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Process mining has been around for more than a decade now, and in that period
several discovery algorithms have been introduced that work fairly well on average-
sized event logs, that is, event logs that contain about 50 different activities.
Nevertheless, these algorithms have problems dealing with big event logs, that
is, event logs that contain 200 or more different activities. For this reason,
a generic approach has been developed which allows such big problems to be
decomposed into a series of smaller (say, average-sized or even smaller) problems.
This approach offers formal guarantees for the results obtained by it, and makes
existing algorithms also tractable for larger logs. As a result, discovery problems
may become feasible, or may become easier to handle. This paper introduces a tool
framework, called Divide and Conquer that fully supports this generic approach
and that has been implemented in ProM6. Using this novel framework, this paper
demonstrates that significant speed-ups can be achieved for discovery. This paper
also discusses the fact that decomposition may lead to different results, but that

this may even turn out to have a positive effect.
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1. INTRODUCTION

The ultimate goal of process mining [1] is to gain
process-related insights based on event logs created by
a wide variety of systems. An event log then contains a
sequence of events for every case that was handled by
the system. As an example, Table 1 shows data related
to a typical event recorded for some system, which can
be interpreted as follows [2]:

On October 1st, 2015, resource 112 has
completed activity a1.

A sequence of events contained in an event log is
commonly referred to as a trace. From the data
associated with the trace, we can derive for which
particular case activity a1 was completed.
Typically, research done in the process mining area

can be divided into three subfields: process discovery,
process conformance, and process enhancement. In this
paper, we will only consider process discovery.

Key Value

concept:name a1

lifecycle:transition complete
org:resource 112
time:timestamp 2015-10-01T00:38:44.546

TABLE 1. Event e1.

The field of process discovery [1] deals with
discovering a process model from an event log.
Example process discovery algorithms include the
Alpha Miner [3], the ILP Miner [4], and the Inductive
Miner [5]. The Alpha Miner was the first process
discovery algorithm to discover concurrency adequately.
The ILP Miner basically converts the discovery problem
into many ILP (Integer Linear Problem) problems
and solves the discovery problem by solving all these
ILPs. The Inductive Miner is the most recent
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FIGURE 1. The effect of different number of traces using
the ILP miner.

discovery algorithm of these three, which discovers
block-structured [6] models in limited time by using a
powerful divide-and-conquer approach.
As indicated, the ILP Miner may use many ILPs to

solve the problem at hand. The size of these ILPs is
mainly determined by the number of different activities
present in the event log, and much less by the number
of traces in the event log. For example, consider the
57/52/n event log from the IS 2014 data set [7]. This
log contains 2000 traces, 57 activities, an average trace
length of 52, and noise. For this event log, we have
created 9 increasingly smaller event logs by repeatedly
filtering out the last 200 traces. Figure 1 shows the
typical computation times needed by the ILP Miner
on these logs as implemented in the process mining
framework ProM6 [8]. The figure shows that splitting
the log in this way does not really help in speeding
up the ILP Miner. Granted, a sublog containing only
200 traces requires much less time than the overall log
containing 200 traces, but if we have to run the ILP
Miner on 10 such sublogs and then merge the results3,
we do not gain much. For the same event log, we
also have created 10 smaller event logs by repeatedly
filtering out 5 random activities4 Figure 2 shows the
typical computation times needed by the same ILP
Miner on these logs. The figure shows that if we would
be able to split the event log into five sublogs each

3Note that as the 10 results may disagree with each other, this
merge may be (close to) impossible.

4The activities have been removed in the following batches of
five: first {J, I4, L,O,X}, {AZ,AP,AG,AD,N}, {AS,R,AW,C,
D}, {AN,AX,AK,AH,AY }, {Q,Y, I2, I, AA}, {AC,AT,W,H,
I5}, {AB,AF,B,AR, F}, {AJ, T, V, S,AL}, {Z, I3, G,AQ,A},
last {AE,AI, P,AU,E}, which leaves the activities {AV,U,AO,
AM,M, I1,K} for the final log.
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FIGURE 2. The effect of different number of activities
using the ILP miner.

containing 17 activities, the ILP Miner might only need
60 seconds instead of almost 1400.

To be able to deal with big event logs containing
200 or more different activities, [9] has proposed
a theoretical decomposition approach for process
discovery. Instead of discovering a process model from
the overall event log (the monolithic approach), this
decomposed approach first decomposes the event log
into a number of sublogs that each contains only a
subset of the activities from the overall event log,
second it employs the discovery algorithm on each of
these sublogs resulting in as many process submodels,
and third it merges all submodels into an overall
process model. This decomposition approach may
be significantly faster than the monolithic approach,
provided that:

1. the event log can be decomposed reasonably fast
over the sublogs,

2. the discovery algorithm is significantly faster on
the sublogs, possibly by running it concurrently on
these sublogs on different machines, and

3. the discovered submodels can be merged in a
reasonably fast way, even though it may require
solving some ILP problems to remove redundant
places [9].

This paper introduces the Divide and Conquer
tool framework, which instantiates the theoretical
decomposed discovery approach as introduced in [9],
and which has been implemented in ProM6. This
framework offers an easy integration of existing
discovery algorithms, that is, existing algorithms can
be decomposed in an easy way. This paper also
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includes two evaluations of this framework: A first
using a number of artificial data sets varying in size and
complexity [10, 11, 7], and a second using real-life data
sets varying in size and complexity [12, 13]. Finally,
this paper discusses the fact that using decomposed
discovery may lead to different results, but it also shows
that this may have a positive effect as it was needed
to win a contemporary process discovery contest [14].
Results show that (1) decomposition may provide
results in cases where the monolithic approach fails, (2)
for larger cases decomposition provides results in less
time, (3) decomposition may actually result in a model
that explains the log at hand at-least-as-good (that is, it
may at-least-as-good classify whether or not a new trace
originates from the same system that generated the
log), and (4) the decomposition overhead is insignificant
when using a complex miner like the ILP Miner.
The remainder of this paper is organized as follows.

Section 2 introduces the concepts necessary for the
other sections, these include activity logs and accepting
Petri nets. Note that the remainder of this paper will
use accepting Petri nets as process models. Section 3
introduces the tool framework, which includes (a)
different heuristics to split an overall event log into
sublogs, (b) information on how to add an existing
discovery algorithm to the framework, (c) an approach
to merge many discovered subnets into an overall
accepting Petri net, and (d) the implementation of
the framework in ProM6. Section 4 introduces the
two evaluations conducted with the ILP Miner and
the tool framework. The first evaluation uses artificial
logs, whereas the second evaluation uses real-life logs.
Section 5 discusses the fact that decomposed discovery
may lead to different results, but also that these
differences may be positive. Furthermore, this section
discusses the use of the other, non-ILP Miner, discovery
algorithms within the framework. Section 6 concludes
the paper.

2. PRELIMINARIES

This section presents the key concepts informally. See
[9] for formalizations of these concepts.

2.1. Logs

In this paper, we often consider activity logs, which are
an abstraction of the event logs as found in practice.
An activity log is a collection of traces, where every

trace is a sequence of activity occurrences. Table 2
shows the example activity log L1, which contains
information about 20 cases. For example, 4 cases
followed the trace ⟨a1, a2, a4, a5, a8⟩. In total, the log
contains 8 activities ({a1, . . . , a8}) and 13+17+9+2×
9 + 9+ 4× 5 + 9+ 9+ 5+ 5+ 17 + 3× 5 + 5+ 5 = 156
activity occurrences.
An event log is a collection of traces, where every

trace is a sequence of events. Table 1 shows a typical
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FIGURE 3. A Petri net.

event from an event log, containing the following
attributes [2]:

concept:name The activity name of the event, in this
case the events refers to the activity known as a1;

lifecycle:transition The activity transition of the
event, in this case activity a1 has been completed
(other options include starting, suspending, resum-
ing, and aborting an activity [2]);

org:resource The resource that triggered the event, in
this case the resource which is known by number
112 in the organization;

time:timestamp The date and time the event
occurred, in this case some time on October 1st,
2015.

We assume that two events never have the same
attribute values. This can be enforced by giving
each event a unique identifier. An activity log can
be obtained from an event log by using a so-called
classifier [2], which is a set of attribute keys. Using
such a classifier an activity log is obtained by replacing
every event in the log with the combined values of the
classifier. Typically [2], this will be the value of the
concept:name attribute (see, for example, Table 2),
or the combined value of the concept:name and
lifecycle:transition attributes.

In the remainder of this paper, a log corresponds to
an activity log, unless it is explicitly stated that it is an
event log.

2.2. Petri nets

A Petri net can model a process using three different
types of elements: places, transitions, and arcs.
Figure 3 shows an example Petri net containing 10
places ({p1, . . . , p10}), 11 transitions ({t1, . . . , t11}), and
24 arcs.

The dot in place p1 is called a token. All tokens
together indicate the current state of the Petri net,
which is called a marking. In the example, the marking
contains only a single token in place p1, denoted [p1],
but it could also contain the two tokens in place p1
and three tokens in place p2, denoted [p1

2, p2
3]. This
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Trace Frequency

⟨a1, a2, a4, a5, a6, a2, a4, a5, a6, a4, a2, a5, a7⟩ 1
⟨a1, a2, a4, a5, a6, a3, a4, a5, a6, a4, a3, a5, a6, a2, a4, a5, a7⟩ 1
⟨a1, a2, a4, a5, a6, a3, a4, a5, a7⟩ 1
⟨a1, a2, a4, a5, a6, a3, a4, a5, a8⟩ 2
⟨a1, a2, a4, a5, a6, a4, a3, a5, a7⟩ 1
⟨a1, a2, a4, a5, a8⟩ 4
⟨a1, a3, a4, a5, a6, a4, a3, a5, a7⟩ 1
⟨a1, a3, a4, a5, a6, a4, a3, a5, a8⟩ 1
⟨a1, a3, a4, a5, a8⟩ 1
⟨a1, a4, a2, a5, a6, a4, a2, a5, a6, a3, a4, a5, a6, a2, a4, a5, a8⟩ 1
⟨a1, a4, a2, a5, a7⟩ 3
⟨a1, a4, a2, a5, a8⟩ 1
⟨a1, a4, a3, a5, a7⟩ 1
⟨a1, a4, a3, a5, a8⟩ 1

TABLE 2. Activity log L1 in tabular form.

a1

a4 a5a6
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a8
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FIGURE 4. An accepting Petri net N1. Note that
transitions are labeled and there is a well-defined start and
end.

latter marking would be visualized by putting two dots
in place p1 and three dots in place p2.
As usual [15], a transition t is enabled in some

marking M , denoted M [t⟩, if all its input places (that
is, places from which there is an arc to transition
t) contain tokens in marking M . In the example
Petri net, only transition t1 is enabled in the example
marking [p1], that is, [p1][t1⟩. A transition enabled in
a marking M may fire, resulting in a new marking M ′,
denoted M [t⟩M ′, where M ′ equals M where one token
is removed from every input place of t and one token
is added to every output place of t. In the example
Petri net, if transition t1 fires at marking [p1], the new
marking would be [p2], that is, [p1][t1⟩[p2].
A firing sequence is a sequence of markings and

transitions such that every transition is enabled in
its predecessor marking and results in its successor
marking. For example, in the example net, the sequence
⟨[p1], t1, [p2], t2, [p3, p4], t3, [p4, p5]⟩ is a firing sequence.
A transition sequence is a firing sequence projected
onto the transitions. For example, the example firing
sequence yields ⟨t1, t2, t3⟩ as transition sequence.
As usual in process mining [1], we extend Petri

nets with labels, an initial marking, and a set of final
markings, yielding an accepting Petri net. Figure 4
shows an accepting Petri net N1 based on the example

Petri net, with labels (like a1 and a8), an initial marking
([p1]), and one final marking ([p10]).

The labels are used to link transitions in the Petri
net to activities in an activity log. As an example,
transition t1 is linked to activity a1. Transitions that
are linked to activities are called visible transitions.
Transitions that are not linked to activities, like
transition t2, are called invisible transitions. Invisible
transitions are visualized using a black square.

As a result of the labeling, we can obtain an activity
sequence from a transition sequence by removing
all invisible transitions while replacing every visible
transition with its label. For example, the example
transition sequence ⟨t1, t2, t3⟩ yields activity sequence
⟨a1, a2⟩ (because t2 is invisible).

The initial marking and final markings are included
to have a well-defined start and end, just like the traces
in the log. When replaying an activity log on a Petri
net, the Petri net needs to have an initial marking to
start with, and final markings to conclude whether the
replay has reached a proper final state. In the example,
a replay of some trace starts from marking [p1], and the
replay will only be successful if marking [p10] is reached.

In the remainder of this paper, a net corresponds to
an accepting Petri net, unless it is explicitly stated that
it is a Petri net.

2.3. Discovery algorithms

A discovery algorithm (see Figure 5) is an algorithm
that takes as input an overall log (like L1) over some
set of activities A and that creates as output a net
(like net N1) over the same set of activities A. Note
that we do assume that the labeling function of the
created net is surjective (there is at least one transition
for every activity), but that we do not assume that it is
injective (there may be multiple transitions labeled with
the same activity). Example discovery algorithms that
do result in an injective labeling function include the
Alpha Miner [3], the Heuristics Miner [16], the Hybrid
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Log

Net

Discovery

algorithm

FIGURE 5. Conceptual view on a discovery algorithm.

ILP Miner [17], the ILP Miner [4], and the Inductive
Miner [5]. Example discovery algorithms that may
result in a non-injective labeling function include the
Evolutionary Tree Miner [18].

3. TOOL FRAMEWORK

The goal of decomposed discovery is to apply an existing
discovery algorithm on a series of sublogs instead of one
overall log, where every sublog contains significantly
less different activities than the overall log. Under the
assumption that (1) the complexity of the discovery
algorithm is significantly worse than linear (in the
number of different activities), and (2) the additional
overhead of having to decompose the log beforehand
and merge the submodels afterwards do not spoil
the benefits, the decomposed discovery algorithm is
expected to finish well before the monolithic discovery
algorithm.
For this reason, the decomposed discovery algorithm

first determines small sets of different activities that
are expected to have direct causal relations among
themselves. These sets of activities are referred to
as activity clusters in the remainder of this paper.
Figure 6 then shows a conceptual view on a decomposed
discovery algorithm. First, the algorithm uses different
heuristics to construct a collection of possible activity
cluster sets, and selects the best activity cluster set from
that collection. Second, for every activity cluster in the
selected set, the algorithm filters the overall activity log
into a sublog. Third, the algorithm discovers a subnet
from the sublog using the provided discovery algorithm.
Fourth and last, the subnets are merged into an overall
net.
This section first introduces each of these steps in

detail. Second, it introduces the implementation of the
decomposed discovery algorithm in ProM6.

3.1. Discover clusters

The goal of this step is to obtain an as-best-as-possible
set of small activity clusters, where the activities
within a single cluster have direct causal relations
among themselves. Figure 7 shows the approach the
decomposed discovery algorithm uses to achieve this.

Overall log

Discover

clusters

Filter

sublog

Discovery

algorithm

Merge

subnets

Overall net

For every ac-

tivity cluster

Sublog

Subnet

Best

clusters

Section 3.2

Section 3.1

Section 3.3

Section 3.4

FIGURE 6. Conceptual view on a decomposed discovery
algorithm.

First, a matrix is discovered from the overall log
indicating for every pair of activities how strong the
direct causal relation is from the first to the second.
Second, a graph is derived from this matrix containing
only the strongest relations. Third, an initial set of
activity clusters is derived from this graph. Fourth, a
set of grouped activity clusters is derived from the initial
set of clusters by grouping very small or very coherent
clusters together. These four steps are executed using
a collection of different settings (different heuristics),
leading to a collection of as many cluster sets. Fifth
and last, the best set from the collection is selected and
returned as result. In the remainder of this section, we
provide the necessary details for these 5 steps.

3.1.1. Discover matrix
This step discovers a matrix (using some heuristics) that
contains for every pair of two activities the estimated
strength of the direct causal relation from the first
activity to the second. We will refer to such a matrix
as a causal activity matrix. Table 3 shows an example
causal activity matrix M1 for log L1.

The strengths in a causal activity matrix range from
−1.0 (weakest) to 1.0 (strongest), which should be
interpreted as follows:

• A value of 1.0 indicates that it is sure that there is
a direct causal relation.
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From/To a1 a2 a3 a4 a5 a6 a7 a8

a1 −0.41 0.91 0.75 0.88 −1.00 −1.00 −1.00 −1.00
a2 −1.00 −0.79 −1.00 0.29 0.88 −1.00 −1.00 −1.00
a3 −1.00 −1.00 −0.76 0.10 0.86 −1.00 −1.00 −1.00
a4 −1.00 −0.29 −0.13 −0.86 1.00 −1.00 −1.00 −1.00
a5 −1.00 −1.00 −1.00 −1.00 −1.00 0.93 0.90 0.92
a6 −1.00 0.75 0.83 0.86 −1.00 −0.60 −1.00 −1.00
a7 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −0.62 −1.00
a8 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −0.63

TABLE 3. Example causal activity matrix M1 for log L1.

Overall log
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Group
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Section 3.1.3

Section 3.1.4

Section 3.1.5

FIGURE 7. Conceptual view on discovering activity
clusters.

• A value of 0.5 indicates that it is likely that there
is a direct causal relation.

• A value of 0.0 indicates that we do not know
whether there is a direct causal relation or not.

• A value of −0.5 indicates that it is likely that there
is no direct causal relation.

• A value of −1.0 indicates that it is sure that there
is no direct causal relation.

For example, based on M1, we are sure that there
is a direct causal relation from a4 to a5 (as M1(a5,

a5) = 1.0), and we are sure that there is no direct causal
relation from a2 to a1 (as M1(a2, a1) = −1.0).

Table 4 shows an overview of the heuristics currently
implemented in the tool framework for discovering a
causal activity matrix from a log.

3.1.2. Create graph

In this step, we create a graph containing the stronger
direct causal relations. This is done by removing the
relations from the casual activity matrix that are not
strong enough to satisfy a preset threshold. We will
refer to such graph as a causal activity graph. Figure 8
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a6

a7
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0.50

0.75

0.71

0.71

1.00

0.67

0.50

0.87

0.83

0.80

FIGURE 8. Example causality graph G1 for matrix M1.

shows a causal activity graph G1 created from causal
activity matrix M1. The strengths of the arcs in the
causal activity graph range from 0.0 (exclusive) to 1.00
(inclusive). The closer the strength is to 1.0, the more
confident we are that there is indeed such a direct causal
relation. For example, based on G1, we are sure that
there is a causal relation from a4 to a5 (weight is 1.0),
and there might be a causal relation from a6 to a2
(weight is 0.5).

To create a causal activity graph from a causal
activity matrix M , we simply take all values from M
that exceed 0.0. However, prior to doing this, we first
apply two transformations on M , which might affect
the outcome.

The first transformation is the zero value transforma-
tion, which takes a new zero value z ∈ (−1.0, 1.0) and
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Heuristic Description

Heuristics A simple heuristic based on how often a is directly followed by a′ in L and vice
versa.

Fuzzy A more involved heuristic that also takes second-order effects (like how often a is
directly followed by a′ compared to how often a it directly followed by a′′).

Alpha A heuristic based on the Alpha miner. If the Alpha miner creates a place
between the transitions labeled with a and a′, then this heuristics returns 1.0,
otherwise −1.0.

Random A heuristic that returns a random value (for testing purposes only).

Average A meta heuristic that returns the average value of the Heuristics, Fuzzy, and
Alpha heuristics.

Mini A meta heuristic that returns the minimal value of the Heuristics, Fuzzy, and
Alpha heuristics.

Midi A meta heuristic that returns the middle value of the Heuristics, Fuzzy, and
Alpha heuristics.

Maxi A meta heuristic that returns the maximal value of the Heuristics, Fuzzy, and
Alpha heuristics.

TABLE 4. Heuristics to discover a causal activity matrix.

transforms M to M⊥z using the following rule:

M⊥z(a, a
′) =



1.0 if M(a, a′) = 1.0;
M(a,a′)−z

1.0−z if M(a, a′) ∈ (z, 1.0);

0.0 if M(a, a′) = z;
M(a,a′)−z

1.0+z if M(a, a′) ∈ (−1.0, z);

−1.0 if M(a, a′) = −1.0.

Clearly, this transformation has an effect on which
values in the matrix will be selected for arcs in the
graph: Any value exceeding value z will be selected,
any other value will not. As an example, causal activity
graph G1 was obtained from matrix M1⊥0.5.
The second transformation is the concurrency

threshold transformation, which takes a concurrency
threshold c ∈ (0.0, 1.0] and transforms M to M∥c using
the following rule:

M∥c(a, a′) =
{

−0.5 if |M(a, a′)−M(a′, a)| < c;
M(a, a′) otherwise.

This transformation can be used to downplay values in
the matrix in case the relation between activities are
balanced, which may be caused because both activities
can be executed concurrently [1]. In case of concurrent
activities, direct causal relations are not wanted.

3.1.3. Create clusters
This step creates an initial set of activity clusters from
a causal activity graph. These activity clusters are
created by first assigning an equivalence class on the
arcs in the graph. For this equivalence class, two arcs
are directly equivalent if one of the following conditions
hold:

Input arcs Both arcs share the same source node. As
an example, the arcs (a1, a2), (a1, a3), and (a1, a4)
in Figure 8 belong to the same equivalence class,
as they all have a1 as source node.

Output arcs Output arcs of the same target node.
As an example, the arcs (a1, a2) and (a6, a2) in
Figure 8 belong to the same equivalence class, as
they both have a2 as target node.

As now (a1, a2) is equivalent to both (a1, a3) and (a6,
a2), (a1, a3) and (a6, a2) are equivalent as well (if x
is equivalent to y and y is equivalent to z, then x is
equivalent to z). In a similar way, the arcs (a1, a4),
(a6, a4), and (a6, a3) are also equivalent to (a1, a2).
However, the arc (a3, a5) is not equivalent to (a1, a2),
as there are no nodes equivalent to (a1, a2) that have
either a3 as source node or a5 as target node. Note that
although there are equivalent arcs that have a3 as target
node, there are no arcs that have a3 as source node.
Second, a single cluster is created for every equivalence

a2

a3

a4

a5

a1

a2

a3

a4

a6

a5

a6

a7

a8

FIGURE 9. Example activity clusters C1 for graph G1.

class. This cluster contains all arcs in that equivalence
class, and all nodes connected to these arcs. As an
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8 H.M.W. Verbeek et al.

example, the arcs (a1, a2), (a1, a3), (a1, a4), (a6, a2),
(a6, a3), and (a6, a4) form a cluster together with the
nodes a1, a2, a3, a4, and a6. Likewise, the arcs that
share node a5 as target node form a cluster, as do the
arcs that share a5 as source node. Figure 9 shows the set
of activity clusters created from causal activity graph
G1.
To prevent any confusion in the remaining steps,

the set of activity clusters are ordered. As a result,
there will be a first cluster, a second cluster, etc. This
ordering allows us to keep track of which subnet was
discovered from which sublog.

3.1.4. Group clusters
This step changes the initial set of activity clusters by
grouping clusters that are strongly related to each other.
As an example, the two leftmost clusters as shown in
Figure 9 have three activities in common (a2, a3, and
a4), whereas the other pairs of clusters only have a
single activity in common (either a5 or a6). When
having to group clusters, it is therefore better to group
the two leftmost clusters. Figure 10 shows the resulting
set of activity clusters.

a1

a2

a3

a4

a6

a5

a6

a7

a8

a5

FIGURE 10. Example grouped activity clusters C2.

This grouping of clusters, along with the reason for
doing this, has been described in detail in [19]. In short,
a set of activity clusters is considered to be better if it
scores better on the weighted quality metrics as shown
in Table 5. Each of these metrics provides a value
between 0.0 and 1.0, and using the provided relative
weights, an end score is determined.
This step starts with the initial set of clusters and

requires a percentage of clusters as input. As long as
the number of clusters divided by the number of initial
clusters exceeds the given percentage, this step selects
the best two different activity clusters to be merged,
and merges them.

3.1.5. Select best clusters
Instead of relying on a single heuristic, the decomposed
discovery algorithm relies on three different discovery
heuristics with four different zero values each. Table 6
shows an overview of the discovery heuristics used for
selecting the best activity clusters. For each of these
combinations, the set of activity clusters is determined.
From these sets of clusters, the best one is selected.

The reason for selecting these heuristics is that
experiments have shown that sometimes one works best,
and sometimes another. The reason for using the values
−0.5, 0.0, and 0.5 as zero values is to have some coverage
of the entire space of these parameters, that is, (−1.0,
1.0). The reason for adding the values −0.6 and 0.9 is
that we have seen empirically that for these values these
heuristics often provide good results.

3.2. Filter sublog

The goal of this step it so split the overall activity log
into a sublog for every activity cluster. The sublogs
are ordered in the same way as the activity clusters are
ordered. As a result, the first sublog corresponds to the
first cluster, the second sublog to the second cluster, etc.
For a given cluster, a sublog is obtained from the log by
filtering in those activities that correspond to nodes in
that cluster. As an example, Table 7 shows the sublogs
resulting from filtering log L1 using the activity clusters
C1.

This filtering works for most of the existing discovery
algorithms, but the Alpha Miner is a known exception.
As an example of this, Figure 11 shows the result of

a4

a6

a2

a3a1

FIGURE 11. Result of the Alpha Miner on the sublog
obtained for cluster {a1, a2, a3, a4, a6}.

running the Alpha Miner on the first sublog, that is on
the log that corresponds to the cluster {a1, a2, a3, a4,
a6}. Obviously, the Alpha Miner is unable to properly
handle the activity a4 correctly, which is caused by the
fact that it appears both as a final activity (like in the
trace ⟨a1, a2, a4⟩) and in the middle of a trace (like in the
trace ⟨a1, a4, a2⟩) [9]. For the second cluster, the fact
that activity a4 appears both as an initial activity and
in the middle of a trace, results in a similar problem.

The typical work-around to overcome this problem
is to introduce an artificial start activity α and an
artificial end activity ω. These two artificial transitions
prevent that an initial or a final activity also occurs
in the middle of a trace. Table 8 shows the result of
adding these two artificial activities to the first sublog.
Figure 12 shows the result of running the Alpha miner
on this sublog. Clearly, the resulting net now handles
activity a4 in a proper way.

For this reason, when filtering the overall log for a
sublog using an activity cluster, we include the option
to add artificial start and end activities to the resulting
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Metric Description

Cohesion The causal relation strengths within every single cluster should be maximal.

Coupling The causal relation strengths between every two different clusters should be
minimal.

Size The sizes of the clusters should be distributed evenly.

Overlap The overlap (common activities) between every two different clusters should be
minimal.

TABLE 5. Quality metrics for activity clusters. Although other metrics are possible as well, we limit ourselves here to those
defined in [19].

Heuristic Zero values Concurrency threshold

Heuristics {−0.5, 0.0, 0.5, 0.9} {0.005}

Fuzzy {−0.6,−0.5, 0.0, 0.5} {0.005}

Midi {−0.5, 0.0, 0.5, 0.9} {0.005}

TABLE 6. Collection of heuristics to select the best activity clusters from.

Cluster {a1, a2, a3, a4, a6}

⟨α, a1, a2, a4, a6, a2, a4, a6, a4, a2, ω⟩
⟨α, a1, a2, a4, a6, a3, a4, a6, a4, a3, a6, a2, a4, ω⟩
⟨α, a1, a2, a4, a6, a3, a4, ω⟩
⟨α, a1, a2, a4, a6, a3, a4, ω⟩
⟨α, a1, a2, a4, a6, a4, a3, ω⟩
⟨α, a1, a2, a4, ω⟩
⟨α, a1, a3, a4, a6, a4, a3, ω⟩
⟨α, a1, a3, a4, a6, a4, a3, ω⟩
⟨α, a1, a3, a4, ω⟩
⟨α, a1, a4, a2, a6, a4, a2, a6, a3, a4, a6, a2, a4, ω⟩
⟨α, a1, a4, a2, ω⟩
⟨α, a1, a4, a2, ω⟩
⟨α, a1, a4, a3, ω⟩
⟨α, a1, a4, a3, ω⟩

TABLE 8. Filtered traces with artificial start and end
activities added for the first cluster in Table 7.

sublog. Obviously, this creates the obligation to remove
the transitions labeled with these activities later on,
that is, when merging the subnets into an overall net.

3.3. Discovery algorithm

The goal of this step is to discover a subnet from
every sublog by using the provided discovery algorithm.
Table 9 shows a list of existing discovery algorithms in
ProM6 that are currently supported by the framework.
Some of the existing discovery algorithms do not
discover a Petri net, and require a conversion algorithm
to convert the discovered model into a Petri net.
Although the ideas in this paper are not Petri-net
specific, the framework is tailored towards Petri nets to
allow for a modular approach. Without this, we would
need to customize things for every discovery approach.

a4

a6

a2

a3a1α ω

FIGURE 12. Result of the Alpha Miner on the first sublog
with artificial start and end activities.

The main problem with this step is that these existing
algorithms discover a Petri net with an initial marking
but without indicating explicit final markings. Recall
that the replay needs to check which traces are accepted
by the model. As a result, not only the initial marking
but also the final markings are important. Therefore,
we assume that a Petri net has both an explicit initial
marking and an explicit collection of final markings.
Such a Petri net we call an accepting Petri net.

The framework offers two solutions for this problem:

1. Some discovery algorithms do in fact discover a
Petri net with an explicit initial marking and
a collection of explicit final markings. Example
discovery algorithms for which this holds include
the Inductive Miner and the Evolutionary Tree
Miner. For such algorithms a wrapper is available
that first finds these initial and final markings for
the Petri net at hand, and second constructs an
accepting Petri net from them.

2. Other discovery algorithms only discover a Petri
net with an implicit initial marking (containing a
single token in every source place) and a collection
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10 H.M.W. Verbeek et al.

Cluster {a1, a2, a3, a4, a6} Cluster {a2, a3, a4, a5} Cluster {a5, a6, a7, a8}

⟨a1, a2, a4, a6, a2, a4, a6, a4, a2⟩ ⟨a2, a4, a5, a2, a4, a5, a4, a2, a5⟩ ⟨a5, a6, a5, a6, a5, a7⟩
⟨a1, a2, a4, a6, a3, a4, a6, a4, a3, a6, a2, a4⟩ ⟨a2, a4, a5, a3, a4, a5, a4, a3, a5, a2, a4, a5⟩ ⟨a5, a6, a5, a6, a5, a6, a5, a7⟩
⟨a1, a2, a4, a6, a3, a4⟩ ⟨a2, a4, a5, a3, a4, a5⟩ ⟨a5, a6, a5, a7⟩
⟨a1, a2, a4, a6, a3, a4⟩ ⟨a2, a4, a5, a3, a4, a5⟩ ⟨a5, a6, a5, a8⟩
⟨a1, a2, a4, a6, a4, a3⟩ ⟨a2, a4, a5, a4, a3, a5⟩ ⟨a5, a6, a5, a7⟩
⟨a1, a2, a4⟩ ⟨a2, a4, a5⟩ ⟨a5, a8⟩
⟨a1, a3, a4, a6, a4, a3⟩ ⟨a3, a4, a5, a4, a3, a5⟩ ⟨a5, a6, a5, a7⟩
⟨a1, a3, a4, a6, a4, a3⟩ ⟨a3, a4, a5, a4, a3, a5⟩ ⟨a5, a6, a5, a8⟩
⟨a1, a3, a4⟩ ⟨a3, a4, a5⟩ ⟨a5, a8⟩
⟨a1, a4, a2, a6, a4, a2, a6, a3, a4, a6, a2, a4⟩ ⟨a4, a2, a5, a4, a2, a5, a3, a4, a5, a2, a4, a5⟩ ⟨a5, a6, a5, a6, a5, a6, a5, a8⟩
⟨a1, a4, a2⟩ ⟨a4, a2, a5⟩ ⟨a5, a7⟩
⟨a1, a4, a2⟩ ⟨a4, a2, a5⟩ ⟨a5, a8⟩
⟨a1, a4, a3⟩ ⟨a4, a3, a5⟩ ⟨a5, a7⟩
⟨a1, a4, a3⟩ ⟨a4, a3, a5⟩ ⟨a5, a8⟩

TABLE 7. Filtered traces for activity log L1 and activity clusters C1 in Figure 9 in tabular form.

Discovery
algorithm

Discovery Plug-in Conversion Plug-in

Alpha
Miner [3]

“Alpha Miner”

Heuristics
Miner [16]

“Mine for a Heuristics Net using Heuristics
Miner”

“Convert Heuristics net
into Petri net”

Hybrid ILP
Miner [17]

“ILP-Based Process Discovery”

ILP Miner [4] “ILP Miner”

Inductive
Miner [5]

“Mine Petri net with Inductive Miner, with
parameters”

Evolutionary
Tree
Miner [18]

“Mine a Process Tree with ETMd using
parameters and classifier”

“Convert Process Tree to
Petri Net”

TABLE 9. Discovery algorithms in ProM6[8] supported by the framework. The conversion plug-ins listed are necessary to
convert a native result (like a heuristics net or a process tree) into a Petri net.

of implicit final markings (where each final marking
contains a single token in a single sink place).
Example discovery algorithms for which this holds
include the Alpha Miner, the Heuristics Miner,
the ILP Miner, and the Hybrid ILP Miner. The
Alpha Miner and Heuristics Miner always discover
a Petri net with a single source place and a single
sink place, with the underlying assumption that
the initial marking contains a single token in the
source place and the only final marking contains
a single token in the sink place. The ILP Miner
and the Hybrid ILP Miner always discover a Petri
net with any number of source places and no sink
places, with the underlying assumption that the
initial marking contains a token in every source
place, and that the only final marking is the empty
marking. For these algorithms a different wrapper
is available that first creates these initial and
final markings from the net at hand, and second
constructs an accepting Petri net from them.

Using these two wrappers, all discovery algorithms
mentioned in Table 9 could be added with ease to the
framework. In case a discovery algorithm does not
provide any initial and final markings (be it implicit or
explicit), or in case the algorithm has different implicit
markings than the ones mentioned, then a specific
wrapper needs to be created for it. This is allowed by
the framework but it will take some effort.

a1

a4a6

a2

a3

a4

a5

a2

a3 a5

a7

a8

a6

FIGURE 13. Result of the Hybrid ILP Miner on all
sublogs from Table 7.

As an example, Figure 13 shows the resulting subnets
that the Hybrid ILP Miner discovered from the sublogs
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that are shown in Table 7.
Please note that all these discovery algorithms are

oblivious to the fact that the sublog may contain
artificial activities. These algorithms will just discover
a Petri net from the sublog that was provided to them.

3.4. Merge subnets

The goal of this step is to merge the discovered subnets
into one overall net. This merge is done in three steps:
joining the subnets, hiding all transitions labeled with
artificial activities, and reducing the net. The result
after reduction will be the accepting Petri net that
results from the merge.

3.4.1. Join subnets
This step joins a collection of subnets into one overall
net using the following rules (cf. [9]):

Place Every place from every subnet is copied into the
overall net.

Invisible transitions Every invisible transition from
every subnet is copied into the overall net.

Visible transitions For every label, a single visible
transition with that label is selected as proxy for
all other transitions in all subnets with that label.
Only the proxy transition is copied into the overall
net.

Arc Every arc from every subnet is copied into the
overall net, where a transition is replaced by its
proxy if it has a proxy.

Initial marking The initial markings of all subnets
are combined into the overall initial marking.

Final markings For every possible combination of
final markings in the small net, an overall final
marking will be created. Note that markings are
multisets of tokens that can be combined easily.

a1

a4a6

a2

a3

a5

ωα

a5

a6

a7

a8

α ω

FIGURE 14. Possible nets resulting from discovery
algorithm.

Assume, for the sake of argument, that some
discovery algorithm has discovered the two subnets as

Cluster {a1, a2, a3, a4, a5, a6}

Cluster {a5, a6, a7, a8}

a1

a4

a2

a3

a5

α

a6

a7

a8

ω

FIGURE 15. Net that result from joining the subnets as
shown in Figure 14.

shown in Figure 14. Joining these two subnets results
in the overall net shown in Figure 15.

Note that in this step, we join all visible transition
with the same label by selecting a proxy and by
rerouting all arcs to and from this proxy. However,
this will not work in case one (or more) of the subnets
contains duplicate transitions (that is, multiple visible
transitions sharing the same label). As a result of the
rules, these two transitions would be joined as well. As

a5

a6

a7

a6

α ω

p1 t1
p2

t3

p3

t5

t4 t6

p4 t7
p5

FIGURE 16. Possible discovered net that contains two
duplicate transitions labeled a6.

an example, consider the subnet as shown in Figure 16.
In this net, the visible transitions t4 and t6 share label
a6. Obviously, joining these transitions is not desired:
t4 and t6 cannot both occur at the same time, so
merging them leads to a deadlock. As a result, before
joining the subnets, we need to make sure that every
subnet does not have duplicate transitions.

Figure 17 shows the solution used to solve this
problem: In every subnet, if duplicate transitions exist,
then the construct as shown in this figure is applied.
Every firing of transitions t4 and t6 in the subnet
is now replaced by the transition sequences ⟨ti4, ta6 , to4⟩
and ⟨ti6, ta6 , to6⟩ and vice versa. The places pa4 and
pa6 guarantee that any firing of any transition labeled
with a6 gets routed into the right direction. As an
example, transition to4 can only fire if ti4 has fired before.
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a5

a6

a7

α ω

p1 t1
p2

t3
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FIGURE 17. Similar net that contains only one visible
transition labeled a6.

As a result, we obtain an adapted subnet that has
similar behavior but which does not contain duplicate
transitions.
To avoid joining duplicate transitions in a single

subnet, before joining all subnets, all duplicate
transition in a single subnet are removed first by
adapting every subnet.

3.4.2. Hide transitions labeled with artificial activities
This step removes the labels of the artificial activities
that may have been inserted into the sublogs in an
earlier step. To remove these labels, the corresponding
transitions are simply made invisible. As an example,

a1

a4

a2

a3

a5

a6

a7

a8

FIGURE 18. Net from Figure 15 with artificial labels
made invisible.

Figure 18 shows the result of performing this step on
the net as shown in Figure 15.

3.4.3. Reduce net
This step reduces the size of the overall Petri net
by applying variants on classical behavior-preserving
reduction rules [20] and by removing places that are
structurally redundant [21]. The classical behavior-
preserving reduction rules had to be adapted to take
initial markings and visible transitions into account.
Note that we only reduce invisible transitions and need

to keep track of initial and final markings.
As a result of applying a reduction rule, the

initial marking of the overall net may need to be
updated. Consider, for example, the silent transition
in Figure 18 that corresponds to the transition labeled
α in Figure 15. This transition and its input places can
be removed from the net, but then the tokens from the
initial marking need to be moved from the input places
to the output places. Otherwise, the initial marking
would get lost.

No reduction step should remove a visible transition.
Only invisible transitions and places may be reduced
by these rules, but all visible transition should remain.
Consider, for example, the transition labeled a2 in
Figure 15. This transition has the same input places
and the same output places as the transition labeled a3.
As a result, the so-called Fusion of Parallel Transitions
reduction rule [20] could remove one of these activities.
Clearly, this is not desired, as these transitions are there
to explain the behavior as found in the log. Removing
them now would defeat the purpose of the process
discovery from event data.

a1

a4 a5a6

a2

a3

a7

a8

FIGURE 19. Net from Figure 18 after reductions.

As an example, Figure 19 shows the result of
performing this step on the net as shown in Figure 18.
In this example, the reduction was able to remove all
invisible transitions. However, in general, this might
not be the case (e.g. skip transitions).

3.5. Implementation

The decomposed discovery algorithm has been imple-
mented as the Discover using Decomposition action
in the publicly available DecomposedMiner package of
ProM6. Figure 20 shows the dialog for this action,
which allows the user to select the configuration, the
classifier (see Section 2.1), and the discovery algorithm
(see Section 3.3).

A configuration of the algorithm determines prede-
fined values for the settings in the algorithm. The fol-
lowing configurations can be selected:

Decompose This configuration uses all steps (as
described before) with default values. For
discovering a matrix (see Section 3.1.1), the
aforementioned 12 configurations (see Table 6) are
used. For creating a graph (see Section 3.1.2),
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FIGURE 20. Dialog for Discover using Decomposition
action in ProM6.

the zero value is set to 0.0 and the concurrency
threshold to 0.005. For creating initial clusters (see
Section 3.1.3), no parameters are required. For
filtering the overall log (see Section 3.2), empty
traces are not removed, and artificial start and end
activities (called “ |start> ” and “ [end] ”) are
added only in case the Alpha Miner is selected as
discovery algorithm. For discovering the subnets
from the sublogs (see Section 3.3), the selected
discovery algorithm is used. Merging the subnets
into an overall net (see Section 3.4) first removes
the structural redundant places and then reduces
the result using the improved classical reduction
rules.

Decompose 75% This configuration is identical to
the Decompose configuration, except that the
clusters are now grouped to 75% of the original
number of clusters (see Section 3.1.5). As an
example, if the best initial clusters contained 20
clusters, then these clusters would be grouped into
15 clusters by this configuration.

Decompose 50% This default configuration is iden-
tical to the Decompose configuration, except that
the clusters are now grouped to 50% of the origi-
nal number of clusters. This results in 10 clusters
in case there are 20 clusters in the best clustering.

Do not decompose This configuration creates an
activity cluster array with a single cluster
containing all activities, and it does not add
artificial start and end events. As a result, the
selected miner is run with the selected classifier on
the original log. This configuration corresponds to
the monolithic approach, and offers a baseline for
comparison.

The first three configurations allow the user to select
the level of decomposition from maximal (Decompose)
to three-quarters of maximal (Decompose 75% ) and half
of maximal (Decompose 50% ). The last configuration
allows the user to check the result of applying the

regular (monolithic, or ‘Decompose 0% ’) discovery
algorithm in an easy way.

4. EVALUATIONS

This section evaluates the implemented tool framework
on existing artificial and real-life data sets. For
both evaluations, we use the ILP Miner, as this
discovery algorithm is known to have an exponential
complexity [4] in the number of different activities in the
log. Although other discovery algorithms are supported
by the framework (see also Table 9), in this evaluation
we focus only on the ILP miner.

To assess the quality of the discovered models, we
use the state-of-the-art alignment-based conformance
metrics precision and generalization. In the area of
process mining, four such quality metrics are generally
accepted [1]:

Fitness The extent to which the model allows for the
behavior as seen in the event log.

Precision The extent to which the model does not
allow for behavior completely unrelated to behavior
as seen in the event log.

Generalization The extent to which the model
generalizes the behavior as seen in the event log.

Simplicity The extent to which the model is the
simplest model that explains the behavior as seen
in the event log.

As the ILP Miner guarantees a perfect fitness (the
discovered model always allows for all behavior as
seen in the event log), there is no reason to assess
fitness. Furthermore, the metrics for simplicity are
rather subjective and do not relate to the model’s
behavior. Therefore, we restrict this quality assessment
to the precision and generalization metrics.

To evaluate the decomposed discovery algorithm for
a single case, that is, for a given event log, a given
configuration, and a given discovery algorithm, we
perform the following steps:

1. We import the event log. We assume that the
first classifier in that event log provides us with
the activity log.

2. We run the decomposed discovery algorithm using
the given configuration and the given discovery
algorithm. Any computation time reported relates
only to this step, and not to any of the other steps.
In the end, this results in an accepting Petri net,
which is saved to file.

3. Next, we measure the quality of the resulting net
with respect to the log using the precision and
generalization metrics. For this, we replay [22] the
given event log on the discovered net. This provides
us with the log alignment needed for the next step.
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4. We calculate the generalization and precision
of the log and the net using the Measure
Precision/Generalization plug-in as available in
ProM6.

5. We output a text file containing the diagnostic
results in condensed form.

These steps are implemented as the Evaluate Decom-
posed Discovery plug-in.
First, we compare the monolithic discovery algorithm

(as implemented by the Do not decompose configura-
tion, see Section 3.5) with the maximal-decomposition
discovery algorithm (as implemented by the Decom-
pose configuration). Second, we compare the maximal-
decomposition discovery algorithm with both the non-
maximal-decomposition discovery algorithms (as imple-
mented by the Decompose 75% configuration and the
Decompose 50% configuration).
The reported computation times for the monolithic

discovery (that is, for the Do not decompose configu-
ration) include only the computation time needed for
the discovery algorithm itself (see Figure 6), that is, it
excludes the computation times for discovering activ-
ity clusters, filtering the overall log, and merging the
subnets. For all other configurations, the computation
times include all these steps.
All plug-ins used for doing the evaluations are

available through the DivideAndConquerTest pack-
age in ProM6. This package can be down-
loaded from https://svn.win.tue.nl/repos/prom/

Packages/DivideAndConquerTest/Trunk, which is a
folder in our Subversion repository.
The evaluations are performed on a desktop computer

with an Intel Core i7-4770 CPU at 3.40 GHz, 16 GB
of RAM, running Windows 7 Enterprise (64-bit), and
using a 64-bit version of Java 7 where 4 GB of RAM is
allocated to the Java VM. Note that the approach can
be distributed over multiple computers, but we only use
one computing node.

4.1. Artificial data sets

Table 10 shows the list of 3 artificial data sets
containing 59 event logs (with their characteristics) that
are used for this evaluation.

4.1.1. Monolithic vs. Maximal-decomposition
First, we show for which logs in the artificial data
sets both configurations are feasible. Second, we show
the computation times required by both configurations,
and compare them where possible. Next, we provide
results for the precision and generalization metrics
for both configurations. Note that, as we are using
the ILP miner, fitness is guaranteed to be 1, so we
do not discuss the fitness metric here. To compute
precision and generalization, we need to replay the
artificial log on the discovered net [22]. Therefore,
third, we show for which artificial logs this replay is

feasible. Fourth, we show the feasible precision values
obtained by both configurations, and compare them
where possible. Fifth, we do the same for generalization.
Finally, we summarize our findings.

Feasibility Table 11 shows for every log from the
artificial data sets whether they are feasible using
the Do not decompose and Decompose configurations.
Both configurations run out of memory for the prDm6
and prFm6 logs from the BPM 2013 data set, while
Do not decompose runs out of time (that is, it needs
to be stopped after a week) for the prGm6 log from
the same data set. This table shows that one more
log (the prGm6 log) is feasible with the Decompose
configuration, and that hence we can only compare
computation times for those logs that are feasible with
Do not decompose.
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FIGURE 21. Comparison of feasible computation times
for the artificial logs. The speed-up by decomposition tends
to be high when computation times are long.

Computation times Figure 21 shows the feasible
computation times for Do not decompose, and the
speed-ups obtained by using Decompose. For example,
this figure shows that Do not decompose takes almost
75.000 seconds (more than 20 hours) to discover a net
from the prCm6 log, and it also shows that Decompose
is about 150 times as fast, needing only about 500
seconds (less than 10 minutes). Decompose outperforms
Do not decompose for all logs where the latter takes
more than ten seconds.

Figure 21 clearly shows that the speed-up obtained by
Decompose depends on the computation time of Do not
decompose. This is especially clear for the DMKD 2006
and IS 2014 data sets: The higher the computation
time needed by Do not decompose, the higher the speed-
up of Decompose. The figure finally shows that the
speed-up also depends on the data set the artificial log
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Artificial Data Set Description

DMKD 2006 [10] 20 synthetic events logs generated from 4 Petri nets, containing 12, 22, 32, and 42 activities,
1000 traces, and different noise levels. This data set uses case labels like a32f0n10, where
a32 indicates that this case contains 32 activities, and n10 indicates that in 10% of the
traces noise was introduced.

IS 2014 [7] 32 synthetic event logs generated from 4 highly structured Petri nets, containing 59, 48, 32,
and 57 activities, 2000 traces, 4 different average trace lengths (approx. 15–55), with and
without noise. This data set uses case labels like 59/55/n, where 59 indicates the reported
number of activities in [7], 55 indicates the average trace length, and n indicates that this
log contains noise.

BPM 2013 [11] 7 synthetic event logs (A–G) generated from 7 highly structured Petri nets, containing 317,
317, 317, 429, 275, 299, and 335 activities, log C contains 500 traces, all other logs contain
1200 traces, log B is 100% fitting its model, all other events logs do not fit 100%. This data
set uses case labels like prAm6, which directly relates to the case from the data set.

TABLE 10. Artificial data sets used in the evaluation.

Data Set Event Log Do not decompose Decompose 50% Decompose 75% Decompose

DMKD 2006 All Yes Yes Yes Yes

IS 2014 All Yes Yes Yes Yes

BPM 2013 prAm6 Yes Yes/No Yes/No Yes/No
prBm6 Yes Yes/No Yes/No Yes/No
prCm6 Yes/No Yes Yes Yes
prDm6 No No No No
prEm6 Yes/No Yes/No Yes/No Yes/No
prFm6 No No No No
prGm6 No Yes/No Yes/No Yes/No

TABLE 11. Feasible artificial logs for all configurations. “Yes” indicates that both discovery and replay are feasible,
“Yes/No” that discovery is feasible but replay is not, and “No” that discovery is not feasible.

originates from. For example, the speed-up for a log
from the DMKD 2006 data set is typically higher than
the speed-up for a log from the IS 2014 data set. This
is surprising, as we assumed both data sets to be of
similar complexity.

Figure 22 shows, for the 10 most time-consuming
artificial logs, the feasible computation times for both
configurations, and also where time is spent. First,
time is spent on the discovery of the subnets, that
is, on running the discovery algorithm on the sublogs.
Figure 22 shows the percentage of time spent on this
(see the bottom-most bars, labeled Discovery). Second,
time is spent on the reduction of the discovered overall
net, which is shown using the middle bars, labeled
Reduction. Third, time is spent on, for example,
computing the best activity cluster, splitting the log,
or merging the subnets into an overall net, which
is accumulated in the top-most bars, labeled Other.
Clearly, Decompose spends the majority of its time (at
least 86% for the logs shown in Figure 22, at least 83%
for all feasible logs) in the decomposed discovery, only a
fraction is spent on the overhead of the decomposition
approach. This shows that when using the decomposed
ILP Miner there is no urgent need to improve on,
for example, the reduction of the net, as the entire

approach would hardly benefit from this.

Figure 22 also shows the computation times using
Decompose for the prGm6 log, for which Do not
decompose is infeasible. It takes Decompose about
62,000 seconds (about 17 hours) to discover a net from
the prGm6 log. Given the fact that Do not decompose
for this log needs to be stopped after a week, the speed-
up of Decompose for this log is at least 10.

Feasibility of replay Table 11 also shows for which of
the feasible artificial logs the replay is feasible. As
mentioned earlier, this replay is required to compute the
precision and generalization metrics. For the artificial
logs for which the replay is not feasible (that is, for all
logs from the BPM 2013 data set except the prCm6
log) the evaluation runs out of time. As a result, we
can only compare precision and generalization for all
logs in the DMKD 2006 data set and all logs in the IS
2014 data set.

Precision Figure 23 shows the precision values
obtained using Do not decompose, and the precision
gain/loss as obtained using Decompose. As an example,
the precision obtained with Do not decompose on the
48/12/n log is about 0.86, and Decompose results in a
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FIGURE 23. Comparison of precision metrics on all
feasible artificial logs.

precision loss of about 0.33, which results in a precision
of 0.33 × 0.86 ≈ 0.28). This figure also shows that, in
general, Decompose results in the same or less precision
as Do not decompose. The only exceptions to this are
the 32/18/n log (gain of 1.0123) and the 32/18/- log
(gain of 1.0042).
Figure 24 shows why precision can be lower when

using Decompose. The net that is discovered
with Decompose contains three source transitions
(transitions without incoming arcs), which are always
enabled. As these transitions are enabled in all possible
states, but only executed in few states, this net is less

FIGURE 24. Example a32f0n00 explaining why precision
can be lower when using Decompose. The top net is
the result from Do not decompose, the bottom net from
Decompose.

precise (0.28 instead of 0.67).
In contrast, Figure 25 shows that precision can also be

(slightly) higher when using Decompose. The net that
is discovered with Decompose contains two additional
source places (places without incoming arcs), which
are initially marked. One of these places effectively
prevents the transition labeled I2+complete from being
executed more than once, which is possible in the net
discovered by Do not decompose, but which does not
occur in the log. As a result, the net discovered with
Decompose is slightly more precise (0.85 instead of
0.84).

Generalization Figure 26 shows the generalization
values obtained using Do not decompose, and the
generalization gain/loss as obtained using Decompose.
This figure shows that, in general, Decompose results
in a better generalization than Do not decompose,
although the differences are typically very small.

Conclusions If the monolithic discovery algorithm
(that is, Do not decompose) can discover a net from a
log, then the decomposition discovery algorithm (that
is, Decompose) can also discover a net from this log.
However, the decomposition algorithm can also discover
nets from logs on which the monolithic algorithm fails.
As such, the decomposition algorithm can be applied
on larger and more complex logs than the monolithic
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FIGURE 25. Example 32/18/n explaining why precision
can be higher when using Decompose. The top net is
the result from Do not decompose, the bottom net from
Decompose.
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FIGURE 26. Comparison of generalization metrics on all
feasible artificial logs. Decompose results in very similar
generalization values.

algorithm.
The decomposition algorithm is typically faster than

the monolithic algorithm. If the monolithic algorithm
takes more than 100 seconds, then the speed-up is at
least 7.5, but can be more than 100.
The decomposition algorithm typically results in

nets that have an equal or worse value for precision,
where the latter is typically due to the introduction
of additional source transitions. However, it is also
possible that the decomposition algorithm results in a
slightly higher precision, as a result of the introduction
of additional initially marked source places.
The decomposition algorithm typically results in a

net that has an equal or better value for generalization,

although the improvements are minor.

4.1.2. Maximal-decomposition vs Non-maximal-
decomposition

First, we show for which artificial logs all three
configurations (Decompose, Decompose 75% , and
Decompose 50% ) are feasible. Second, we show the
computation times required by Decompose and the
speed-ups obtained using the other two configurations.
Third, we show for which artificial logs (and discovered
nets) the replay [22] is feasible, as again this is
needed to compute the precision and generalization.
Fourth, we show the precision values obtained using
Decompose and the percentages obtained by the other
two configurations. Fifth, we do the same for
generalization. Finally, we summarize our findings.

Feasibility Table 11 shows for which artificial logs
the Decompose 50% configuration (simply called
Decompose 50% henceforth) and the Decompose
75% configuration (simply called Decompose 75%
henceforth) are feasible. Both Decompose 75% and
Decompose 50% only fail for the prDm6 and prFm6
logs from the BPM 2013 data set (by also running out
of memory). As a result, we can compare computation
times for all logs that are feasible with Decompose.
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FIGURE 27. Comparison of decomposed computation
times for artificial logs.

Computation times Figure 27 shows the computation
times required by Decompose, and the speed-ups
obtained using Decompose 75% and Decompose 50% .
As an example, it takes Decompose about 210,000
seconds (about 58 hours) to discover a net from the
prGm6 log, and the speed-up of Decompose 50% is
about 1.09, resulting in a required computation time of
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about 193,000 seconds (about 54 hours). For the easier
logs, Decompose 50% outperforms Decompose, but for
the harder logs there seems to be no improvement.

Feasibility of replay Table 11 also shows for which
of the feasible artificial logs the replay is feasible.
The replay on the nets discovered using Decompose
50% is feasible for exactly the same set of logs as
for which Decompose 75% is feasible. Like with the
Decompose configuration, the replay for Decompose
75% and Decompose 50% runs out of time for all logs
from the BPM 2013 data set but the prCm6 log. As a
result, we can compare precision and generalization for
all logs that are feasible with Decompose.
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FIGURE 28. Comparison of decomposed precision metrics
for artificial logs.

Precision Figure 28 shows the precision values
obtained using Decompose, and the gains/losses using
Decompose 75% and Decompose 50% . As an example,
the precision value for the a32f0n00 log as obtained
using Decompose is about 0.28, and the gains for the
two other configurations are about 2.37, resulting in
a precision value of about 0.67 (that is, the same
value as obtained by Do not decompose). Apparently,
both Decompose 75% and Decompose 50% were able
to avoid the introduction of the additional source
transitions for these logs. Still, for some other logs
(a42f0n00, 48/12/-, and 48/12/n), these configurations
do not improve precision to the same level as Do not
decompose. Possibly, we need an even more coarse-
grained decomposition (like 25%) to get the same
precision.

Generalization Figure 29 shows the generalization
values obtained using Decompose, and the gains/losses
using Decompose 75% and Decompose 50% . As an
example, the precision value for the a32f0n00 log as
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FIGURE 29. Comparison of decomposed generalization
metrics for artificial logs.

obtained using Decompose is about 0.98, and the losses
for both other configurations are about 0.997, resulting
in a precision value of about 0.98.

Conclusions The non-maximal decomposition discov-
ery algorithms (that is, Decompose 75% and Decom-
pose 50% ) can discover nets from the same set of logs
that the maximal decomposition algorithm (Decom-
pose) can. On average, the 50% decomposition algo-
rithm takes a bit more time (104%) than the maximal
decomposition algorithm, and the 75% decomposition
algorithm takes also a bit more (105%). For the logs
that take less than 100 seconds, the 50% decomposition
algorithm is the fastest, but it is considerably slower for
some logs that require more time, like the prAm6 and
prBm6 logs. Apparently, for these logs the 50% decom-
position algorithm results in sublogs that are harder to
handle for the ILP Miner than the sublogs for the other
decomposition algorithms. The non-maximal decompo-
sition algorithms result in equal or better precision val-
ues. Sometimes the precision values obtained match the
ones obtained using the monolithic algorithm (which is
perfect). The non-maximal decomposition algorithms
result in equal or worse generalization values, but if
worse the difference is only minor.

4.2. Real-life data sets

Table 12 shows the list of real-life data sets (with their
characteristics) that are used for this evaluation. As
an example, Figure 30 shows a graphical overview of
the BPIC 2012 event log, which nicely shows that in
the underlying process the vast majority of the work is
done on working days (the vertical gaps in the overview
correspond to the weekends).
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Real-life Data Set Description

BPIC 2012 [12] A real-life log taken from a Dutch Financial Institute. This log contains 13.087 cases, about
262.200 events, and 36 event classes. Apart from some anonymization, the log contains all
data as it came from the financial institute. The process represented in the event log is an
application process for a personal loan or overdraft within a global financing organization.
The event log is a merger of three intertwined sub processes.

BPIC 2015 [13] 5 real-life event logs, provided by five Dutch municipalities. The data contains all building
permit applications over a period of approximately four years. There are many different
event classes present. The cases in the log contain information on the main application as
well as objection procedures in various stages. Furthermore, information is available about
the resource that carried out the task and on the cost of the application. Some statistics on
the logs:

Log 1: 1199 cases, 52217 events, 398 event classes.

Log 2: 832 cases, 44354 events, 410 event classes.

Log 3: 1409 cases, 59681 events, 383 event classes.

Log 4: 1053 cases, 47293 events, 356 event classes

Log 5: 1156 cases, 59083 events, 398 event classes.

TABLE 12. Real-life data sets used in the evaluation.

FIGURE 30. A dotted chart of the real-life BPIC 2012 event log. Cases are plotted on the Y-axis, time on the X-axis, the
color of a dot denotes the event class, and the shape of the dot denotes the day of the week.

4.2.1. Monolithic vs. Maximal-decomposition

First, we show for which logs in the real-life data
sets both configurations are feasible. Second, we show
the computation times required by both configurations,
and compare them where possible. Third, we show
for which logs the replay [22] required for precision

and generalization is feasible. Fourth, we show the
feasible precision and generalization values obtained by
both configurations, and compare them where possible.
Finally, we summarize our findings.
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Data Set Event Log Do not decompose Decompose 50% Decompose 75% Decompose

BPIC 2012 BPIC2012 Yes Yes Yes Yes

BPIC 2015 BPIC2015 1 No Yes Yes Yes/No
BPIC2015 2 No Yes/No Yes/No Yes/No
BPIC2015 3 No Yes Yes Yes
BPIC2015 4 No Yes Yes Yes
BPIC2015 5 No Yes/No Yes/No Yes/No

TABLE 13. Feasible real-life logs for all configurations. “Yes” indicates that both discovery and replay are feasible, “Yes/No”
that discovery is feasible but replay isas not, and “No” that discovery is not feasible.

Feasibility Table 13 shows for every real-life data set
and both configurations the set of logs that are feasible.
The Do not decompose configuration runs out of time
(that is, it needs to be stopped stopped after a week)
for all logs from the BPIC 2015 data set. This table
clearly shows that more real-life logs are feasible with
the Decompose configuration, and that hence we can
only compare computation times for those logs that are
feasible with Do not decompose.
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FIGURE 31. Categorized percentages of computation
times for the real-life logs together with their computation
times.

Computation times Figure 31 shows, for all real-
life logs, the feasible computation times for both
configurations (where possible), and also where time is
spent. Clearly, Decompose spends the majority of its
time (about than 90% for the BPIC 2012 log and more
than 99% for the BPIC 2015 logs) in the decomposed
discovery, only a fraction is spent on the overhead of the
decomposition approach. Like with the artificial logs,
this shows that when using the ILP miner there is no
urgent need to improve on, for example, the reduction
of the net, as the entire approach would hardly benefit

from this.
Figure 31 also shows that on the BPIC 2012 log,

Decompose is about 25 times as fast as Do not
decompose. Furthermore, it shows the computation
times using Decompose for the BPIC 2015 logs, for
which Do not decompose is infeasible. For example,
it takes Decompose 2167 seconds (about 36 minutes)
to discover a net from the BPIC2015 5 log. As Do not
decompose for this log needs to be stopped after a week,
the speed-up of Decompose for this log is at least 280.

Feasibility of replay Table 13 also shows for which of
the real-life logs the replay is feasible. As the discovery
using Do not decompose is not feasible for any of the
BPIC 2015 logs, we can only compare precision and
generalization for the BPIC 2012 log.

Precision and generalization The precision and gener-
alization values obtained using Decompose are exactly
the same as the values using Do not decompose. This is
not surprising, as both discover the same net. Figure 32

FIGURE 32. Connected parts of the accepting Petri net
discovered using either Decompose or Do not decompose.

shows the few connected parts of this net. The remain-
der of the net contains only disconnected transitions, in-
dicating that the ILP Miner has had its problems with
this real-life log. But where Do not decompose takes
1420 seconds (about 24 minutes) to discover this (dis-
appointing) result, Decompose takes only 56 seconds
(less than a minute). As such, Decompose is obviously
an improvement over Do not decompose for this log.
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Conclusions Do not decompose can only discover a
net for the BPIC 2012 log, whereas Decompose can
discover a net for every log in the real-life data sets.
Furthermore, for the only log that Do not decompose
can handle successfully, Decompose is about 25 times
as fast. As a result, Decompose is clearly always better
than Do not decompose on the real-life data sets.

4.2.2. Maximal-decomposition vs Non-maximal-
decomposition

First, we show for which logs all three configurations
(Decompose, Decompose 75% , and Decompose 50% )
are feasible. Second, we show the computation times
required by Decompose and the speed-ups obtained
using the other two configurations. Third, we show
for which logs (and discovered nets) the replay [22] is
feasible, as again this is needed to compute the precision
and generalization. Fourth, we show the precision and
generalization values obtained using Decompose and the
percentages obtained by the other two configurations.
Finally, we summarize our findings.

Feasibility Table 13 shows for which real-life logs
Decompose 50% and Decompose 75% are feasible. As
Table 13 shows, we can compare computation times for
all real-life logs.
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FIGURE 33. Comparison of decomposed computation
times for real-life logs.

Computation times Figure 33 shows the computation
times required by Decompose on the real-life logs,
and the speed-ups obtained using Decompose 75%
and Decompose 50% . Apparently, there seems to be
no real improvement in using either Decompose 75%
or Decompose 50% over Decompose. In fact, there
are two logs (BPIC2012 and BPIC2015 3 ) for which

Decompose 50% needs significantly more time than the
other two configurations.

Feasibility of replay Table 13 also shows for which of
the feasible logs the replay is feasible. The replay
for Decompose 75% and Decompose 50% runs out of
memory for the BPIC2015 2 log and out of time for
the BPIC2015 5 log. As a result, we can compare
precision and generalization for all logs that are feasible
with Decompose.

Precision and generalization Both Decompose 75% as
Decompose 50% typically return the same values for
precision and generalization. The only exception to this
is the precision of the net discovered from the BPIC
2012 log using Decompose 50% , which drops to 97%.
The latter is caused by the fact that Decompose 50%
does not discover the place (see Figure 32) between
O SELECTED+complete and O CREATED+complete.

Conclusions Both Decompose 75% and Decompose
50% can discover nets from the same real-life logs that
Decompose can. Where Decompose 75% requires about
the same time as Decompose requires, Decompose 50%
may require significantly more. Apparently, some of
the clusters become to big to be handled comfortably
by the ILP Miner. Typically, both Decompose 75% and
Decompose 50% preserve precision and generalization,
although in one case the precision dropped to 97%.

4.3. Wrapping up

The three decomposed ILP Miners outperform the
monolithic ILP Miner in two ways. First, the
decomposed ILP miners can discover nets from logs
on which the monolithic ILP Miner simply fails. As
an example, the monolithic ILP Miner fails on 5 out
of the 6 real-life logs, whereas the three decomposed
ILP Miners succeed on all of them. Second, if the
monolithic ILP Miner is able to discover a net, then the
three decomposed ILP Miners can discover a net much
faster (up to a factor 280). The net as discovered by a
decomposed ILP Miner may be different (we will discuss
this in the next section), but typically it will result in a
net with equals or better precision, and equal or slightly
worse generalization.

Using a non-maximal-decomposed ILP Miner has
a positive effect for the smaller logs, but no effect
or a negative effect for the larger logs. For some
larger real-life logs, the negative effect may even be
called considerable (about three times as slow). As
such, starting with the maximal-decomposed ILP miner
seems to be a good idea.

5. DISCUSSIONS

In the previous section, we have seen that sometimes
decomposed discovery may result in a net that is
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different from the net as discovered without (or with
less) decomposition. In this section, we first discuss the
possible differences in the discovered nets. Second, we
show that the effect may be positive. To demonstrate
this, we discuss the DrFurby Classifier contribution to
the “Process Discovery Contest @ BPM 2016” [14].
This contest was won by the first author using the
decomposition approach described here. From all
submissions, most traces (193 out of 200) were classified
correctly.
Furthermore, we have seen that the ILP Miner can

be successfully decomposed using the tool framework.
However, this may not hold for the other discovery
algorithms, as these algorithms may have different
characteristics. Therefore, we discuss the use of the
tool framework with the other discovery algorithms
as implemented in the tool framework. Finally, we
conclude this section by summarizing our findings.

5.1. Differences

The decomposition approach as presented in [9] offers
the following formal guarantees:

Perfect fitness is preserved The entire log is per-
fectly fitting the resulting merged net if and only
if every sublog is perfectly fitting the subnet that
was discovered from it.

Upper bound for misalignment costs The mis-
alignment costs of replaying every sublog on the
net that was discovered from it is an upper bound
for the misalignment costs of replaying the entire
log on the merged net. These misalignment costs
are closely related to the fitness metric, as a trace
is perfectly fitting if and only if these costs are 0.

Same fraction of perfectly fitting traces The
fraction of traces from the entire log perfectly
fitting the merged net equals the fraction of traces
perfectly fitting every subnet.

The above guarantees prove that discovery of a
perfectly fitting net can be successfully decomposed.
Nevertheless, the approach does not guarantee that the
result of the decomposed discovery will be the same as
the result from the monolithic discovery, even when all
discovered nets are perfectly fitting. Recall that the
decomposition splits the entire log into a collection of
sublogs, and that it calls on the discovery algorithm
for every sublog. Clearly, the discovery algorithm
can only use the information that is contained in the
provided sublog, as the information contained in the
other sublogs is withheld from it. As such, it might take
different decisions than it would have if all information
would be available. Examples of such situations are
shown in Figure 24 and Figure 25. Nevertheless, as
mentioned earlier and as we will show with the following
process discovery contest, the differences may just be for
the better.

5.2. Process discovery contest

The aim of the “Process Discovery Contest @ BPM
2016” [14] was to evaluate the state of the art in process
discovery. To this end, the organizers of the contest
created 10 process models, sayM1, . . . ,M10, which were
not disclosed to the contestants. For every created
process model Mi (with i ∈ {1, . . . , 10}), the organizers
also created two event logs: a Marchi training log
containing 1000 traces, which was disclosed in March
2016, and a Junei test log containing 20 traces, which
was disclosed in June 2016. The test log also contained
negative cases, that is, traces impossible according to
the original model.

A submission should include a discovery algorithm D
and a way to classify the traces of every Junei log as
positive (perfectly fit Mi) or negative (do not perfectly
fit Mi), using the model as discovered by algorithm D
from the Marchi log. Using the undisclosed process
model Mi, the organizers then determine how many
traces from every Junei log are correctly classified by
the submission. In the end, the submission which
classifies the most traces over all Junei logs correctly
wins the contest. In case of a tie, the time required for
D to discover the models tip the balance. Clearly, the
better the 10 discovered process models match the 10
undisclosed process models, the better the classification.

To allow the contestants to test their submission
prior to submitting it, the organizers also created for
every undisclosed process model Mi an April i test log
(disclosed in April 2016) and a May i test log (disclosed
in May 2016). Both the April i and the May i test log
are known to contain 10 positive traces and 10 negative
traces. By using this information, the contestants can
test and calibrate their submission.

5.2.1. The DrFurby Classifier
The first author participated in this contest using the
decomposition approach presented in this paper. The
basic idea behind the DrFurby Classifier [23] is (1) to
minimize the number of false negatives (i.e., positive
traces that are classified as negative traces) by only
including algorithms that guarantee perfect fitness, and
(2) to minimize the number of false positives (i.e.,
negative traces that are classified as positive traces)
by including many of these algorithms. However, to
minimize the time required by it, the DrFurby Classifier
includes only a minimal set of these algorithms that
provide the maximal result.

Examples of relevant algorithms that guarantee
perfect fitness include:

Inductive Miner The “Inductive Miner Infrequent”
with noise threshold set to 0.0 [5].

ILP Miner The “ILP Miner” [4].

Hybrid ILP Miner (Default) The “Hybrid ILP
Miner” with default settings [17].
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Hybrid ILP Miner (Single) The “Hybrid ILP
Miner” that uses only a single variable per causal
relation [17].

Next to these discovery algorithms, the DrFurby
Classifier also exploits the tool framework presented in
this paper, as it also preserves (perfect) fitness [9].
The DrFurby Classifier takes a Marchi log and a

Junei log as input, and creates a classified June+i log
as output. To create the output from the inputs, it
iteratively uses a number of perfect-fitness-guaranteeing
discovery algorithms with different decomposition
settings. For each combination of a discovery algorithm
D and a setting S, it first discovers an accepting Petri
net DS(Marchi) using the framework. Second, it checks
which traces of the Junei log can be perfectly replayed
on DS(Marchi) [22]. If a trace is perfectly replayed on
all such combinations, it is classified as positive by the
DrFurby Classifier, otherwise, it is classified as negative.

Configuration The April i and May i logs were used
to determine a minimal set of (possibly decomposed)
discovery algorithms that provides maximal result. For
this sake, all discovery algorithms mentioned earlier
were tested, and various decomposition settings (Do
not decompose, maximal decomposition, Decompose by
80%, by 60%, by 40%, . . . ). In the end, two decomposed
discovery algorithms were found that provide the
desired maximal result:

• The Inductive Miner with maximal decomposition
(called DIM

100 henceforth).

• The Hybrid ILP Miner without decomposition
(called DHIM

0 henceforth).

As a result, the DrFurby Classifier is configured
with only these two decomposed discovery algorithms,
leading to a discovery algorithm DFurby .

Implementation The DrFurby Classifier is imple-
mented as the DrFurby Classifier plug-in in ProM6.6,
where it can be found in the DivideAndConquer pack-
age.
To enrich the classified test log with the necessary

classification attributes, a DrFurby Extension is
implemented as well (See [2] for details on log
extensions), which uses the prefix drfurby. This
extension defines attributes as listed in Table 14.
As a result, by inspecting the output log, the user can

see how many traces are classified positive (negative),
which traces are classified positive (negative), etc.
Furthermore, to get a quick overview of which traces
are classified positive, the DrFurby Classifier appends a
plug sign (+) to the name of every trace that is classified
positive.

Results Table 15 shows the number of traces classified
correctly by the DrFurby Classifier for all April i, May i,

and Junei logs. As a result, for the Junei logs,
the DrFurby Classifier classifies 193 out of 200 traces
correctly. In addition, Figure 34 shows two views on the

FIGURE 34. Two views on the results of the DrFurby
Classifier for the June3 log. The top view shows that
the traces 1-4, 7-11, 16, 17, 19, and 20 are classified as
positive. The bottom view shows that 7 traces are classified
as negative.

resulting classified log June+3 . These views show that
13 out of 20 traces are classified as positive, and that
only 7 are classified as negative.

5.2.2. Maximal decomposition vs. no decomposition
Instead of using the Inductive Miner with maximal
decomposition, the DrFurby Classifier could also
been configured with the Inductive Miner without
decomposition (called DIM

0 henceforth). For 9 out of
the 10 Marchi logs, this would not make a difference,
as the results would the same (DIM

0 (Marchi) =
DIM

100(Marchi)). However, for March3 it would make
a difference.

Table 16 shows the classification results on the May3

log. This table shows that the DrFurby Classifier
classifies 8 traces as negative. Furthermore, it shows
that if we would have used DIM

0 instead of DIM
100, it

would only classify 5 traces as negative. As a result,
using the maximal-decomposed Inductive Miner (DIM

100)
instead of the monolithic Inductive Miner (DIM

0 ), the
DrFurby Classifier correctly classifies three more traces
as negative. For the June3 log, two more traces (7
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Attribute Level Type Description

classification trace String Classification of the trace (“positive” or “negative”)
him0Costs trace Continuous The costs of replaying this trace on the accepting Petri net as discovered

by the DHIM
0 discoverer.

im100Costs trace Continuous The costs of replaying this trace on the accepting Petri net as discovered
by the DIM

100 discoverer.
millis log Discrete The number of milliseconds it takes to classify the test log.
name log Literal The name of the test log.
negative log Discrete The number of traces in the test log classified negative.
positive log Discrete The number of traces in the test log classified positive.
totalCosts trace Continuous The accumulated costs of replaying this trace on all discovered

accepting Petri nets.

TABLE 14. The attributes of the DrFurby Extension which are added to the output log to allow the user to inspect the
classification results.

i 1 2 3 4 5 6 7 8 9 10

April i 20 20 20 20 20 20 20 19 20 20
Mayi 20 20 18 20 19 20 20 18 20 20
Junei 20 20 17 20 20 19 19 18 20 20

TABLE 15. Numbers of traces classified correctly by the DrFurby Classifier. Note that the optimal answer is 20 in all cases,
hence it perfectly classifies 22 out of 30 logs.

instead of 5) are correctly classified as negative.
As a result, the DrFurby Classifier using a maximal-

decomposed Inductive Miner works better (7 false
positives on all Junei logs, no false negatives) than
it would using the monolithic Inductive Miner (9
false positives on all Junei logs, no false negatives).
That is, with decomposition the DrFurby Classifier
classifies 193 out of 200 traces correctly, whereas
without decomposition it would only have classified 191
correctly.
In the end, this improvement from 191 to 193 made

the DrFurby Classifier win [14] the contest, as the
two runner-ups in the contest classify both 192 traces
correctly. One runner-up did not use any decomposition
techniques, but the other runner-up actually used the
ILP Miner with maximal decomposition as supported
by the tool framework for some logs (like the March3

log). For the other logs (like the March1 log), the
second runner-up used the Inductive Miner without
decomposition. As a result, in the top three of
the contest, two submissions actually use the tool
framework presented in this paper, and one of them
won. Although the main goal of the paper is the
feasibility and speed-ups of the decomposed approach,
this result shows the competitive value of the approach
on the quality perspective.

5.3. Other discovery algorithms

As shown earlier in Table 9, six different discovery
algorithms are implemented in the tool framework. The
previous section has shown that one of them, the ILP
Miner [4], can be successfully decomposed using the
framework to significantly speed up analysis. But as the

other five algorithms may have different characteristics,
these positive results may not transfer to them. In
this section, we discuss the use of the tool framework
on these other five algorithms. The running times
as reported in this section are obtained on the same
computer as we did the evaluation in the previous
section on.

Alpha Miner The Alpha Miner [3] was the first
discovery algorithm able to discover concurrency in
process models. Under certain preconditions, the
Alpha Miner can rediscover the net from the event
log successfully (see [3]). Although the Alpha Miner
is generally conceived to be a very simple and
straightforward algorithm, its complexity is not that
simple. Especially the step that computes the maximal
activity sets A1 and A2 such that (1) every activity
in A1 can be directly followed by any activity in A2,
(2), every activity in A1 cannot be directly followed
by any activity in A1, and (3) every activity in A2

cannot be directly followed by any activity in A2, is
potentially very time-consuming when there are many
different activities. As a result, although for many
event logs decomposing the Alpha Miner may not result
in a speed-up, for some event logs it could. As an
example, we take the prGm6 log from the BPM 2013
[11] data set. To discover the net from this log, takes
the monolithic Alpha Miner about 800 seconds. The
maximally decomposed Alpha Miner decomposes this
log into 57 sublogs, and to discover the 57 subnets
takes only about 87 seconds. This shows that the Alpha
Miner may benefit from the decomposition. However,
the overhead of the decomposed Alpha Miner spoils
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Trace 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DIM
100 + − − − + + + + + − − + + + + + − − + +

DHIM
0 + − + − + + + + + + − + + + + − + − + +

DFurby + − − − + + + + + − − + + + + − − − + +

DIM
0 + − + − + + + + + + − + + + + − + − + +

TABLE 16. Classification (+ = positive, − = negative) of the May3 log using the DrFurby Classifier. The third row
(DFurby) can be viewed as the conjunction of the first two rows. Clearly, the Inductive Miner with maximal decomposition
(DIM

100) complements DHIM
0 much better than the Inductive Miner without decomposition (DIM

0 ).

this gain of more than 700 seconds as it takes days (if
not weeks or worse) to reduce the resulting merged net
(Section 3.4.3). The main bottleneck is the algorithm
used to reduce the structural redundant places [21],
which uses ILPs to compute these structural redundant
places.

Heuristics Miner The Heuristics Miner [16] is a
very efficient discovery algorithm, with a very low
complexity. For this discovery algorithm, we do not
expect any speed-ups when using decomposition. As
an example, it takes the monolithic Heuristics Miner
about 5 seconds to discover a net from the prGm6 log,
whereas the maximally decomposed Heuristics Miner
takes almost 95 seconds, of which it needs about 36
seconds to discover the 57 subnets. Hence, although on
average the Heuristics Miner takes less time to discover
a single subnet, it takes more to discover them all, and
the overhead of the decomposition is significant.

Hybrid ILP Miner Like the ILP Miner, the Hybrid
ILP Miner [17] uses ILPs to solve the discovery
problem. Although (1) the actual ILP problems when
using both discovery algorithms may be different, and
(2) the Hybrid ILP Miner is typically faster, we
expect the Hybrid ILP Miner to also benefit from the
decomposition. If we take the prGm6 log again as
example, the monolithic Hybrid ILP Miner crashes as
the ILP solver runs out of memory in 3 hours, whereas
the maximally decomposed Hybrid ILP miner finishes
after about 60,000 seconds (about 16 hours and 40
minutes). Hence, although the maximally decomposed
Hybrid ILP Miner takes more than 16 hours, at least it
does discover a net, whereas the monolithic Hybrid ILP
Miner fails to do so.

Inductive Miner The Inductive Miner [5] is the
youngest member of the process discovery family, and
has quickly grown to be the most-often used process
discovery algorithm in ProM. In its way, this discovery
algorithm uses a divide and conquer approach to tackle
the discovery problem at hand. Nevertheless, it requires
the algorithm some efforts to decide which division
is best at some point in time. As a result, it takes
the monolithic Inductive Miner about 29 seconds to
discover a net from the prGm6 log, whereas the

maximally decomposed Inductive Miner takes almost 52
seconds, of which it needs about 33 seconds to discover
the 57 best clusters, about 8 seconds to discover the 57
subnets, and 6 seconds to do the necessary reductions.
As such, the Inductive Miner may benefit as well from
the decomposition, but like with the Heuristics Miner
the overhead of the decomposition may outweigh the
benefits.

Evolutionary Tree Miner The Evolutionary Tree
Miner [18] is a genetic discovery algorithm, which uses
replay [22] to check the quality of a discovered net.
Being an evolutionary algorithm, the higher the quality
of a net, the higher the chances that it survives. As
such, provided sufficient space and time, it will provide
a high-quality net, provided that such a net exists.
However, it often lacks the sufficient time, as by default
it stops after 10 minutes, after which it returns the best
net found so far. Although from a user-perspective
this deadline of 10 minutes is understandable, it will
typically be too short for the algorithm to return a
high-quality net. On the examples as introduced in the
previous section, this discovery algorithm will typically
stop because of this 10-minute deadline. As a result,
it will take 10 minutes on the prGm6 log, whereas
the maximally decomposed Evolutionary Tree miner
will take at least 570 minutes (10 minutes for every of
the 57 sublogs). As such, decomposing this discovery
algorithm only makes sense if the deadline is set to a
far larger value than 10 minutes, or if it is removed
altogether. The latter forces the discovery algorithm to
stop on another stopping criteria, which all have to do
with the quality of the best net.

5.4. Summarizing the findings

TheDrFurby Classifier [23] uses the tool framework and
was the winning submission for the “Process Discovery
Contest @ BPM 2016” [14]. By replacing the Inductive
Miner without decomposition by the Inductive Miner
with maximal decomposition, we effectively reduced the
number of errors (misclassified traces) by the DrFurby
Classifier from 9 to 7 in the final test logs. If we also
include the calibration logs, then the number of errors
is reduced from 21 to 13. This shows that the tool
framework has effectively improved the effectiveness of
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the DrFurby Classifier, and has made this submission
the winning submission [14], as the two runner-ups both
misclassified 8 traces.
Discovery algorithms other than the ILP Miner can

benefit from the tool framework as well, including
the Alpha Miner [3], the Inductive Miner [5], and
the Hybrid ILP Miner [17]. For all these algorithms,
discovering the subnets from the sublogs may take
less time than discovering a net from the entire log.
However, the overhead of the tool framework may
spoil any computation time benefits obtained by the
decomposition for the first two. We have seen that for
the Alpha Miner the net reduction (Section 3.4.3) may
be a problem. Apparently, the nets as discovered by the
Alpha Miner may be problematic for the implemented
reduction techniques, especially those techniques that
use ILPs. For the Inductive Miner, the reduction
techniques are less of a problem, but the discovery
of the best cluster may take too long to benefit from
the decomposition. The Heuristics Miner [16] does not
benefit from the decomposition, as its complexity is very
low. The Evolutionary Tree Miner [18] takes so much
time that is typically capped with a 10 minute deadline
to have it deliver a result within reasonable time. Using
decomposition with this algorithm only makes sense if
time is not the limiting factor in the discovery.

6. CONCLUSIONS

This paper presents the Divide and Conquer frame-
work. This framework fully supports the decomposed
discovery as introduced in [9], and has been imple-
mented in ProM6. As such, the framework allows for
easy decomposed discovery, using existing discovery al-
gorithms. The current framework supports six discov-
ery algorithms, but can easily support more.
For the decomposed discovery, the framework allows

the end user to select the classifier to use (which maps
the event log at hand to an activity log), the miner
(or discovery algorithm) to use, and a configuration
to use. Available configurations include Do not de-
compose (monolithic discovery algorithm), Decompose
(maximal decomposition discovery algorithm), Decom-
pose 75% (75% decomposition discovery algorithm),
and Decompose 50% (50% decomposition discovery al-
gorithm). The selected level of decomposition (maxi-
mal, 75%, or 50%) determines the number of sublogs
to overall log will be split into. For the maximal de-
composition, this number will be maximal. Whatever
classifier, miner, and configuration the user selects, the
end result will be an overall net discovered for the log
at hand.
Adding a new miner to the framework is easy,

provided that the miner either results in (1) a net with
an explicit initial marking and an explicit set of final
markings, or (2) a net with an implicit initial marking
(one token in every source place) and an implicit set of
final markings (a token in one sink place). However,

if a new miner emerges that does not satisfy these
requirements, then it can still be added, but a wrapper
needs to be created that assigns an initial marking and
a set of final markings to the discovered net.

The ILP Miner [4] benefits clearly from the
framework. Logs that take the ILP Miner more than
a week, can be discovered within half an hour with a
decomposed ILP Miner. This shows that decomposition
indeed can speed up a complex discovery algorithm
significantly. Other discovery algorithms may also
benefit, like the Hybrid ILP Miner [17], the Alpha
Miner [3], and the Inductive Miner [5]. However, for
the latter two algorithms any computation time benefit
obtained by the decomposition may be spoiled by the
overhead of the decomposition. As a result, we need
to investigate whether we can reduce this overhead for
these algorithms.

It is a fact that using decomposed discovery may
lead to different results. However, the DrFurby
Classifier [23] submission to the “Process Discovery
Contest @ BPM 2016” [14] shows that this may very
well have a positive effect. By making the state-of-the-
art Inductive Miner [5] decomposed in this submission,
the number of misclassified traces could be reduced
from 9 to 7, thereby winning the contest [14] as the
two runner-ups had both 8 misclassifications. Although
this approach does not provide any guarantees, it
clearly shows that the quality of the nets (defined as
the percentage of correctly classified traces) obtained
by decomposed discovery may exceed the quality of
the nets as obtained by non-decomposed discovery.
However, there is guarantee for such a positive effect.

Because of the formal guarantees as provided by
the decomposition, the results of the decomposed
discovery provides a valuable and reliable alternative.
As examples, precision may drop, while generalization
may increase. The possible drop in precision may
be mitigated by using a non-maximal decomposition
algorithm, like the 50% decomposition algorithm.

Future work on the framework includes additional
non-maximal decomposition algorithms and possible
improvements on the imposed overhead. Our evaluation
shows that in discovery we can go from maximal
decomposition to 50% decomposition while maintaining
high speed-ups. Discovery may take more time, but
on average the computation times are still reasonable,
and the results get only better. Therefore, for
discovery, we aim to check whether, for example, a
25% decomposition algorithm is even better, both in
computation times and in results.
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