FORTissa \textit{mo}

Automating the First-Order Theory of Rewriting

Franziska Rapp

PhD project supervised by Prof. Dr. Aart Middeldorp

Property
- arbitrary first-order formula over rewrite relations as predicates
 - E.g. $\forall s \exists t (s \rightarrow^* t \land \neg \exists u (t \rightarrow u))$

Goals
- Formalizing underlying theory [1]
- Improving expressiveness of FORT [2]
 - combinations of TRSs
 - witness generation
- Improving performance of FORT
 - formula normalization
 - parallel programming techniques

Synthesis mode
- **input**: property
- **output**: TRS satisfying the given property
- options to restrict infinite search space

FORT

Restriction
- left-linear right-ground TRSs
- decidable theory

Formalization

IsaFoR

- generate certifier
- formalize results from literature

CeTA

- check
 - accept
 - reject
 - unsupported

Tree automata

- Complement
- Intersection
- Union

Ground tree transducers (GTTs)

- $f(x,a)$
- $g(g(b))$

RR\textsubscript{n} relations

- Transitive Closure
- Translation to RR\textsubscript{n}

- Permutation
- Projection
- Cylindrification

The theory of ground rewrite systems is decidable.

Automating the First-Order Theory of Left-Linear Right-Ground Term Rewrite Systems.