Example: Production of parts
A production system producing parts consists of 3 machining centers. The operations (and mean processing times) performed at the 3 centers are:

- Turning (70 min);
- Milling (40 min);
- Grinding (iIo min).

In the first center there are 2 identical machines; in the other ones only i machine. Each part has to undergo the first 2 operations; only 35% the third one. Parts are transported on pallets; there are io pallets available. (Un)Loading is done at the Load/Unload station, which takes 25 min . It takes on average io minutes to transport a part to the next station.

- What is the throughput of this system?
- How does it depend on the number of pallets?

Intermezzo: Closed Queueing Networks

Consider a queueing network with

- N single-server stations, numbered $1, \ldots, N$;
- K circulating customers;
- Exponential service times, mean $1 / \mu_{i}$ in station i;
- Random routing with routing probabilities $p_{i j}$;

This network can be described by a Markov process with states $n=$ (n_{1}, \ldots, n_{N}) where n_{i} is the number of customers in station i.

Routing

Define
$v_{i}=$ relative visit frequency to station i
$=$ expected number of visits to station i in a cycle
Then the v_{i} 's satisfy

$$
v_{i}=\sum_{j=1}^{N} v_{j} p_{j i}, \quad i=1, \ldots, N .
$$

To uniquely determine the v_{i} 's we have to add a normzalization equation, e.g.,

$$
v_{1}=1
$$

(in which case a cycle is the time between two successive visits to station I).

Product-form solution

Let $p(n)$ denote the steady-state probability of state n.

It then holds that

$$
p(n)=C \cdot\left(\frac{v_{1}}{\mu_{1}}\right)^{n_{1}} \cdots\left(\frac{v_{N}}{\mu_{N}}\right)^{n_{N}}
$$

where C is the normalization constant.
Using the probabilities $p(n)$ mean values like

$$
\begin{aligned}
L_{i}(K) & =\text { mean number of customers in station } i \\
S_{i}(K) & =\text { mean sojourn time in station } i \\
\Lambda_{i}(K) & =\text { throughput of station } i \\
\rho_{i}(K) & =\text { occupation rate of station } i
\end{aligned}
$$

can be computed (K indicates the dependence of these quantities on the population size).

Mean Value Analysis (MVA)

MVA is a recursive scheme (in the population size) for the computation of mean values. It is based on:

The Arrival Theorem:
A customer moving from station i to j sees the network in equilibrium as if he was not there (i.e., with one customer less).

Let

$$
\begin{aligned}
L_{i}^{a}(K)= & \text { mean number of customers in station } i \\
& \text { on arrival of a customer }
\end{aligned}
$$

Then the arrival theorem yields that

$$
L_{i}^{a}(K)=L_{i}(K-1)
$$

and hence，

$$
S_{i}(K)=L_{i}^{a}(K) \frac{1}{\mu_{i}}+\frac{1}{\mu_{i}}=L_{i}(K-1) \frac{1}{\mu_{i}}+\frac{1}{\mu_{i}}
$$

Together with Little＇s law this gives the MVA equations．

MVA relations:

$$
\begin{array}{rlrl}
S_{i}(K) & =L_{i}(K-1) \frac{1}{\mu_{i}}+\frac{1}{\mu_{i}} & \text { (Arrival relation) } \\
\Lambda_{i}(K) & =\frac{v_{i} K}{\sum_{j=1}^{N} v_{j} S_{j}(K)} & \text { (Little's law) } \\
L_{i}(K) & =\Lambda_{i}(K) S_{i}(K) & \text { (Little's law) } \\
\text { for } i=1, \ldots, N . &
\end{array}
$$

Starting with $L_{i}(0)=0$ for $i=1, \ldots, N$, these relations can be used to recursively determine $S_{i}(k), \Lambda_{i}(k), L_{i}(k)$ for $k=1, \ldots, K$.

Including travel times

Suppose that it takes on average $T_{i j}$ time units to move from station i to j.
To compute $L_{i}(K), S_{i}(K)$ and $\Lambda_{i}(K)$ in this case, we only have to modify the relation for the througput (to take into account that some customers are 'on their way'):

$$
\Lambda_{i}(K)=\frac{v_{i} K}{\sum_{j=1}^{N} v_{j} S_{j}(K)+\sum_{j=1}^{N} \sum_{l=1}^{N} p_{j l} T_{j l}}
$$

The mean number of customers that is traveling from j to l is given by

$$
\Lambda_{j}(K) p_{j l} T_{j l}
$$

and the mean total number that is traveling,

$$
\sum_{j=1}^{N} \sum_{l=1}^{N} \Lambda_{j}(K) p_{j l} T_{j l}
$$

