T_2 = (T_1 \setminus (V_1 \cup V_2)) \cup (V_3 \cup V_4)$ where $V_3 = \{ t^i_3, q_1 \in Q_1 \}$ and $V_4 = \{ t^i_4, q_3 \in Q_3 \}$.
8. $F_2 = (F_1 \setminus ((P_2 \setminus T_2) \cup (T_2 \setminus P_2))) \cup (V_3 \setminus \{ r \}) \cup (\{ r \} \setminus V_4) \cup \{ (q_1, t^i_3, q_1 \in Q_1 \wedge t^i_4, q_3 \in Q_3 \}$.

**Fig. 20. Abstraction rule for RWF-nets: $\phi^R_1$.**
Theorem 10 (The /FES rule is soundness preserving). Let \( N_1 \) and \( N_2 \) be two WF-nets such that \( \langle N_1, N_2 \rangle \in /FES \). \( N_1 \) is sound iff \( N_2 \) is sound.

Proof. The state spaces of both nets are comparable, such that where the state space of \( N_1 \) contains edges for transitions in \( V_1 \), the state space of \( N_2 \) only contains edges for transitions in \( V_3 \). Similarly, the set of transitions \( V_2 \) in \( N_1 \) is now \( V_4 \) in \( N_2 \). The set of places \( Q_2 \) has been replaced with \( r \).

The fusion of equivalent subnets rule for RWF-nets (\( /RFE \)) extends the /FES rule by introducing reset arcs. The rule allows the removal of multiple identical subnets by replacing them with only one subnet. Additional requirements are that all places in \( Q_2 \) are reset by the same set of transitions and all transition pairs in \( V_1 \) and \( V_3 \) also reset the same places. Fig. 23 visualises the /FES rule.
Definition 18 (Fusion of equivalent subnets rule for RWF-nets: \( \phi_{\text{FES}} \)). Let \( N_1 \) and \( N_2 \) be two RWF-nets, where \( N_1 = (P_1, T_1, F_1, R_1) \) and \( N_2 = (P_2, T_2, F_2, R_2) \). \( (N_1, N_2) \in \phi_{\text{FES}} \) if there exists an input place \( i \in P_1 \cap P_2 \), an output place \( o \in P_1 \cap P_2 \), places \( Q_1, Q_3 \subseteq P_1 \cap P_2 \), \( Q_2 \subseteq P_1 \) where \( |Q_2| \geq 2 \), \( r \in P_2 \setminus P_1 \), transitions \( V_1, V_2 \subseteq T_1 \), and \( V_3, V_4 \subseteq T_2 \setminus T_1 \) such that:

Extension of the \( \phi_{\text{FES}} \) rule:

1. \( ((P_1, T_1, F_1), (P_2, T_2, F_2)) \in \phi_{\text{FES}} \) (Note that, by definition, the \( i, o, Q_1, Q_2, V_1, V_2, V_3 \), and \( V_4 \) mentioned in this definition have to coincide with the \( i, o, Q_1, Q_2, V_1, V_2, V_3 \), and \( V_4 \) as mentioned in the definition of \( \phi_{\text{FES}} \)).

Condition on \( R_1 \):

2. For all \( q_1 \in Q_1 \) and \( q_2, q'_2 \in Q_2 : R_1(\rho_{q_1}^{q_2}) = R_1(\rho_{q_1}^{q'_2}) \) (transitions in \( V_1 \) that have the same input set should also have the same reset arcs).

3. For all \( q_3 \in Q_3 \) and \( q_2, q'_2 \in Q_2 : R_1(\rho_{q_3}^{q_2}) = R_1(\rho_{q_3}^{q'_2}) \) (transitions in \( V_2 \) that have the same output set should also have the same reset arcs).

4. For all \( q_2, q'_2 \in Q_2, R_1(q_2) = R_1(q'_2) \) (places in \( Q_2 \) are reset by the same set of transitions).

Construction of \( R_2 \):

5. \( R_2 = \{ (z, R_1(z) \cap P_2) | z \in T_2 \cap T_1 \} \cup \{ (z, (R_1(z) \cap P_2 \cup \{r\})) | z \in R_1^{-1}(q_2) \wedge q_2 \in Q_2 \} \cup \{ (\rho_{q_1}^{q_2}, R_1(\rho_{q_2}^{q'_3}) \cap P_2) | q_1 \in Q_1 \wedge q_2 \in Q_2 \} \cup \{ (\rho_{q_3}^{q'_2}, R_1(\rho_{q_2}^{q'_3}) \cap P_2) | q_3 \in Q_3 \} \)

Theorem 11 (The \( \phi_{\text{FES}} \) rule is soundness preserving). Let \( N_1 \) and \( N_2 \) be two RWF-nets such that \( (N_1, N_2) \in \phi_{\text{FES}} \). \( N_1 \) is sound iff \( N_2 \) is sound.

Proof. The proof is similar to the one for the \( \phi_{\text{FES}} \) rule. The state spaces of both nets are comparable, such that where the state space of \( N_1 \) contains edges for transitions in \( V_1 \), the state space of \( N_2 \) only contains edges for transitions in \( V_3 \). Similarly, the set of transitions \( V_2 \) in \( N_1 \) is now \( V_4 \) in \( N_2 \). The set of places \( Q_2 \) has been replaced with \( r \). Additional requirements for reset arcs ensure that the transitions can be abstracted. □

In this section, seven reduction rules for RWF-nets have been presented. Please note that we do not claim the set of rules to be complete. We have shown that transitions with reset arcs or places that can be reset cannot be entirely abstracted from the net. Hence, it is not possible to reduce an RWF-net from a large net to a trivial net with just a source node, a single transition and a sink node even if the net is correct (i.e. sound) (cf. Figs. 1 and 2). Nevertheless, reduction rules presented in this paper can be used to reduce the size of an RWF-net and to improve the complexity of performing verification. We have applied these reduction rules to workflows modelled in YAWL and found them to be very effective. It is easy to see that all seven rules also apply to arbitrary reset nets while preserving liveness and/or boundedness. Only trivial requirements like pre and postsets not being empty are sufficient.

4.8. Reducing the credit card application process model

We now use the RWF-net in Fig. 5 to illustrate the reduction of the credit card application example in a step-by-step manner. Five reduction rules; the \( \phi_{\text{FST}} \) rule, the \( \phi_{\text{FSP}} \) rule, the \( \phi_{\text{ELT}} \) rule, the \( \phi_{\text{PPT}} \) rule and the \( \phi_{\text{ETL}} \) rule, are applied repeated to the model to obtain the reduced RWF-net. The number of elements (transitions and places) in the original reset net is 77 and the number of elements in the final reduced net is 11.

Fig. 24 depicts where the \( \phi_{\text{FST}} \) rule and the \( \phi_{\text{FSP}} \) rule can be applied to the model. You can see that the \( \phi_{\text{FST}} \) rule, for instance, cannot be applied to any of the transitions within the reset region of transition cne as one the requirements of this rule is that the intermediate place between two transitions cannot be a reset place. The \( \phi_{\text{FST}} \) rule has been applied successfully to the other half of the net where there are no reset arcs. Similarly, transitions ras and rae cannot be reduced using the \( \phi_{\text{FST}} \) rule as one of the output places of transition rae is a reset place. On the other hand, we can apply the \( \phi_{\text{FSP}} \) rule a number of times to reduce the number of transitions and places within the reset region.

Fig. 25 depicts the reduced net after applying the \( \phi_{\text{FST}} \) rule and the \( \phi_{\text{FSP}} \) rule repeatedly. The reduced transitions and places are coloured in grey. It also demonstrates three additional reduction rules that are applicable to the model. One of them is the \( \phi_{\text{ELT}} \) rule, which is applied twice to the loop structures involving timeout (tos) and receive more information (ris). This reduction has a significant impact on the calculation of state space during reachability analysis. We can also observe the \( \phi_{\text{PPT}} \) rule being applied twice, once to the transitions which have reset arcs on their input and output places and the second time to the transitions without any reset arcs on their input and output places. The \( \phi_{\text{PPT}} \) rule is applied once to reduce the elements in the bottom half of the model.

Fig. 26 depicts applicable reduction rules for a final round of reduction. Fig. 27 depicts the final reduced net with 11 elements. Please note that according to the \( \phi_{\text{FSP}} \) rule, it is not possible to reduce the input place i or the output place o. Similarly, the \( \phi_{\text{ETL}} \) rule prevents transitions ras and rae to be reduced due to one of the output places (the grey place) of transition rae.
having a reset arc. Transitions cns and cne cannot be reduced using the $\phi_{\text{FST}}$ rule either, because transition cne has a reset arc. From this, it is clear that no other reduction rules can be applied to this net. Also, note that if an original model has reset arcs, the final reduced net will have one or more reset arcs. It is not possible to entirely abstract from them. In this case, the entire cancellation region is now represented by one place. Next, we discuss how these reduction rules are used in the verification of YAWL process models with cancellation regions.
5. Implementation in YAWL

Reduction rules presented in this paper have been implemented in the YAWL Editor (version 1.4.4) to manage the complexity of detecting various desirable properties for YAWL workflows. Using the verification feature, it is possible to detect four desirable properties for YAWL workflows: soundness, weak soundness, irreducible cancellation regions, and immutable OR-joins. Coverability and reachability analyses of reset nets have been used to perform verification of YAWL workflows with cancellation.

Fig. 28 shows the results from the soundness property check for a YAWL workflow with cancellation, that has similar semantics to the example RWF-net shown in Fig. 1 (task F cancels c1, C, c2, D, c3) using reduction rules. The YAWL workflow is first transformed into an equivalent RWF-net with 54 elements. The reduced net has 13 elements after applying these rules recursively. The $\phi_{\text{FSP}}$ rule has been applied 18 times, then the $\phi_{\text{FSP}}^R$ rule 2 times and then the $\phi_{\text{FSP}}^R$ rule 1 time again.
Fig. 29 shows the soundness property check for the credit card application process. The time it takes to verify the soundness property of the credit card application process with 77 elements took approximately 0.35 s without using reduction rules. When using the reduction rules, the reduced net contains 11 elements and it took only 0.1 s to perform both the reduction and the soundness check.

We also carried out a case study by modelling the visa application process to Australia as a set of four YAWL workflows with cancellation and OR-joins. The resulting YAWL workflows are then verified for correctness with and without using reduction rules. The analysis of this model became intractable when verifying the soundness property of these four nets without using reduction rules (for details: see the Ph.D. Thesis of the first author [16]). The findings support that the reduction rules are necessary for the efficient verification of YAWL workflows as they could speed up the time it takes to generate reachability and coverability sets needed to detect these properties. For instance, the time it took to verify the soundness property of one of the nets with 89 elements containing many reset arcs was approximately 25 s without using reduction rules. When using the reduction rules, the reduced net contained 35 elements and it took only 4 s to perform both the reduction and the soundness check.

6. Related work

Reduction rules have been suggested to be used together with Petri nets for the verification of workflows (cf. Chapter 4 of [2]). We follow a similar approach with a set of reduction rules for workflow nets with cancellation regions using reset nets. In the general area of reset nets, Dufourd et al.’s work has provided valuable insights into the decidability status of various properties of reset nets including reachability, boundedness and coverability [8,9]. A number of authors have investigated reduction rules for Petri nets and for various subclasses of Petri nets. Berthelot presents a set of reduction rules for general Petri nets [4]. They include transformation on places such as structurally redundant places, double places and equivalent places and fusion of transitions such as post-fusion, pre-fusion and lateral fusion and these rules provided inspiration for our work. Six reduction rules are presented for Petri nets in [13] and this set of rules has been used as a starting point for the rules in this paper. In [6], a set of reduction rules are proposed for free-choice Petri nets while preserving well-formedness. Even though reduction rules exist for Petri nets, the nature of reset arcs could invalidate the transformation rules applicable to Petri nets. For example, it is possible that an incorrect net that does not satisfy the proper completion criterion (i.e., tokens can be left in the net when it reaches the end) becomes sound when there is a reset arc to remove the leftover token before completion. Therefore, we proposed extensions to the requirements for Petri net reduction rules with additional restrictions with respect to reset arcs. The abstraction rule defined in [6] for free-choice Petri nets has been extended for reset nets. In [14], authors extend the reduction rules given by Berthelot for Time Petri nets. Six reduction rules that preserve correctness for EPCs including reduction rules for trivial constructs, simple splits and joins, similar splits and joins, XOR loop and optional OR-loop are proposed in [7]. However, these reduction rules do not take cancellation into account.

7. Conclusion

In this paper, seven reduction rules for a subclass of reset nets, RWF-nets, were proposed and proven to be correct with respect to the soundness property, a well-established correctness notion in the context of workflow specification. These reduction rules for RWF-nets were inspired by earlier reduction rules for Petri nets without reset arcs (except for the fusion of equivalent subnets rule). As mentioned in the introduction, a reset arc introduces significant complexities when determining the correct behaviour of a net. This is reflected by the addition of extra context conditions in the reduction rules. It is perhaps not a surprise that reset arcs do not offer new possibilities for reduction rather they limit them. In most cases, the conditions ensure that (1) the place or transition that is removed from the net is not connected to a reset arc or (2) all places and transitions that are merged are connected to the same node via a reset arc. We also demonstrated how a business process model with cancellation feature can be reduced using the proposed reduction rules. The proposed reduction rules have found a practical application in the YAWL open source workflow management system, which provides support for cancellation regions, for the purposes of speeding up verification and reducing the state space. Even though the paper focuses on a subclass of reset nets, RWF-nets, the reduction rules presented for RWF-nets in this paper can be generalised beyond RWF-nets and the rules are equally applicable to arbitrary reset nets (cf. Section 4). As the requirements for these rules ensure that occurrence sequences in the original net and the reduced net correspond to each other, these reduction rules are liveness and boundedness preserving.

Acknowledgement

We would like to acknowledge Marc Voorhoeve for providing the construction which proves that the general problem of determining soundness for RWF-nets is not decidable (see [16] for details).

References


