

Technische Universiteit **Eindhoven** University of Technology

Health Care Management and Modelling

Ivo Adan

Where innovation starts

Tools

Tools

- Main site for simulation language χ 3.0 is http://chi.se.wtb.tue.nl including:
 - Tool manual (installation, use of software)
 - Tutorial
 - Reference manual (details of χ 3.0)

Tools

- Main site for simulation language χ 3.0 is http://chi.se.wtb.tue.nl including:
 - Tool manual (installation, use of software)
 - Tutorial
 - Reference manual (details of χ 3.0)
- Software package R software is recommended for statistical computing (distribution plots, histograms, ...)

• Able to model, simulate and analyze health care systems

- Able to model, simulate and analyze health care systems
- Able to construct and analyze elementary queueing models

- Able to model, simulate and analyze health care systems
- Able to construct and analyze elementary queueing models
- Getting hands-on experience with simulation language $\chi 3.0$

- Able to model, simulate and analyze health care systems
- Able to construct and analyze elementary queueing models
- Getting hands-on experience with simulation language $\chi 3.0$
- Develop intuition and understanding of critical logistical parameters

- Able to model, simulate and analyze health care systems
- Able to construct and analyze elementary queueing models
- Getting hands-on experience with simulation language $\chi 3.0$
- Develop intuition and understanding of critical logistical parameters
- Develop understanding of the power and limitations of stochastic models for health care systems

• Identify the issues to be addressed

- Identify the issues to be addressed
- Learn about the system

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model
- Verify and validate the model

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model
- Verify and validate the model
- Experiment with the model (what can you learn?)

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model
- Verify and validate the model
- Experiment with the model (what can you learn?)
- Present the results!

• (Small scale) Physical models (Water emulator Liquitrol)

• (Small scale) Physical models (Water emulator Liquitrol)

• Simulation models (χ 3.0 code)

```
model result GRSE():
    chan patient a, b, c;
    run G(a, exponential(6.0)),
        R(a, b),
        S(b, c, gamma(4.0,1.0)),
        E(c, 6000.0)
end
```


• (Small scale) Physical models (Water emulator Liquitrol)

• Simulation models (χ 3.0 code)

```
model result GRSE():
    chan patient a, b, c;
    run G(a, exponential(6.0)),
        R(a, b),
        S(b, c, gamma(4.0,1.0)),
        E(c, 6000.0)
end
```

• Analytical models (Queueing formulas)

$$E(W) = \frac{1}{2} (1 + c_b^2) \frac{\rho}{1 - \rho} E(B)$$

• Understanding

- Understanding
- Intuition building

- Understanding
- Intuition building
- Improvement

- Understanding
- Intuition building
- Improvement
- Optimization

- Understanding
- Intuition building
- Improvement
- Optimization
- Support decision making

• Trade-off between complexity and simplicity

- Trade-off between complexity and simplicity
- Flexibility

- Trade-off between complexity and simplicity
- Flexibility
- Data requirements

- Trade-off between complexity and simplicity
- Flexibility
- Data requirements
- Transparency

- Trade-off between complexity and simplicity
- Flexibility
- Data requirements
- Transparency
- Effective modeling requires intuition, analytical and simulation capability

- Trade-off between complexity and simplicity
- Flexibility
- Data requirements
- Transparency
- Effective modeling requires intuition, analytical and simulation capability
- Art of modeling is in the selection of the right model for a given situation

Modeling: Critical logistical parameters

• Throughput: Number of patients treated per time unit

- Throughput: Number of patients treated per time unit
- Flow time or cycle time: Time it takes a patient to go through the system

- Throughput: Number of patients treated per time unit
- Flow time or cycle time: Time it takes a patient to go through the system
- Cycle time factor: Cycle time divided by service time

- Throughput: Number of patients treated per time unit
- Flow time or cycle time: Time it takes a patient to go through the system
- Cycle time factor: Cycle time divided by service time
- Utilization: Fraction of time resource (bed, room, nurse, ...) is being used

Emergency Department

Emergency department (ED) of Catherina Hospital Eindhoven

Emergency Department

Emergency Department

Goal

Goal

• Develop model to support decision making in LEAN process improvement programs

Goal

- Develop model to support decision making in LEAN process improvement programs
- Address questions such as:
 - What capacity is required to meet target maximal waiting times?
 - How much does waiting time decrease by increasing nursing staff?
 - What is the effect of an increase in inflow due to the aging population?

Queueing model: Basic elements

Queueing model: Basic elements

• Patient arrivals

- **Queueing model: Basic elements**
 - Patient arrivals
 - Treatment times

Queueing model: Basic elements

- Patient arrivals
- Treatment times
- Resource capacities

Arrivals and diversity

Distribution ED patients on speciality

Arrivals and diversity

Arrivals and diversity

• Flow refers to arrival of patients

- Flow refers to arrival of patients
- t_a and σ_a are mean and standard deviation of time between arrivals

- Flow refers to arrival of patients
- t_a and σ_a are mean and standard deviation of time between arrivals
- Arrival rate

$$r_a = \frac{1}{t_a}$$

- Flow refers to arrival of patients
- t_a and σ_a are mean and standard deviation of time between arrivals
- Arrival rate

$$r_a = \frac{1}{t_a}$$

• Coefficient of variation of time between arrivals

Poisson arrival flow

Poisson arrival flow

• Times between arrivals are independent and Exponential with rate λ

Poisson arrival flow

• Times between arrivals are independent and Exponential with rate λ

• So

$$t_a=rac{1}{\lambda}, \quad r_a=\lambda, \quad c_a=1$$

Properties of Poisson arrival flow: Memoryless

Properties of Poisson arrival flow: Memoryless

Memoryless property

 $\mathsf{P}(\text{arrival in } (t, t + \Delta)) = 1 - e^{-\lambda \Delta} \approx \lambda \Delta$

So in each small interval Δ there is an arrival with probability $\lambda \Delta$!

Properties of Poisson arrival flow: Memoryless

Memoryless property

 $\mathsf{P}(\text{arrival in } (t, t + \Delta)) = 1 - e^{-\lambda \Delta} \approx \lambda \Delta$

So in each small interval Δ there is an arrival with probability $\lambda \Delta$!

• This means: "truly unpredictable arrivals"

Properties of Poisson arrival flow: Binomial and Poisson

Properties of Poisson arrival flow: Binomial and Poisson

• Dividing (0, t) into intervals of length Δ , the number of arrivals in (0, t) is Binomial with $n = \frac{t}{\Delta}$ and $p = \lambda \Delta$

Properties of Poisson arrival flow: Binomial and Poisson

- Dividing (0, t) into intervals of length Δ , the number of arrivals in (0, t) is Binomial with $n = \frac{t}{\Delta}$ and $p = \lambda \Delta$
- Since *n* is large and *p* is small, this number is Poisson distributed with parameter $np = \lambda t$

P(*k* arrivals in (0, *t*)) =
$$e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$
, $k = 0, 1, 2, ...$

This explains the name "Poisson process"

Properties of Poisson arrival flow: Clustered arrivals

Properties of Poisson arrival flow: Clustered arrivals

• Since Exponential density

 $f(x) = \lambda e^{-\lambda x}$

is maximal for x = 0, short inter-arrival times occur more frequently than long ones

Properties of Poisson arrival flow: Clustered arrivals

• Since Exponential density

 $f(x) = \lambda e^{-\lambda x}$

is maximal for x = 0, short inter-arrival times occur more frequently than long ones

• So arrivals tend to cluster:

Properties of Poisson arrival flow: Many rare arrival flows

Properties of Poisson arrival flow: Many rare arrival flows

• Superposition of many independent rarely occurring arrival flows is (close to) Poisson

Properties of Poisson arrival flow: Many rare arrival flows

- Superposition of many independent rarely occurring arrival flows is (close to) Poisson
- This explains why Poisson flows so often occur in practice!

Properties of Poisson arrival flow: Merging and splitting

Properties of Poisson arrival flow: Merging and splitting

• Merging of two Poisson flows with rates λ_1 and λ_2 is again Poisson with rate $\lambda_1 + \lambda_2$, since

 $\mathsf{P}(\text{arrival in } (t, t + \Delta)) \approx \lambda_1 \Delta + \lambda_2 \Delta = (\lambda_1 + \lambda_2) \Delta$

Given there is an arrival in $(t, t + \Delta)$, it is of type 1 with probability

$$P(\text{type 1 arrival in } (t, t + \Delta) | \text{arrival in } (t, t + \Delta)) = \frac{P(\text{type 1 arrival in } (t, t + \Delta))}{P(\text{arrival in } (t, t + \Delta))}$$
$$= \frac{\lambda_1 \Delta}{(\lambda_1 + \lambda_2) \Delta}$$
$$= \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

Properties of Poisson arrival flow: Merging and splitting

• Merging of two Poisson flows with rates λ_1 and λ_2 is again Poisson with rate $\lambda_1 + \lambda_2$, since

 $\mathsf{P}(\mathsf{arrival} \text{ in } (t, t + \Delta)) \approx \lambda_1 \Delta + \lambda_2 \Delta = (\lambda_1 + \lambda_2) \Delta$

Given there is an arrival in $(t, t + \Delta)$, it is of type 1 with probability

$$P(\text{type 1 arrival in } (t, t + \Delta) | \text{arrival in } (t, t + \Delta)) = \frac{P(\text{type 1 arrival in } (t, t + \Delta))}{P(\text{arrival in } (t, t + \Delta))}$$
$$= \frac{\lambda_1 \Delta}{(\lambda_1 + \lambda_2) \Delta}$$
$$= \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

• Random splitting of Poisson flows with rate λ and splitting probability p is again Poisson with rate $p\lambda$, since

 $P(arrival in (t, t + \Delta)) \approx p\lambda\Delta$

- Inhomogeneous Poisson arrival flow
 - Arrival rate is not constant but time-dependent $\lambda(t)$

• Arrival rate is not constant but time-dependent $\lambda(t)$

• So

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

 $\mathsf{P}(\operatorname{arrival} \operatorname{in} (t, t + \Delta)) \approx \lambda(t) \Delta$

• **Question:** How to simulate a realization of an inhomogeneous Poisson arrival flow?

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

- **Question:** How to simulate a realization of an inhomogeneous Poisson arrival flow?
- Answer: Suppose there is a maximum rate $\Lambda = \max_{t \ge 0} \lambda(t)$

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

- Question: How to simulate a realization of an inhomogeneous Poisson arrival flow?
- Answer: Suppose there is a maximum rate $\Lambda = \max_{t \ge 0} \lambda(t)$
 - Simulate Poisson flow with constant rate Λ

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

- Question: How to simulate a realization of an inhomogeneous Poisson arrival flow?
- Answer: Suppose there is a maximum rate $\Lambda = \max_{t \ge 0} \lambda(t)$
 - Simulate Poisson flow with constant rate Λ
 - When arrival at time t, then:
 - **accept** arrival with probability $\frac{\lambda(t)}{\Lambda}$
 - reject arrival otherwise

• Limited data available on activities in treatment rooms

- Limited data available on activities in treatment rooms
- Entrance and exit times in treatment rooms are accurately recorded

- Limited data available on activities in treatment rooms
- Entrance and exit times in treatment rooms are accurately recorded
- Employ the concept of Effective Process Times

- Treatment times of patients depend on patient characteristics such as:
 - Medical speciality
 - Triage color
 - Age
 - Type of attending physician

• Patient charateristics lead to almost 7000 treatment time groups!

- Patient charateristics lead to almost 7000 treatment time groups!
- Only 34000 measurements: this calls for lumping

- Patient charateristics lead to almost 7000 treatment time groups!
- Only 34000 measurements: this calls for lumping
- Recursive partitioning leads to 34 groups of treatment times on which a distribution can be reliably fitted

• Simultaneous resource use: Patient needs room, nurse and physician

- Simultaneous resource use: Patient needs room, nurse and physician
- Multi-processing feature: Nurses and physicians are capable of handling multiple patients simultaneously

- Simultaneous resource use: Patient needs room, nurse and physician
- Multi-processing feature: Nurses and physicians are capable of handling multiple patients simultaneously
- These features are modeled by a token system:
 - Every nurse is represented by 4 tokens (treat max 4 patients)
 - Every patient needs 1 nurse token
 - Same token mechanism used for triage nurse and physicians

- Simultaneous resource use: Patient needs room, nurse and physician
- Multi-processing feature: Nurses and physicians are capable of handling multiple patients simultaneously
- These features are modeled by a token system:
 - Every nurse is represented by 4 tokens (treat max 4 patients)
 - Every patient needs 1 nurse token
 - Same token mechanism used for triage nurse and physicians
- Staffing levels adapted to workload during the day:
 - Working rosters for each weekday specifying the available capacity at each point in time during the day

Simulation model

High level χ 3.0 model of ED: Green is patient flow, Purple information flow

Software package

Emergency Department

Snapshot of simulation output of χ 3.0 model

TU/e Technische Universiteit Eindhoven University of Technology

Validation

Patients in process

Historical (left) and simulated (right) average occupation on Monday

Validation

Cycle time factor for historical and simulated patients on Monday

Decision support Improvement opportunities:

Decision support Improvement opportunities:

• Reduce waiting times or number of patients waiting

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

• More treatment rooms

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms
- No priority for ambulance patients

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms
- No priority for ambulance patients
- More nursing capacity

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms
- No priority for ambulance patients
- More nursing capacity
- More physician capacity

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms
- No priority for ambulance patients
- More nursing capacity
- More physician capacity
- Treatment time reduction (by shortening time to hospitalization)

Treatment time reduction (10 mins)

Simulation output on Monday for unadapted treatment time

Simulation output for 10 minutes treatment time reduction

• What effect has an increase of ED visits by elderly patients?

- What effect has an increase of ED visits by elderly patients?
- What extra capacity is needed if neighboring ED closes?

- What effect has an increase of ED visits by elderly patients?
- What extra capacity is needed if neighboring ED closes?
- What if average urgency of patients increases (due to less self-referrals)?

- What effect has an increase of ED visits by elderly patients?
- What extra capacity is needed if neighboring ED closes?
- What if average urgency of patients increases (due to less self-referrals)?
- What is more accurate triage results in less second consults?

Scenario: growth arrival rate (15%)

Simulation output on Monday for unadapted arrival rate

Simulation output for 15% growth of patient arrivals

• Aggregate model based performance analysis of an emergency department

- Aggregate model based performance analysis of an emergency department
- Aggregate modeling of semiconductor equipment using effective process times

- Aggregate model based performance analysis of an emergency department
- Aggregate modeling of semiconductor equipment using effective process times
- Aggregate simulation modeling of an mri department using effective process times