Health Care Management and Modelling

Ivo Adan

TU/e
Tools

TU/e

Tools

- Main site for simulation language $\chi 3.0$ is http://chi.se.wtb.tue.nl including:
- Tool manual (installation, use of software)
- Tutorial
- Reference manual (details of $\chi 3.0$)

Tools

- Main site for simulation language $\chi 3.0$ is http://chi.se.wtb.tue.nl including:
- Tool manual (installation, use of software)
- Tutorial
- Reference manual (details of $\chi 3.0$)
- Software package R software is recommended for statistical computing (distribution plots, histograms, ...)

Objectives

TU/e

Objectives

- Able to model, simulate and analyze health care systems

TU/e

Objectives

- Able to model, simulate and analyze health care systems
- Able to construct and analyze elementary queueing models

TU/e

Objectives

- Able to model, simulate and analyze health care systems
- Able to construct and analyze elementary queueing models
- Getting hands-on experience with simulation language $\chi 3.0$

Q

Objectives

- Able to model, simulate and analyze health care systems
- Able to construct and analyze elementary queueing models
- Getting hands-on experience with simulation language $\chi 3.0$
- Develop intuition and understanding of critical logistical parameters

Objectives

- Able to model, simulate and analyze health care systems
- Able to construct and analyze elementary queueing models
- Getting hands-on experience with simulation language $\chi 3.0$
- Develop intuition and understanding of critical logistical parameters
- Develop understanding of the power and limitations of stochastic models for health care systems

TU/e

Modeling: basic steps

TU/e

Modeling: basic steps

- Identify the issues to be addressed

TU/e $\mathrm{e}^{\text {fatman}}$

Modeling: basic steps

- Identify the issues to be addressed
- Learn about the system

TU/e e^{2}

Modeling: basic steps

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach

TU/e

Modeling: basic steps

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model

TU/e

Modeling: basic steps

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model
- Verify and validate the model

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Modeling: basic steps

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model
- Verify and validate the model
- Experiment with the model (what can you learn?)

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Modeling: basic steps

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model
- Verify and validate the model
- Experiment with the model (what can you learn?)
- Present the results!

TU/e

Modeling: Types of models

Cechnische Universiteit

Modeling: Types of models

- (Small scale) Physical models (Water emulator Liquitrol)

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Modeling: Types of models

- (Small scale) Physical models (Water emulator Liquitrol)

- Simulation models ($\chi 3.0$ code)

```
model result GRSE():
        chan patient a, b,
    run G(a, exponential(6.0))
        R(a, b)
        S(b, c, gamma(4.0,1.0)),
        E(c, 6000.0)
```

end

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Modeling: Types of models

- (Small scale) Physical models (Water emulator Liquitrol)

- Simulation models (x 3.0 code)

```
model result GRSE():
    chan patient a, b, c;
    run G(a, exponential(6.0))
        R(a, b),
        S(b, c, gamma(4.0,1.0)),
        E(c, 6000.0)
```

end

- Analytical models (Queueing formulas)

$$
E(W)=\frac{1}{2}\left(1+c_{b}^{2}\right) \frac{\rho}{1-\rho} E(B)
$$

Modeling: Why?

TU/e

Modeling: Why?

- Understanding

TU/e

Modeling: Why?

- Understanding
- Intuition building

TU/e

Modeling: Why?

- Understanding
- Intuition building
- Improvement

TU/e

Modeling: Why?

- Understanding
- Intuition building
- Improvement
- Optimization

Celtanische Universiteit

Modeling: Why?

- Understanding
- Intuition building
- Improvement
- Optimization
- Support decision making

TU/e

Modeling: Issues

TU/e

Modeling: Issues

- Trade-off between complexity and simplicity

TU/e

Modeling: Issues

- Trade-off between complexity and simplicity
- Flexibility

TU/e

Modeling: Issues

- Trade-off between complexity and simplicity
- Flexibility
- Data requirements

TU/e

Modeling: Issues

- Trade-off between complexity and simplicity
- Flexibility
- Data requirements
- Transparency
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Modeling: Issues

- Trade-off between complexity and simplicity
- Flexibility
- Data requirements
- Transparency
- Effective modeling requires intuition, analytical and simulation capability
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Modeling: Issues

- Trade-off between complexity and simplicity
- Flexibility
- Data requirements
- Transparency
- Effective modeling requires intuition, analytical and simulation capability
- Art of modeling is in the selection of the right model for a given situation

TU/e

Modeling: Critical logistical parameters

TU/e

Modeling: Critical logistical parameters

- Throughput: Number of patients treated per time unit

TU/e

Modeling: Critical logistical parameters

- Throughput: Number of patients treated per time unit
- Flow time or cycle time: Time it takes a patient to go through the system

TU/e

Modeling: Critical logistical parameters

- Throughput: Number of patients treated per time unit
- Flow time or cycle time: Time it takes a patient to go through the system
- Cycle time factor: Cycle time divided by service time

Modeling: Critical logistical parameters

- Throughput: Number of patients treated per time unit
- Flow time or cycle time: Time it takes a patient to go through the system
- Cycle time factor: Cycle time divided by service time
- Utilization: Fraction of time resource (bed, room, nurse, ...) is being used

TU/e

Emergency Department

Emergency department (ED) of Catherina Hospital Eindhoven

TU/e

Emergency Department

Layout of ED

TU/e $=$

Emergency Department

Patient flow through ED

Goal

TU/e

Goal

- Develop model to support decision making in LEAN process improvement programs

Cechnische Universiteit

Goal

- Develop model to support decision making in LEAN process improvement programs
- Address questions such as:
- What capacity is required to meet target maximal waiting times?
- How much does waiting time decrease by increasing nursing staff?
- What is the effect of an increase in inflow due to the aging population?

TU/e

Queueing model: Basic elements

TU/e

Queueing model: Basic elements

- Patient arrivals

TU/e

Queueing model: Basic elements

- Patient arrivals
- Treatment times

TU/e

Queueing model: Basic elements

- Patient arrivals
- Treatment times
- Resource capacities
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Arrivals and diversity

Distribution ED patients on speciality

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Arrivals and diversity

Triage color

TU/e
 Eindhoven University

Arrivals and diversity

Patient arrivals

TU/e

Arrival flow variability

Arrival flow variability

- Flow refers to arrival of patients

TU/e

Arrival flow variability

- Flow refers to arrival of patients
- t_{a} and σ_{a} are mean and standard deviation of time between arrivals

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Arrival flow variability

- Flow refers to arrival of patients
- t_{a} and σ_{a} are mean and standard deviation of time between arrivals
- Arrival rate

$$
r_{a}=\frac{1}{t_{a}}
$$

Arrival flow variability

- Flow refers to arrival of patients
- t_{a} and σ_{a} are mean and standard deviation of time between arrivals
- Arrival rate

$$
r_{a}=\frac{1}{t_{a}}
$$

- Coefficient of variation of time between arrivals

High c_{a} arrivals

TU/e

Poisson arrival flow

TU/e

Poisson arrival flow

- Times between arrivals are independent and Exponential with rate λ

TU/e

Poisson arrival flow

- Times between arrivals are independent and Exponential with rate λ
- So

$$
t_{a}=\frac{1}{\lambda}, \quad r_{a}=\lambda, \quad c_{a}=1
$$

TU/e

Properties of Poisson arrival flow: Memoryless

TU/e
Properties of Poisson arrival flow: Memoryless

- Memoryless property

$$
\mathrm{P}(\operatorname{arrival} \operatorname{in}(t, t+\Delta))=1-e^{-\lambda \Delta} \approx \lambda \Delta
$$

So in each small interval Δ there is an arrival with probability $\lambda \Delta$!

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Properties of Poisson arrival flow: Memoryless

- Memoryless property

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta))=1-e^{-\lambda \Delta} \approx \lambda \Delta
$$

So in each small interval Δ there is an arrival with probability $\lambda \Delta$!

- This means: "truly unpredictable arrivals"

TU/e

Properties of Poisson arrival flow: Binomial and Poisson
? $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Properties of Poisson arrival flow: Binomial and Poisson

- Dividing $(0, t)$ into intervals of length Δ, the number of arrivals in $(0, t)$ is Binomial with $n=\frac{t}{\Delta}$ and $p=\lambda \Delta$

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Properties of Poisson arrival flow: Binomial and Poisson

- Dividing $(0, t)$ into intervals of length Δ, the number of arrivals in $(0, t)$ is Binomial with $n=\frac{t}{\Delta}$ and $p=\lambda \Delta$
- Since n is large and p is small, this number is Poisson distributed with parameter $n p=\lambda t$

$$
P(k \text { arrivals in }(0, t))=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}, \quad k=0,1,2, \ldots
$$

This explains the name "Poisson process"

TU/e

Properties of Poisson arrival flow: Clustered arrivals

TU/e
Properties of Poisson arrival flow: Clustered arrivals

- Since Exponential density

$$
f(x)=\lambda e^{-\lambda x}
$$

is maximal for $x=0$, short inter-arrival times occur more frequently than long ones

Uechnische Universiteit
Properties of Poisson arrival flow: Clustered arrivals

- Since Exponential density

$$
f(x)=\lambda e^{-\lambda x}
$$

is maximal for $x=0$, short inter-arrival times occur more frequently than long ones

- So arrivals tend to cluster:

TU/e

Properties of Poisson arrival flow: Many rare arrival flows

TU/e
 Eindhoven University of Technolog

Properties of Poisson arrival flow: Many rare arrival flows

- Superposition of many independent rarely occurring arrival flows is (close to) Poisson

Cechnische Universiteit

Properties of Poisson arrival flow: Many rare arrival flows

- Superposition of many independent rarely occurring arrival flows is (close to) Poisson
- This explains why Poisson flows so often occur in practice!

TU/e

Properties of Poisson arrival flow: Merging and splitting

Q

Properties of Poisson arrival flow: Merging and splitting

- Merging of two Poisson flows with rates λ_{1} and λ_{2} is again Poisson with rate $\lambda_{1}+\lambda_{2}$, since

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta)) \approx \lambda_{1} \Delta+\lambda_{2} \Delta=\left(\lambda_{1}+\lambda_{2}\right) \Delta
$$

Given there is an arrival in $(t, t+\Delta)$, it is of type 1 with probability

$$
\begin{aligned}
\mathrm{P}(\text { type } 1 \text { arrival in }(t, t+\Delta) \mid \text { arrival in }(t, t+\Delta)) & =\frac{\mathrm{P}(\text { type } 1 \text { arrival in }(t, t+\Delta))}{\mathrm{P}(\operatorname{arrival} \operatorname{in}(t, t+\Delta))} \\
& =\frac{\lambda_{1} \Delta}{\left(\lambda_{1}+\lambda_{2}\right) \Delta} \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Properties of Poisson arrival flow: Merging and splitting

- Merging of two Poisson flows with rates λ_{1} and λ_{2} is again Poisson with rate $\lambda_{1}+\lambda_{2}$, since

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta)) \approx \lambda_{1} \Delta+\lambda_{2} \Delta=\left(\lambda_{1}+\lambda_{2}\right) \Delta
$$

Given there is an arrival in $(t, t+\Delta)$, it is of type 1 with probability

$$
\begin{aligned}
\mathrm{P}(\text { type } 1 \text { arrival in }(t, t+\Delta) \mid \operatorname{arrival} \text { in }(t, t+\Delta)) & =\frac{\mathrm{P}(\text { type } 1 \text { arrival in }(t, t+\Delta))}{\mathrm{P}(\operatorname{arrival} \text { in }(t, t+\Delta))} \\
& =\frac{\lambda_{1} \Delta}{\left(\lambda_{1}+\lambda_{2}\right) \Delta} \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

- Random splitting of Poisson flows with rate λ and splitting probability p is again Poisson with rate $p \lambda$, since

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta)) \approx p \lambda \Delta
$$

TU/e

Inhomogeneous Poisson arrival flow

TU/e

Inhomogeneous Poisson arrival flow

- Arrival rate is not constant but time-dependent $\lambda(t)$

TU/e

Inhomogeneous Poisson arrival flow

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta)) \approx \lambda(t) \Delta
$$

TU/e

Inhomogeneous Poisson arrival flow

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta)) \approx \lambda(t) \Delta
$$

- Question: How to simulate a realization of an inhomogeneous Poisson arrival flow?

Inhomogeneous Poisson arrival flow

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta)) \approx \lambda(t) \Delta
$$

- Question: How to simulate a realization of an inhomogeneous Poisson arrival flow?
- Answer: Suppose there is a maximum rate $\Lambda=\max _{t \geq 0} \lambda(t)$

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Inhomogeneous Poisson arrival flow

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta)) \approx \lambda(t) \Delta
$$

- Question: How to simulate a realization of an inhomogeneous Poisson arrival flow?
- Answer: Suppose there is a maximum rate $\Lambda=\max _{t \geq 0} \lambda(t)$
- Simulate Poisson flow with constant rate Λ
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Inhomogeneous Poisson arrival flow

- Arrival rate is not constant but time-dependent $\lambda(t)$
- So

$$
\mathrm{P}(\text { arrival in }(t, t+\Delta)) \approx \lambda(t) \Delta
$$

- Question: How to simulate a realization of an inhomogeneous Poisson arrival flow?
- Answer: Suppose there is a maximum rate $\Lambda=\max _{t \geq 0} \lambda(t)$
- Simulate Poisson flow with constant rate Λ
- When arrival at time t, then:
- accept arrival with probability $\frac{\lambda(t)}{\Lambda}$
- reject arrival otherwise

TU/e $/ \mathrm{e}^{2} \mathrm{tan}$
Treatment times

TU/e

Treatment times

- Limited data available on activities in treatment rooms

TU/e

Treatment times

- Limited data available on activities in treatment rooms
- Entrance and exit times in treatment rooms are accurately recorded

Treatment times

- Limited data available on activities in treatment rooms
- Entrance and exit times in treatment rooms are accurately recorded
- Employ the concept of Effective Process Times

Workstation

Aggregation

Aggregate model

TU/e $/ \mathrm{e}^{2} \mathrm{tan}$
Treatment times

Uechnische Universiteit

Treatment times

- Treatment times of patients depend on patient characteristics such as:
- Medical speciality
- Triage color
- Age
- Type of attending physician

TU/e $/ \mathrm{e}^{2} \mathrm{tan}$
Treatment times

TU/e

Treatment times

- Patient charateristics lead to almost 7000 treatment time groups!

TU/e

Treatment times

- Patient charateristics lead to almost 7000 treatment time groups!
- Only 34000 measurements: this calls for lumping

Treatment times

- Patient charateristics lead to almost 7000 treatment time groups!
- Only 34000 measurements: this calls for lumping
- Recursive partitioning leads to 34 groups of treatment times on which a distribution can be reliably fitted

TU/e
Resource capacity and use

TU/e

Resource capacity and use

- Simultaneous resource use: Patient needs room, nurse and physician

TU/e

Resource capacity and use

- Simultaneous resource use: Patient needs room, nurse and physician
- Multi-processing feature: Nurses and physicians are capable of handling multiple patients simultaneously

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Resource capacity and use

- Simultaneous resource use: Patient needs room, nurse and physician
- Multi-processing feature: Nurses and physicians are capable of handling multiple patients simultaneously
- These features are modeled by a token system:
- Every nurse is represented by 4 tokens (treat max 4 patients)
- Every patient needs 1 nurse token
- Same token mechanism used for triage nurse and physicians

Uechnische Universiteit

Resource capacity and use

- Simultaneous resource use: Patient needs room, nurse and physician
- Multi-processing feature: Nurses and physicians are capable of handling multiple patients simultaneously
- These features are modeled by a token system:
- Every nurse is represented by 4 tokens (treat max 4 patients)
- Every patient needs 1 nurse token
- Same token mechanism used for triage nurse and physicians
- Staffing levels adapted to workload during the day:

Working rosters for each weekday specifying the available capacity at each point in time during the day

Simulation model

High level $\chi 3.0$ model of ED: Green is patient flow, Purple information flow

TU/e $/$ eman ime

Software package

TU/e

Emergency Department

Snapshot of simulation output of $\chi 3.0$ model

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Validation

Patients in process

Patients in process

Historical (left) and simulated (right) average occupation on Monday

U $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Validation

Cycle time factor

Cycle time factor for historical and simulated patients on Monday

TU/e

Decision support
Improvement opportunities:

Cechnische Universiteit

Decision support
Improvement opportunities:

- Reduce waiting times or number of patients waiting

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

Cechnische Universiteit

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms
- No priority for ambulance patients

C $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms
- No priority for ambulance patients
- More nursing capacity
- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms
- No priority for ambulance patients
- More nursing capacity
- More physician capacity

Uechnische Universiteit

Decision support

Improvement opportunities:

- Reduce waiting times or number of patients waiting
- Increase utilization of resources (rooms, nurses, ...)

Options:

- More treatment rooms
- No priority for ambulance patients
- More nursing capacity
- More physician capacity
- Treatment time reduction (by shortening time to hospitalization)

TU/e

Treatment time reduction (10 mins)

Simulation output on Monday for unadapted treatment time

Simulation output for 10 minutes treatment time reduction

TU/e

Scenario analysis

TU/e

Scenario analysis

- What effect has an increase of ED visits by elderly patients?

TU/e

Scenario analysis

- What effect has an increase of ED visits by elderly patients?
- What extra capacity is needed if neighboring ED closes?
? $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$

Scenario analysis

- What effect has an increase of ED visits by elderly patients?
- What extra capacity is needed if neighboring ED closes?
- What if average urgency of patients increases (due to less self-referrals)?

Uechnische Universiteit

Scenario analysis

- What effect has an increase of ED visits by elderly patients?
- What extra capacity is needed if neighboring ED closes?
- What if average urgency of patients increases (due to less self-referrals)?
- What is more accurate triage results in less second consults?

Scenario: growth arrival rate (15\%)

Waiting time (green)

Patients in process

Simulation output on Monday for unadapted arrival rate

Simulation output for 15% growth of patient arrivals

TU/e
References

TU/e

References

- Aggregate model based performance analysis of an emergency department

TU/e

References

- Aggregate model based performance analysis of an emergency department
- Aggregate modeling of semiconductor equipment using effective process times

TU/e

References

- Aggregate model based performance analysis of an emergency department
- Aggregate modeling of semiconductor equipment using effective process times
- Aggregate simulation modeling of an mri department using effective process times

