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Abstract

The simplest infinite sequences that are not ultimately periodic are
pure morphic sequences: fixed points of particular morphisms mapping
single symbols to strings of symbols. A basic way to visualize a sequence
is by a turtle curve: for every alphabet symbol fix an angle, and then
consecutively for all sequence elements draw a unit segment and turn the
drawing direction by the corresponding angle.

This paper investigates turtle curves of pure morphic sequences. In
particular, criteria are given for turtle curves being finite (consisting of
finitely many segments), and for being fractal or self-similar: it contains
an up-scaled copy of itself. Also space-filling turtle curves are considered,
and a turtle curve that is dense in the plane.

As a particular result we give an exact relationship between the Koch
curve and a turtle curve for the Thue-Morse sequence, where until now
for such a result only approximations were known.

1 Introduction

Infinite sequences, shortly called sequences, are the simplest possible infinite
objects. The simplest sequences are periodic, up to an initial part. The next
simplest are morphic sequences: fixed points of particular morphisms mapping
single symbols to strings of symbols. A typical example is the fixed point starting
in 0 of the morphism ¢ defined by ¢(0) = 01, ¢(1) = 10, yielding

$(0) = 01, %(0) = 0110, ¢>(0) = 01101001, ¢*(0) = 0110100110010110, . ..

As ¢™(0) is a prefix of ¢"1(0) for every n, the limit of this process yields the
unique fixed point of ¢ starting in 0: the Thue-Morse sequence.

A sequence can be visualized by a turtle curve: for every alphabet symbol fix
an angle. Then the turle curve is obtained by drawing a unit segment for every
sequence element, and adjust the drawing direction by the corresponding angle.
In this paper we investigate turtle curves of morphic sequences. Arbitrarily
choosing simple morphisms and angles typically yield turtle curves harly showing



any structure. However, sometimes the turtle curve is finite, that is, it consists
of finitely many segments that are drawn over and over again, or shows up
fractal or self-similar behavior: it contains an up-scaled copy of itself. When
browsing through this paper you see several examples of turtle curves showing
some regular repeating pattern, either finite or indicated by self-similarity. A
main goal of this paper is to investigate criteria for obtaining finite or self-similar
turtle curves.

One of the most well-known fractal curves is the Koch curve, going back
to [1], and one of the most well-known morphic sequences is the Thue-Morse
sequence as defined above. It was known before that particular variants of
turtle curves for the Thue-Morse sequence approximate the Koch curve in the
Hausdorff metric, [2]. In this paper we go a step further: we show that when
connecting particular mid points of segments in a turtle curve for the Thue-
Morse sequence, one exactly obtains the Koch turtle curve, rather than only
approximating it.

The reason for studying turtle curves of sequences is not only in generating
nice pictures. A turtle curve visualizes a sequence, and patterns showing up in
the visualization may hint towards properties of the structure of the sequence
and help for understanding them.

We restrict to the very simplest version of turtle curves, fully defined by
choosing an angle for every alphabet symbol, since the drawing algorithm only
draws unit segments in a direction determined by these angles. Obvious gen-
eralizations include variants allowing drawing segments of non-fixed lengths, or
drawing other shapes rather than segments. Finite initial parts of both morphic
sequences and turtle curves can be described by L-systems [3], in particular
DOL-systems (deterministic L-systems with 0 context symbols) being a partic-
ular kind of context free grammars for which the productions are applied in
parallel, and for which drawing instructions are coupled to the terminals. A
first approach to draw turtle curves of DOL-systems, including some experimen-
tal observations on grid filling and fractal behavior, was presented in [4].

Other related work includes recurrent sets from [5]. There the sequence gen-
eration is similar to L-systems and morphic sequences, but an essential difference
is in the way of drawing: there every symbol has a fixed drawing direction, where
in our turtle curves the drawing direction is the accumulation of the angles of all
symbols inspected before. By extending the alphabet to all drawing directions
occurring in the turtle curve, the turtle curve is closely related to a recurrent set
over a more complicated sequence over this extended (possibly infinite) alpha-
bet. Another essential difference is that recurrent sets are compact sets obtained
as a limit into the small, while our turtle curves are unions of infinitely many
unit segments, going to infinity in case of unboundedness.

This paper is organized as follows. In Section 2 we introduce morphic se-
quences; in Section 3 we describe turtle curves. In Section 4 we give criteria for
turtle curves to be finite, illustrated by several examples. In Section 5 we in-
troduce self-similarity, and give criteria for self-similarity for point sets of turtle
curves, together with a number of examples. In Section 6 we give our results
relating the Thue-Morse sequence and the Koch turtle curve. Exploiting some



results from Section 6, in Section 7 we give a modified criterion for point sets of
turtle curves to be self-similar. In Section 8 we give examples of turtle curves
that are space-filling in several senses: they meet every grid point exactly once,
or every grid segment exactly once, or are dense in the plane. We conclude in
Section 9.

2 Morphic sequences

Let A be a finite alphabet. As usual, we write A* for the set of finite strings
over A, e for the empty string and AT = A* \ {e}. We write |u| for the length
of a string u, and |A| for the size of a finite set A.

A sequence over A is defined to be a map o : N — A, where N consists of
the natural numbers 0,1,2,.... We write A for the set of sequences over A.

For n € N the string o |,,= c(0)o(1)---o(n—1) € A™ is called the prefix of
length n of o. We write Pref(o) for the set of all prefixes of the sequence o.

For u = ugug---up_1 € A* and o € A“ the sequence uo is defined by
(uo) (i) = u; for i < n and (uo)(i) = o(n —1) for i > n.

For n € N and o € A“ the sequence o™ is defined by o(™ (i) = o (i +n) for
i € N. So for all n € N we have 0 = (0 |,,)o™.

A sequence o is called periodic with period n if o(i+n) = (i) for all i € N,
or, equivalently, o = (™. We write o = u® for u = o |,, if o is periodic with
period n. A sequence o is called ultimately periodic if ¢(™) is periodic for some
m € N.

A morphism is a map ¢ : A — B*; we will only consider morphisms
¢ : A — BT to ensure that infinite sequences will be mapped to infinite se-
quences. Morphisms are extended to ¢ : A* — B* by defining ¢(a1az---ay,) =
6(a1)6(a2) - $(an) and to ¢ : A~ — B* by defining ¢(ac) = ¢(a)(0).

If A= B and one particular a € A satisfies ¢(a) = az for x € AT, this gives
rise to the pure morphic sequence ([6])

¢°(a) = axg(x)?(2)¢° (2)p* (z) - -

It is easily shown that this is the only sequence starting in a that is a fixed point
of ¢, i.e., p(o) = 0. A morphic sequence over A is defined to be a sequence of
the form 7(o) for some pure morphic sequence o over B and some morphism
7 : B — A. In the literature the sequence a, ¢(a),$?(a),... is often called
a DOL-sequence and the sequence 7(a),7(é(a)),7(¢%(a)),... is then called a
CDOL-sequence, see e.g., [6].

The following simple example shows that not every morphic sequence is pure
morphic. Define the sequence square = 1100100 - - over {0,1} by square(n) =
1 if and only if n is a square. This is not pure morphic over {0,1} since
lim, . |square |, |1/n = 0, where |u|; denotes the number of 1’s occurring
in u, and this can only be achieved for square = ¢ (1) if $(0) = 0* for k > 0,
which yields a contradiction by some case analysis. However, square is morphic
since square = 7(¢“(2)) for 7,¢ defined by ¢(0) = 0, ¢(1) = 001, ¢(2) = 21,
7(0)=0,7(1) =1, 7(2) = 1.



Three famous morphic sequences are the Thue-Morse sequence t, the period-
doubling sequence pd and the Fibonacci sequence fib. They are defined by
t = ¢“(0) for ¢(0) = 01, ¢(1) = 10, pd = ¢*(0) for ¢(0) = 01, ¢(1) = 00, and
fib = ¢“(0) for ¢(0) = 01, ¢(1) = 0. In fact up to swapping symbols these are
the only three pure morphic sequences over {0, 1} with |¢(a)| < 2 for a = 0,1
that are not ultimately periodic .

3 Turtle curves

Let for every a € A an angle a(a) € R be given. Then for a sequence o over
A its turtle curve C(o,a) C R? is described as follows. Start in (0,0) and
draw a segment of unit length in the direction a(c(0)), by which the current
direction is (o (0)). Next for ¢ = 1,2,3,... continue by adding «(c (%)) to the
current direction and draw a segment (starting in the end point of the last
drawn segment) in the direction of this current direction. In this paper we
investigate the resulting turtle curves for various sequences and various o : A —
R. Following the above description we now give a formal definition.

Definition 1 Let o be a sequence over A and o : A — R.
ea: A — R is extended to o : A* — R by defining a(e) = 0 and
alar,ag,...,an) =Y i afa;).
o Foru € A* its position P(u,a) € R? is defined inductively by P(e,a) =
(0,0) and
P(ua, @) = P(u,a) + (cos(a(ua)), sin(a(ua)))
forue A* and a € A.

e The turtle curve point set P(o,a) is defined by

P(o,a) = U {P(u,a)}.
uEPI’ef(o')

e The turtle curve C(o, a) is defined to consist of the union of all subsequent
segments between the points in P(o,a):

Clo,a) = | {MAP(u,0) + (1= N)P(ua,a) | A€ [0,1]}.
uaEPI’ef(U)

Note that this definition of a turtle curve is the very simplest possible one.
It allows several obvious extensions, for instance by drawing segments of other
lengths than only unit length, or even other objects. In Section 6 we will use a
variant with two angles: one for turning before and one for turning after drawing
the segment. But our basic definition only uses one angle per symbol: in every
step first turn this angle and then draw the unit segment.



As a first example consider the constant zero sequence o = 0“ defined by
o(i) = 0 for all ¢ € N, and choose «(0) = /2. Then the turtle curve consists of
a square, and P(o,a) = {(0,0),(0,1),(-1,1),(—1,0)} since P(e,a) = (0,0),
P(0,a) = (0,1), P(00,a) = (—1,1), P(000,a) = (—1,0) and P(0%,q) =
P(0"% a) for i > 4.

For the same sequence o = 0“ we obtain

o if a(0) =0 then P(o,a) = {(¢,0) | ¢ € N},
e if a(0) = x for n > 3 then P(o,a) = {(0,0),(—1,0)},

o if ®(0) = 27 /n for n > 3 then P(o,a) consists of the nodes of a regular
n-gon,

e if a(0) = a7 for an irrational number z, then P(o, «) consists of infinitely
many points on a circle.

By definition the distance between two consecutive elements of P(c, «) is 1, so
P(o,a) contains at least two points for every o, . The above examples already
show that it can be finite or infinite; if it is finite then |P(o,a)| may be any
number > 2, and if it is infinite then it may be either bounded or unbounded.

More general, the same three types of turtle curves occur for arbitrary pe-
riodic sequences ¢ = u¥. If a(u) = 0 and P(u,«) # (0,0) then P(o,a) =
S 4+ N - P(u,a) for a finite set S € R?, by which P(o,a) is unbounded. Oth-
erwise, if a(u) = am for a rational number x then P(o,«) is finite. In the
remaining case P(o, ) is bounded and infinite.

If o is periodic and P(o, «) is unbounded then it is easily shown that P (o, «)
is contained in a strip. For non-periodic sequences this is not the case: Figure
1 shows a fragment of the infinitely spiraling turtle curve obtained by choosing
a(0) = 0 and (1) = 7/2 and the sequence square as introduced before:

Ell

Figure 1.

Earlier results on unboundedness include [7], in particular proving that
P(fib, ) is unbounded for «(0) = 0 and «(1) = 7/2, and even more, contains
every grid point in a full quadrant of the plane.

Every turtle curve of any morphic sequence 7(c) is also a turtle curve of the
pure morphic sequence o by choosing a(a) = «(7(a)) for every a; this justifies
omitting 'pure’ in the title of this paper.



We end this section by a lemma that we will often use: to obtain P(uv, )
from P(u,«) one adds a rotated version of P(v, ). For an angle ¢ its rotation
Ry : R?* — R? is defined by Ry(z,y) = (xcosf — ysinh,zsinf + ycosh). We
use + and — for addition and subtraction of vectors in R?.

Lemma 2 Let u,v € A*. Then P(uv,a) = P(u,a) 4+ Rqw)(P(v, ).

Proof: Induction on |v|. For |v| = 0 it holds by definition. Using R, (cos 3, sinf3)
(cos(a+ B3),sin(a+ 3)), and using the induction hypothesis on P(uv, ) we ob-
tain

P(uwa,a) = P(uv,a)+ (cos(a(uva)),sin(a(uva)))
= P(u,a)+ Ryw)(P(v, a)) + (cos(a(uva)), sin(a(uva))
— P(u,0) + Ruguen(P(0,0)) + Ragu(cos(a(va)), sin(a(va)))
= P(u,a) + Ry (P(v, ) + (cos(a(va)), sin(a(va))))
= P(u,a) + Ry (P(va, o))

O

Note that Lemma 2 implies that P(uv,a) = P(u,a) + P(v,«) if a(u) =0
and P(uv,a) = P(u,a) — P(v, ) if a(u) = .

4 Finite turtle curves

A turtle curve C(o, ) is called finite if it consists of finitely many segments;
this is equivalent to finiteness of the set P(o, &).

In this section we give some criteria and examples for finite turtle curves.
In [8] an analysis is given for finiteness of the degenerated class of turtle curves
over two symbols only having angles 0 and m, by which the turtle curve is a
subset of a line.

The next theorem provides a fruitful criterion for P(c,a) being finite. For
a set L C AT of non-empty strings we define L“ to consist of all sequences that
can be written as ujusug - - - for u; € L for all i.

Theorem 3 Let 0 € {u1,...,un}” for uy,...,u, € A*, n > 2. Assume that
a(u;) is a multiple of 27 and P(u;, ) = (0,0) fori=1,...,n. Then P(o,«) is
finite and |P(o, )] <1+ >0 (Jus| — 1).

Proof: Let u € Pref(c). Then u = vyvg---vy for v; € {us,...,uy} for ¢ =
0,...,k—1, and vy is a prefix of u; for some i = 1,...,n, vy # u;. Then by
repeatedly applying Lemma 2 for v; for j = 1,2,.. ., satisfying P(v;, o) = (0,0)
and a(vj) = 0, we obtain P(u,a) = P(v,«). As the total number of proper
non-empty prefixes of u; is |u;|—1 we obtain |P(c, @) \{(0,0)}] < >°i, (Jui|—1),
so |P(o,a)] <14 3", (Ju;| — 1), proving the theorem. O

Theorem 3 admits several variants; for instance by omitting the requirement
of all a(u;) being a multiple of 27, we can conclude boundedness of the turtle



curve, and weakening being a multiple of 27 to being a rational number times
7, we can conclude finiteness, but with a higher bound |P(o, )| depending on
the denominators of the rational numbers.

Now we apply Theorem 3 for the Thue-Morse sequence t, exploiting its
special structure.

Theorem 4 Let a(0) + a(l) = kn/2"™ for k odd. Then P(t,«) is finite and
P(t,0)] < 274,

Proof: Let ¢(0) = 01, (1) = 10, s0t = ¢(t). Let u = ¢"*1(0) and v = ¢"F1(1).
Since both u and v consists of 2™ 0’s and 2™ 1’s, we obtain a(u) = a(v) = kn
and a(uvv) = 3km. Observe that Ry, (P) = —P for every P € R? and k odd.
Applying Lemma 2 three times yields

P(uwvvu, @) = P(uvv, @) — P(u,«), P(uvv,«a) = P(u,a) — P(vv, ),

P(vv,a) = P(v,a) — P(v,a) = 0,

together yielding P(uvvu,a) = (0,0), and similarly P(vuuv, @) = (0,0). We
obtain a(uvvu) = a(vuuv) = 4kmw. Since t = ¢"T3(t), ¢""3(0) = wvvu and
#"3(1) = vuuv we obtain t € {uvvu, vuuv}¥. Now by Theorem 3 we conclude
that P(t, ) is finite and |P(t, a)| < |uvvu| + |vuuv| = 27+, O

The following three pictures show finite turtle curves of t for which Theorem
4 applies. The parameters of Figure 2 are «(0) = 0 and «(1) = 7/2; of Figure
3 they are «(0) = 7/16 and «(1) = 37/4; and of Figure 4 they are a(0) = 7/8
and «(1) = 637/64. The corresponding sets P(o, «) consist of 20, 250 and 1018
points, respectively, all being close to the bounds 32, 256 and 1024 given by
Theorem 4.

Figure 3.

Figure 2.



Figure 4.

Next we give a theorem by which finiteness of P(c,«) can be concluded
similar to Theorem 3, but with weaker conditions: relaxing the condition on
a(uq) and even removing the condition on P(uq, ).

Theorem 5 Let 0 € {uy,...,un}¥ for which a(u;) is a multiple of 2r and
P(us, ) = (0,0) fori=2,...,n, and a(uy) = qmw, where q is rational and not
a multiple of 2. Then P(o,«) is finite.

Proof: Let P = {P((u},a)) | k € N}. From a(u;) = gr and q is rational
and not a multiple of 2 it follows that P is finite. Let u € Pref(o). Then
u=uvvy--- v forv; € {uy,...,up}tfori =0,...,k—1, and vy, is a prefix of u; for
some ¢ = 1,...,n. Then by repeatedly applying Lemma 2 for v; for j = 1,2,.. .,
we obtain P(vivy ... v4—1,a) € P. So P(u,a) = p+Rqu,)m (P(vg, ) forp € P
and m € N. Since P is finite, vy is one of the finitely many prefixes of u; for
some %, and a(u) is rational, there are only finitely many such points. O

We give a few examples of finite turtle curves of the sequence o = ¢“(1) for
¢ defined by ¢(0) = 00 and ¢(1) = 101, and «(0) = k7 /2" for some k,n. Then
¢"1(0) = 02", by which the turtle curve of ¢"+1(0) is a regular 2"+1-gon
or 2" L star, yielding a(¢"*1(0)) = 2km and P(¢"*1(0),a) = (0,0). Further
observe that o € {¢"T1(1),¢"*1(0)}*, by which Theorem 5 applies for proving
finiteness of P(o,q) if a(¢"t1(1)) satisfies the rationality condition. Figure
5 is obtained by choosing «(0) = 7/16,«(1) = 37 /4, Figure 6 is obtained
by choosing «(0) = 7/32,a(1) = —2x/3, Figure 7 is obtained by choosing
a(0) = 7/4,a(l) = —177/18, and Figure 8 is obtained by choosing a(0) =
5m/16, (1) = —297 /60.
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The next example also applies Theorem
5, but in a more hidden way. Define 0 =
¢“(0) for ¢ defined by ¢(0) = 0010 and
@(1) = 1010; this is the sequence yield-
ing Koch’s curve as we will see in Sec-
tion 5. Now we choose «(0) = 27/5 and
a(l) = —n/5. Then one checks that
P(6(00),0) = P(6(10),a) = (0,0),
a(¢(00)) = 27 and «a(4(10)) = 7x/5.
Since o € {4(10), $(00)}*, we obtain
by Theorem 5 that P(o,«) is finite; its
turtle curve is shown in Figure 9.
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Many finite turtle curves of the sequence o = ¢*(0) for ¢ defined by ¢(0) =
011 and ¢(1) = 0, called rosettes, are presented in [9]. Finiteness of them can
be proved by Theorem 5 as follows. The requirement for the angles in rosettes
is ac(0) + ba(1) = 7, up to a multiple of 27, in which @ and b are the numbers
of 0s and 1s, respectively, in ¢*(0) for
some k. For instance, for £k = 2 we
have ¢ = 3 and b = 2. Choosing «
in this way yields a(¢*(0)) = m, from
which we conclude a(¢*(00)) = 27 and
P(¢*(00),a) = (0,0). Since 1 only
occurs in groups of two in ¢(0) and
¢(1), we obtain ¢ € {0,11}*. Since
o is a fixed point of ¢F*!, we ob-
tain o € {¢FT1(0), "+ (11)}*. Since
d*+1(11) = ¢*(00), for applying The-
orem 5 the only remaining require-
ment is a rationality requirement for
a(¢**1(0)), which holds for all rosettes.
In Figure 10 we show a typical rosette
from [9] for a(0) = 77/9,a(l) =
—2m/9, which satisfies the above crite- Figure 10.
ria for k =7,a = 85,b = 86.

5 Self-similar turtle curves

Roughly speaking, a set P C R? is called fractal or self-similar if it contains
a copy of itself when zooming in or out. As in our turtle curves all drawing
steps have unit length, it is most natural to focus on zooming out, leading to
the following definition. As before we use the notation c¢(x,y) = (cx,cy) for
scalar vector multiplication and Ry(z,y) = (zcos@ — ysin 8,z sin 6 + y cos §) for
rotation over 6.

Definition 6 A set P C R? is called self-similar if there exists (zo,10) € R?,
a rotation angle 8 and a scaling factor ¢ > 1 such that

(1’071/0) + CRQ((E,y) cP

for all (z,y) € P.
A turtle curve C(o, ) is called self-similar if P(o,«) is self-similar.

A self-similar set containing two distinct elements is always unbounded and
hence infinite, since for every (x,y) # (¢/,y") € P two points (g, yo) +cRg(x, y)
and (z9,yo)+cRe(2',y’) in P can be obtained of which the distance is increased
by a factor ¢ > 1.

Theorem 7 Let 0 € A¥ satisfy o = ¢(o) for some ¢ : A — AT satisfying
a(p(a)) = a(a) and P(¢(a),a) = cRy(P(a,)) for all a € A, for some scaling
factor ¢ > 1 and some rotation angle 6.
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Then P(c, ) is self-similar.

Proof: First we prove the following claim by induction on |u|.

Claim: a(é(u)) = a(u) and P(é(u), o) = cRg(P(u,)) for all u € A™.

For |u| =1 this is given. For the induction step we prove the claim for ua,
assuming that it holds for u. We have

a(p(ua)) = a(d(u)¢(a)) = a(d(u)) + a(¢(a)) = a(u) + ala) = afua),

and
P($ua)a) = P(o(w)o(a),a)

= P(¢(u), @) + Ro(pu)(P(o(a),a)) by Lemma 2
= P(¢(u),a) + Ry (P(9(a),a)) induction hypothesis
= cRo(P(u,a)) + Rou)(cRg(P(a,a))) given, ind.hyp.
— cRo(P(u;0)) + cRagu)(Ro(Pla,a)
= cRy(P(u,a)) + cRo(Ru()(P(a,a))) rotations commute
= cRo(P(u,a) + Ra(u)(P(av @)))
= cRy(P(ua,a) by Lemma 2,

proving the claim.

We prove that P(o,«) is self-similar by proving that cRy(x,y) € P(o, )
for all (z,y) € P(o,a). Let (z,y) € P(o,®), then (z,y) = P(u,«) for some
prefix u of 0. According to the claim we obtain cRy(z,y) = cRo(P(u,)) =
P(¢(u), ) Since u is a prefix of o, we obtain that ¢(u) is a prefix of ¢(o) = o,
so P(¢(u),a) € P(o,a), concluding the proof. |

As the first application of a self-similar turtle curve in Figure 11 we show a
fragment of C(o, &) for o = ¢*(1), for ¢(0) = 111100, ¢(1) = 10, and «(0) = 0,
a(l) =m/2:

Figure 11.

Indeed, Theorem 7 applies, since «(111100) = «(0) = 0, «(10) = «(1) =
/2, P(111100, ) = (2,0) = 2P(1, ) and P(10, @) = (0,2) = 2P(1, o), satisfy-
ing the requirements for ¢ = 2 and 6§ = 0.
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As the second example we consider the well-known NS
Koch curve: start by a single segment, and replace
it by the four segments shown in Figure 12. Figure 12.

The standard Koch curve is obtained by repeating this for every created new
segment, where the length of every new segment is one third of the length of its
ancestor, and then take the limit. Apart from the scaling, this can be described
in turtle graphics by first doing a unit step in the same direction as before, next
turn 7/3 to the right, then do a unit step, next turn 27/3 to the left and do
a unit step, and finally turn 7/3 to the right and do a unit step. Taking the
limit to the infinite rather than to the finite, this is described as C(koch, a) for
koch = ¢“(0), ¢(0) = 0010, ¢(1) = 1010, «(0) = 7/3, (1) = —27/3, to which
Theorem 7 applies for ¢ = 3 and § = 0. Hence we call C(koch, ) the Koch
turtle curve. Figure 13 shows a fragment.

Figure 13.

By choosing the same
sequence, but choosing
another value for «(0),
and choosing «(l) =
—2a(0), still Theorem 7
applies for 8 = 0, yield-
ing another scaling fac-
tor ¢. For instance, tak-
ing «(0) = 177/36 and
a(l) = —177/18 yields
¢ = 24 2arccos 177/36,
and Figure 14 as a frag-
ment of C(o,a), some-
times called Cesaro frac-

tal.
Theorem 7 also applies for 8 being non-zero. As an example consider o =

@ (1), #(0) = 001, ¢(1) = 1010000, (0) = 7/2, a(1l) = —m/2. Then P(0, ) =
(0,1), P(1,a) = (0, 1), P(#(0), ) = (=1,2), P(¢(1),) = (1,-2), a(0(0)) =
a(0) = m/2 and a(é(1)) = a(1) = —7/2. So Theorem 7 applies for ¢ = v/5 and
0 = arctan1/2. Figure 15 shows a fragment in which the starting point (0,0)
is on the top left, and in every iteration the picture is simultaneously magnified
by a factor ¢ = v/5 and rotated by an angle § = arctan 1/2.

Figure 14.
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Figure 15.

In Figure 16 we see a fragment of
the well-known Sierpinski trian-
gle, obtained as C'(o,«) for o =
6°(1), $(0) = 00, $(1) = 11110,
a(0) =0, a(1) = 27/3, for which
Theorem 7 applies for ¢ = 2 and
0 =0.

Figure 16.

6 Thue-Morse meets Koch

In earlier work, e.g., [2, 10], it has been shown that particular turtle curves for
the Thue-Morse sequence t converge to the Koch curve in the Hausdorff metric.
Related work includes [11], where it is investigated why and to which extent
the sum of binary digits of multiples of 3 is more often even than odd. It is
well-known that the sum of binary digits of n is even if and only if t(n) = 0.
Essentially, [11] considers the turtle curve of t in which for both 0 and 1 the

13



direction turns m/3, but the unit segment is only drawn at every 1, and for
every 0 nothing is drawn. Its analysis is based on ‘the classical fractal scheme’,
essentially being the Koch curve.

But in all this work the focus is on approximation and convergence. Here we
go a step further: we show that the point set of the Koch curve is a subset of a
turtle curve for the Thue-Morse sequence. More precisely, by choosing §(0) =
/3 and §(1) = m, we prove that the points (P(u,d) + P(ua,d))/2 € C(t,9)
for ua being prefixes of t of length divisible by 4, exactly form the point set
P(koch, ) of the Koch turtle curve, defined by koch = “(0), ¥(0) = 0010,
(1) = 1010, B(0) = /3, B(1) = —27/3, up to some scaling and rotation.

In Figure 17 we show a fragment of C(t,0) from which the relationship with
the Koch curve clearly appears.

Figure 17.

In order to give the proof, first we extend the notion of turtle curve to two
angles «, o for every symbol, rather than only one single angle . Until now
steps in a turtle curve when reading a symbol a were defined by first turning
around the angle a(a) and then drawing a unit segment. In the extended variant,
this is replaced by: first turn around the angle a(a), then draw a unit segment,
and then turn around the angle o/(a). More precisely, for u € A* its position
P(u,a,a’) € R* and angle @(u) is defined inductively by P(e, a, ') = (0,0),
a(e) =0, and

P(ua,a,d’) = P(u,a,a’) + (cos(a(u) + a(a)),sin(a(u) + a(a))),

a(ua) =a(u) + a(a) + o'(a),
for u € A* and a € A. Now for a sequence o over A the set P(c,, ') is defined
by
P(o,a,0) = | ) {Pu,a,d)}.
uePref(o)

For o/(a) = 0 for all a € A this definition coincides with the earlier definition of
P(0,a). Conversely, the following lemma shows that the point set P(o, a, o’) of
a turtle curve in this extended set coincides with the point set of a turtle curve
in the basic setting. For a sequence o over A define the sequence pair(c) over
A x A by pair(o)(i) = (o(i),0(i + 1)) for i > 0.

14



Lemma 8 Let o0 be a sequence over A and let a,o : A — R. Then

P(o lkt1,0,0") = (cos(a(a(0)),sin(a(a(0))) + 0))(P(Paif(0) Lks7))) for
all k > 0, for v defined by v(a,b) = a’(a) + a(b) for a,be A.

Proof: Induction on k. For k = 0 it holds by definition, and the induction
steps follows since the drawing instructions coincide. o

The points (P(u,0)+ P(ua,d))/2 € C(t, §) represent midpoints between two
consecutive points in the turtle curve point set P(t,0). Up to scaling and transla-
tion, they can also be obtained as points in P(tT,d), where tT = 20212120 - - - is
defined by t*(2i) = 2 and t*(2i41) = t(¢) for ¢ > 0, and for which the definition
of § is extended to {0, 1,2} by defining 6(2) = 0. Next define a(0) = &/(0) = 7/3
and a(1) = /(1) = —27/3. The next lemma is the key to the relation between
Koch and Thue-Morse.

Lemma 9 Let k > 0, and let u = tT |gx and let v = t |,. Then P(u,d) =
3P(v,a,0).

Proof: We extend the claim to be proved by d(u) = @(v) and do this by
induction on k. For k = 0 we have P(u,0) = (0,0) = 3P(v,,3) and 6(u) =
0 =a(v).

For the induction step assume §(u) = @(v) and P(u,d) = 3P(v,a,&’). We
extend v by one element a € {0, 1}.

In case of a = 0 we have to prove §(©20212120) = @(v0) and P(u20212120, 6) =
3P(v0,a,a’). Since §(u) = a(v) and §(20212120) = 27/3 = «(0) + o/ (0) we
conclude 6(u20212120) = @(v0). Let A = P(u,d), and we turn the picture
in such a way that the direction §(u) = @(v) is horizontal from left to right.
Then starting in A, the eight symbols 20212120 cause the turtle to move to
B,C,D,C,B,C, D, E, successively. The total effect is a move from A to F,
which is also obtained by moving 3 unit steps in the direction of a(0) = m/3.
So P(u20212120,§) = 3P(v0, o, ).

E

B

In case of a = 1 we have to prove §(121202021) = &(v1) and P(u21202021,0) =
3P(vl,a,a’). The former holds since d(u) = @(v) and 6(21202021) = 27/3 =
a(l)+a'(1), up to 27. Let P = P(u,0), and we turn the picture in such a way
that the direction 6(u) = @(v) is horizontal from left to right. Then starting in
P, the eight symbols 21202021 cause the turtle to move to Q, P, R, S, T,U,V, U,
successively. The total effect is a move from P to U, which is also obtained by
moving 3 unit steps in the direction of a(1) = —27/3. So P(u21202021,4) =
3P(vl,a, '), concluding the proof. a
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Recall that the period-doubling sequence pd is defined by pd = ¢“(0) for
@(0) = 01, ¢(1) = 00. The next lemma states that it is obtained from koch by
only removing the first element, and is closely related to t.

Lemma 10 pd(i) = koch(i + 1) = 7(pair(t)(i)) for all i € N, for 7 defined by
7(0,0) =7(1,1) =1, 7(0,1) = 7(1,0) = 0.

Proof: We apply induction on 4; we have pd(0) = 0 = koch(1) = 7(pair(t)(0)).
Recall that koch = 1*(0), ¥(0) = 0010, ¥(1) = 1010, and observe pd = (¢2)*(0)
where ¢2(0) = 0100 and ¢?(1) = 0101. Since pd = ¢?(pd) and koch = 1)(koch),
from this we conclude pd(i) = 0 = koch(i + 1) for ¢ even, and pd(i) = 1 =
koch(i + 1) for ¢ = 1mod 4, and koch(4j) = koch(j) and pd(4j + 3) = pd(j)
for j > 0. So for i Z 3mod 4 the claim follows directly, and for i = 45 + 3 we
conclude pd(i) = pd(4j +3) = pd(j) = koch(j + 1) = koch(4j 4+ 4) = koch(i + 1)
by the induction hypothesis.

Since t € {0110, 1001} we obtain 7(pair(t)(i)) = 0 = pd(i) for i even, and
7(pair(t)(z)) = 1 = pd(i) for ¢ = 1mod4, and t(4k + 3) = t(4k) for all k.
Combined with t(2k) = t(k) for all k, for i = 45 + 3 we obtain

7(pair(t)(i)) = (pair(t)(4j + 3)) = 7(t(4j + 3),t(4j +4))

=7(t(4)), t(4j +4)) = 7(t(j), t(G + 1)) = 7(pair(t)(j))
= pd(j) = pd(4j + 3) = pd(i),
using the induction hypothesis, concluding the proof. O

As a side remark, pd(i) = koch(i+1) follows from the more general statement
that can be proved in a similar way: if ¥(0) = Ou, ¥(1) = lu, ¢(0) = w0,
(1) = ul for any u starting with 0, then ¢*(0)(:) = ¢*(0)(i + 1) for all ; € N.

Now we arrive at the main theorem.

Theorem 11 Let §(0) = #/3 and §(1) = m, then connecting the points
(P(t lag+3,0) + P(t lag+s,9))/2 on C(t,0) for k = 0,1,2,... exactly yields
the Koch turtle curve, scaled up by a factor 3/2.

Proof: Up to a translation, these points are exactly the points
LP*t g, 0) for k = 1,2,.... According to Lemma 9, these are equal to
gP(t Lk, a, @), According to Lemma 8, after removing the first one, up to
a rotation and translation these are equal to 2P (pair(t) |x,7), for  defined
by v(a,b) = a'(a) + a(b) for a,b € {0,1}. Since «(0) = /(0) = 7/3 and
a(l) = o/(1) = —2x/3, we obtain (up to 27) ¥(0,0) = v(1,1) = 27/3 and
7(0,1) = y(1,0) = —7/3. So these points are equal to 3P(7(pair(t) |),3) for
B(0) = —m/3 and (1) = 27/3. Since the sequences koch and 7(pair(t)) coincide
by Lemma 10 up to removing a first element, these points are exactly the points
on (a mirrored version of) the Koch turtle curve, multiplied by % o

In Theorem 11 we worked out the relationship of the Koch turtle curve with
the turtle curve C(t, ) for the particular angles a(0) = 7/6 and «(1) = 7. A

16



similar relationship appears for other choices. Figure 18 shows a fragment of
C(t,a) for a(0) = 27/3 and «(1) = =, showing in bold an initial part of the
underlying Koch curve, again scaled up by a factor 3/2.

Figure 18.

Experiments show that C(t, ) converges to the Koch curve if o(0) +a(l) =
km/(3 = 2™) for k not divisible by 2,3, where in Theorem 4 we showed that
without the 3 in the denominator a finite turtle curve is obtained. For instance,
by choosing «(0) = 117/12 and «(1) = 7/6 we obtain the infinite Koch like
turtle curve of which a fragment is shown in Figure 19, and from which a detail
is shown in Figure 20.

Figure 20.

Figure 19.

7 More self-similar turtle curves

In this section we prove a variant of Theorem 7 for proving turtle curves to be
self-similar, yielding a number of surprising examples.
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Theorem 12 Let 0 € AY satisfy 0 = ¢(o) for ¢ : A — AT, and there is
(z,y) € R* with (x4 1)% + y?> > 1 such that for all a € A the following holds:

e a(¢(a)) = ala), and
o P(ug,a) = (z,y) for u, obtained from ¢(a) by removing its last element.
Then P(co, ) is self-similar.

Proof: We use turtle curves with two angles as introduced in Section 6, in
which P(u,q,0) = P(u,«) is the point obtained after proceeding u where for
every symbol first a turn is made and then a unit segment is drawn, while
P(u,0,a) is the point obtained after proceeding u where for every symbol first
a unit segment is drawn and then a turn is made.

Choose ¢ > 1 and 6 such that c¢Ry(1,0) = (x + 1,y); this is possible due to
(z+1)%+y? > 1. In computing P(¢(a), 0, «) first the segment from (0, 0) to (1,0)
is drawn, followed by unit segments in the directions a(u) for the consecutive
prefixes u of ¢(a). So

P(#(a),0,a) = (1,0) + P(uq, ) = (x + 1,y) = ¢Ry(1,0) = cRypP(a, 0, &),

very similar to the condition of Theorem 7. Using this property, the following
claim is proved in exactly the same way as the claim in the proof of Theorem 7,
where instead of Lemma 2 its variant P(uv,0,a) = P(u,a) + Rq ) (P(v,0, a))
is used, allowing a similar proof as for Lemma 2.

Claim: «a(¢(u)) = a(u) and P(¢(u),0,a) = cRy(P(u,0,a)) for all u € AT.

We prove that P(o,«) is self-similar by proving that c¢Ry(1,0) — (1,0) +
cRy(x,y) € P(o,a) for all (z,y) € P(o,a). Let (z,y) € P(o,a), then (z,y) =
P(u, ) for some prefix u of o. By the construction of P we have P(ua,0,a) =
(1,0) + P(u, ) for every u € A*,;a € A. So (z + 1,y) € P(0,0,«). Using the
claim we conclude cRy(z + 1,y) = P(v,0, ) for some non-empty prefix v of o.
Again using P(ua,0,a) = (1,0) + P(u, «), we conclude that ¢Ry(1,0) — (1,0) +
cRy(z,y) = cRy(xz + 1,y) — (1,0) € P(o, ), concluding the proof. O

In case ¢(0) = u0, ¢(1) = ul, for some string u starting in 0, for o = ¢*(0)
Theorem 12 applies if a(u) = 0 and P(u, o) = (z,y) satisfies (x + 1) + 3% > 1.
This is the case for u = 00110 and «(0) = 77/18, a(l) = —7n/12, yielding a
self-similar turtle curve with an initial fragment starting at the bottom left is
shown in Figure 21.
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Figure 21.

From Lemma 10 we know that the period-doubling sequence pd is obtained
from koch by removing the first element. Since koch yields a self-similar curve
for (1) = —2a(0) for arccos(a(0)) > —1/2, we expect the same for pd. This can
be proved directly by Theorem 12: pd is a fixed point of ¢ defined by ¢(0) = 01,
#(1) = 00, so also of ¢? satisfying ¢2(0) = 0100, ¢*(1) = 0101, being of the
above pattern for which the requirements of Theorem 12 are easily checked.

In case a(a) = 2n/k for some a € A, k > 1, we may plug in a¥ in the
definition of ¢(b) for any b € A, without affecting the requirements for Theorem
12, since in the turtle a® draws a regular k-gon, ending in the same point and
direction where started. Applying this for pd for k = 6 by choosing ¢(0) =
01111111 = 017, ¢(1) = 00, «(0) = 7/12, a(1) = —m/6 yields a self-similar
turtle curve for ¢*(0) of which Figure 22 shows the initial fragment, starting at
the top:
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Figure 22.

Figure 23 shows an initial part of C(¢*(0), ) for ¢, « defined by ¢(0) =
0111111 = 015, ¢(1) = 00, (0) = 27/5, (1) = —4xn/5. Again this is a self-
similar turtle curve since ¢“(0) is a fixed point of ¢?, and ¢?, « satisfy the
requirements of Theorem 12.

Figure 23.
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8 Space-filling curves

A turtle curve can be space-filling in several senses:

e It contains every edge in a grid (or half or one quarter of it) at least once
or exactly once.

e It contains every node in a grid (or half or one quarter of it) at least once
or exactly once.

e [t is dense in the whole plane.

In this section we prove that these three phenomena all occur for turtle
curves of morphic sequences. First we focus on the rectangular grid of which
the nodes are (z,y) for integers x,y, and the edges are of the shape {\(z,y) +
(I=X)(z+1,9) | Xel0,1]}, or {\z,y)+ (1 —A)(z,y+1)]| X e€]01]}, for
integers x,y. A result from [7] states that C(fib, «) for @(0) = 0 and «(1) = 7/2
contains every edge in in a full quadrant of this grid. This is ‘at least once’ in
the above setting; the next theorem states ‘exactly once’.

Theorem 13 Let «(0) = 7/2 and «(1) = —n/2. Define ¢$(0) = 010001110
and ¢(1) = 110001110. Then So C(¢*(0),«) contains every edge in the quarter
plane {(z,y) | * <y Ax > —y} ezactly once.

Proof: For a string v write Pref(v) for the set of strings u for which w exists
such that vw = v, and

Cv,a) = U {AP(u,a) + (1 — A)P(ua,a) | A € [0,1]}.
uaePref(v)

It is easily proved by induction on n that C(¢™(0),«) consists of all 9" grid
edge in the square bounded by the four points (0,0), (3"/2,3"/2), (0,3"),
(—3"/2,3"/2), all occurring exactly once. So C(¢“(0),«) contains every edge
in the quarter plane {(z,y) | * < y Ax > —y} exactly once. O
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Showing the turtle curve in-
dicated in Theorem 13 only
shows the filled grid quar-
ter; more information is ob-
tained by Figure 24 show-
ing C(¢(0),) in which
the corners are rounded off.
The starting point (0,0) is
at the bottom.

In this example every grid
edge in the quarter plane is
passed exactly once, so all
grid points are passed ex-
actly twice, except for the
points on the border that
are passed once. A simi-
lar curve, but then filling
1/8 of the plane, is obtained
by a sequence obtained
from the Rudin-Shapiro se-
quence, see [6].

More interesting and slightly harder is the second variant: all grid points
are passed exactly once. In the literature and wikipedia many examples of such
curves are given, including the Hilbert curve, the Peano curve and the Moore
curve. Typically, they can be presented as L-systems, but not in our more basic
format of turtle curves. To obtain a turtle curve passing every grid point exactly
once we consider the turtle curve from Theorem 13, but instead of drawing the
full edges, only the midpoints of the edges are drawn, and every two consecutive
midpoints are connected by a segment. Since all angles in the original turtle
curve from Theorem 13 are 7/2 or —m/2, this yields a rectangular grid again, but
then turned over 7/4. The resulting curve can be obtained as the turtle curve
of the sequence pair(¢“(0)), where ¢ is from Theorem 13 and pair is defined by
pair(c)(i) = (o(i),o(i + 1)) for ¢ > 0, just like in Section 6. The angles in this
turtle curve are as follows: «(0,0) = 7/2, «(0,1) = «(1,0) =0, a(1,1) = —7/2.
Next we observe that this sequence pair(¢“(0)) is pure morphic: writing a, b, ¢, d
for (0,0),(0,1),(1,0),(1,1), respectively, it is easily proved to be a fixed point
of ¢ defined by

Y(a) = beaabddca, ¥ (b) = beaabddcd, 1(c) = deaabddca, ¥ (d) = dcaabddcd.
Hence pair(¢¥(0)) = 4 (b). This is the proof sketch of the following theorem.

Figure 24.

Theorem 14 Let a(a) = 7/2, a(b) = a(c) = 0 and a(d) = —7/2. Define
¥ as above. Then P(“(b), ) contains every grid point in the quarter plane
{(z,y) | x > 0Ay >0} exactly once.

An initial part of the corresponding turtle curve C'(¢“(b), ) starting at the
bottom left is given in Figure 25.
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Figure 25.

This section is concluded by the observation that a particular turtle curve
of a morphic sequence is dense in the full plane, that is, for every point p € R?
and every € > 0 the point set of the turtle curve contains a point that is closer

than € to p.
The example and the idea of the proof was suggested by Tonny Hurkens.

Theorem 15 Let o = ¢*(0) for ¢ defined by
#(0) = 011111, (1) = 100000,
and let a(0) = 21/5 and a(1) = —27/5. Then P(o,a) is dense in R?.

Write p, = (cos(27i/5), sin(27i/5)) for k = 0,1,2,3,4 and let P be the set of
points that can be written as Z?:o a;p; for integers ag, a1, as,as, ays. It is well-
known that P is dense in R?; we will prove that P(o,a) = P. Since a(0) = 27/5
and «o(1l) = —27/5 we obtain P(u,«) € P for all u € {0,1}*, so P(0,) C P.
For the converse we first observe that due to pg + p1 + p2 + p3 + psa = (0,0) we
may restrict to a; > 0:

4

P = {Z(hpz | ag, a1, az,a3,a4 € N}.
i=0
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For the remaining proof obligation P C P(c, «) we have to prove that for every
ag, a1, az, a3, as € N the point Z?:o a;p; is in P(o, a). This follows by induction

on ag + a1 + as + as + a4 using the following lemma.

Lemma 16 Letp € P(o,a). Then p+p € P(o,«) for k=0,1,2,3,4.

Proof: Write P(i) = P(o |;,«) and a(i) = a(o |;) fori € N. Then p € P(o,«)
means that p = P(n) for some n € N. Since a(n) is a multiple of 27/5 we
conclude that P(n+1) = p+ p; for some ¢ € {0,1,2,3,4}. So for this particular
k = i we have p + p; € P(0,a), we have to prove that this also holds for the
other k. Since P(o,«) is self-similar with scaling factor 1 and rotation angle
0 by Theorem 7, and |¢p(u)| = 6|u| for all u, we obtain P(6n) = P(n) and
a(6n) = a(n). If the last element of o |,, is 1 we replace n by 6n, keeping the
same P(n) and a(n), but replacing the last element by 0. So we assume that
the last element of o |,, is 0. Then ¢(o |,) ends in 011111, by which the last 5
steps in its turtle curve is a regular pentagon. Hence P(6n—5) = P(6n) = P(n)
and a(6n —5) = a(6n) = a(n). Doing the same observation on the 1-step from
P(6n — 4) to P(6n — 5) we obtain ¢(o |en—4a) ending in 100000 by which the
last 5 steps in its turtle curve is a regular pentagon in the other direction. This
yields P(6(6n —4) — 6) = P(n) and a(6(6n —4) —6) = «(n) + 67/5. Hence
P(6(6n —4) —5) = p+ pi € P(0,a) for k = (i + 3) mod 5. This argument is
repeated until for all five values of k£ the point p + pi has been proved to be in

P(o,a).
This concludes the proof of both the lemma and Theorem 15.
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9 Conclusions

Ultimately periodic sequences yield boring turtle curves. Morphic sequences still
have very simple definitions, but typically are not ultimately periodic. When
randomly generating morphic sequences and arbitrarily choosing angles, the re-
sulting turtle curves typically show up a mess in which no structure is recognized.
In this paper we developed criteria for morphic sequences and angles yielding
turtle curves with a special structure. One special structure is finiteness, mean-
ing that only finitely many distinct segments are drawn. Since the sequence is
infinite, these finitely many segments are drawn over and over again. A second
special structure is self-similarity: the set of end points of the segments contain
an up-scaled copy of itself. Surprisingly, both for finiteness and self-similarity
the resulting turtle curves typically look nice and well-structured, for which we
gave several examples. For all our criteria we gave rigorous proofs. We also
gave examples of space-filling turtle curves and dense turtle curves.
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