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Example: Production of parts

A production system producing parts consists of 3 machining centers. The
operations (and mean processing times) performed at the 3 centers are:

• Turning (70 min);

• Milling (40 min);

• Grinding (110 min).

In the first center there are 2 identical machines; in the other ones only
1 machine. Each part has to undergo the first 2 operations; only 35% the
third one. Parts are transported on pallets; there are 10 pallets available.
(Un)Loading is done at the Load/Unload station, which takes 25 min. It
takes on average 10 minutes to transport a part to the next station.

• What is the throughput of this system?

• How does it depend on the number of pallets?
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Intermezzo: Closed Queueing Networks

Consider a queueing network with

• N single-server stations, numbered 1, . . . , N ;

• K circulating customers;

• Exponential service times, mean 1/µi in station i;

• Random routing with routing probabilities pij;

This network can be described by a Markov process with states n =
(n1, . . . , nN) where ni is the number of customers in station i.
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Routing

Define

vi = relative visit frequency to station i
= expected number of visits to station i in a cycle

Then the vi’s satisfy

vi =

N∑
j=1

vjpji, i = 1, . . . , N.

To uniquely determine the vi’s we have to add a normzalization equation,
e.g.,

v1 = 1

(in which case a cycle is the time between two successive visits to station 1).
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Product-form solution

Let p(n) denote the steady-state probability of state n.

It then holds that

p(n) = C ·
(
v1

µ1

)n1

· · ·
(
vN
µN

)nN

where C is the normalization constant.

Using the probabilities p(n) mean values like

Li(K) = mean number of customers in station i
Si(K) = mean sojourn time in station i
Λi(K) = throughput of station i
ρi(K) = occupation rate of station i

can be computed (K indicates the dependence of these quantities on the
population size).

For the computation of C efficient algorithms exist (Convolution or Buzen’s
algorithm).
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Mean Value Analysis (MVA)

MVA is a recursive scheme (in the population size) for the computation of
mean values. It is based on:

The Arrival Theorem:
A customer moving from station i to j sees the network in equilibrium as
if he was not there (i.e., with one customer less).
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Let

Lai (K) = mean number of customers in station i
on arrival of a customer

Then the arrival theorem yields that

Lai (K) = Li(K − 1)

and hence,

Si(K) = Lai (K)
1

µi
+

1

µi
= Li(K − 1)

1

µi
+

1

µi

Together with Little’s law this gives the MVA equations.
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MVA relations:

Si(K) = Li(K − 1)
1

µi
+

1

µi
(Arrival relation)

Λi(K) =
viK∑N

j=1 vjSj(K)
(Little’s law)

Li(K) = Λi(K)Si(K) (Little’s law)

for i = 1, . . . , N .

Starting with Li(0) = 0 for i = 1, . . . , N , these relations can be used to
recursively determine Si(k),Λi(k), Li(k) for k = 1, . . . , K .
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Including travel times

Suppose that it takes on average Tij time units to move from station i to j.

To compute Li(K), Si(K) and Λi(K) in this case, we only have to modify
the relation for the througput (to take into account that some customers are
‘on their way’):

Λi(K) =
viK∑N

j=1 vjSj(K) +
∑N

j=1

∑N
l=1 pjlTjl

The mean number of customers that is traveling from j to l is given by

Λj(K)pjlTjl

and the mean total number that is traveling,

N∑
j=1

N∑
l=1

Λj(K)pjlTjl


