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Organisation:

• 8 lectures

• studeerwijzer available (with notes, slides, programs, assignments)

• examination consists of 2 take home assignments

• assigments done in groups of 2

Topics:

• Modeling of discrete-event systems

• Programming

• Ouput analysis
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Discrete-event systems:
State changes at (random) discrete points in time

Examples:

• Manufacturing systems
Completion times of jobs at machines, machine break-downs

• Inventory systems
Arrival times of customer demand, replenishments

• Communication systems
Arrival times of messages at communication links
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Basic approach to modeling

• Identify the issues to be addressed

• Learn about the system

• Choose a modeling approach

• Develop and test the model

• Verify and validate the model

• Experiment with the model

• Present the results
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Types of models

• Physical models

• Simulation models

• Analytical models

But why model?

• Understanding

• Improvement

• Optimization

• Decision making



/k

12

6/62

Issues in developing a model

• Complexity versus Simplicity

• Flexibility

• Data requirements

• Transparency

Analytical and simulation capability:
Effective modeling requires both!
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Programming tools:

• General purpose languages (C, Java, ...);
for downloads, see:

– Cygwin (a UNIX environment for Windows)
– DJGPP compiler (stand alone C compiler for DOS)
– GNUplot (for plotting)

• Simulation language χ developed by the Systems Engineering group

• Simulation system Arena

http://cygwin.com
http://www.midpec.com/djgpp/installation.html
http://www.sci.muni.cz/~mikulik/gnuplot.html
http://se.wtb.tue.nl
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To start with:
Simulation and simple probabilistic problems

Simulation is a perfect tool to develop and sharpen your intuition
for probabilitic models (see also Tijms’ book Spelen met kansen)

In no time probabilistic properties can be illustrated by a simulation
experiment and the results can be shown in graphs or tables!

Problems

• coin tossing

• (nearly) birth day problem

• lottery

• breaking matches
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Coin tossing

Two players A and B throw a fair coin N times.
If Head, then A gets 1 point; otherwise B.

• What happens to the absolute difference in points as N increases?

• What is the probability that one of the players is leading between 50%
and 55% of the time? Or more than 95% of the time?

• In case of 20 trials, say, what is the probability of 5 Heads in a row?
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Birthday problem

Consider a group of N randomly chosen persons.
What is the probability that at least 2 persons have the same birthday?

Nearly birthday problem

What is the probability that at least 2 persons have their birthday within r
days of each other?
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Lottery

Each week a very popular lottery in Andorra prints 104 tickets. Each tickets
has two 4-digit numbers on it, one visible and the other covered. The num-
bers are randomly distributed over the lots. If someone, after uncovering
the hidden number, finds two identical numbers, he wins a large amount
of money.

• What is the average number of winners per week?

• What is the probability of at least one winner?

The same lottery prints 107 tickets in Spain. What about the answers to the
questions above?
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Breaking matches

A match of 1 cm is broken at 2 random points.

• What is the mean length of the smallest part, and the largest part?

• What is the mean value of the quotient of the length of the smallest and
largest part?
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Generating random numbers

Iterative procedure:

Start with z0 (seed)
For n = 1, 2, . . .

zn = f (zn−1)

f is the pseudo-random generator

In practice, the following function is often used

zn = azn−1(modulo m)

(with a = 630360016, m = 231 − 1)

Then un = zn/m is random on (0, 1)
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Sampling from other distributions

Let U be uniform on (0, 1)
Then sampling from

• interval (a, b): a + (b− a)U

• integers 1, . . . ,M : 1 + bMUc
• discrete distribution:

let P (X = xi) = pi, i = 1, . . . ,M
if U ∈ [

∑i−1
j=1 pj,

∑i
j=1 pj), then X = xi
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Array method for sampling from a discrete distribution

Suppose pi = ki/100, i = 1, . . . ,M ,
where ki’s are integers with 0 ≤ ki ≤ 100

Construct array A[i], i = 1, . . . , 100 as follows:
set A[i] = x1 for i = 1, . . . , k1
set A[i] = x2 for i = k1 + 1, . . . , k1 + k2, etc.

Then, first, sample random index I from 1, . . . , 100:
I = 1 + b100Uc and set X = A[I ]
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Simulation of Coin tossing

n = 0
points_A = 0
points_B = 0

while n < N do
if random < 0.5
then points_A = points_A + 1
else points_B = points_B + 1
n = n + 1
print points_A - points_B

end
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C-code of simulating coin tossing

#include <stdlib.h>

/* globals */
long seed; /* seed of random generator */

main()
{

int n, /* number of current trial */
N, /* total number of trials */
points_A, /* number of points of player A */
points_B; /* number of points of player B */

seed = 1;
srand48(seed); /* initialization random generator */

printf("Number of trials: ");
scanf("%d", &N); /* get input */

n = 0; /* initialization */
points_A = 0;
points_B = 0;

while (n < N) {
if (drand48() < 0.5) /* coin tossing */

points_A = points_A + 1; /* it is Head */
else

points_B = points_B + 1;
n = n + 1;
printf("%d\n", points_A - points_B);

}
}
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Java-code of simulating coin tossing

import java.util.Random;

public class CoinToss {

/* total number of trials */
protected int N;
/* probability on head */
protected double p;
/* random number generator */
protected Random rand;

/**
* Constructs a CoinToss object.
* The probability on head is taken 0.5.
* @param N the number of realisations
*/

public CoinToss(int N) {
this(N, 0.5);

}

/**
* Constructs a CoinToss object.
* The probability on head is 0.5.
* @param N the number of realisations
* @param seed the random seed for the random number generator
*/

public CoinToss(int N, long seed) {
this(N, 0.5, seed);

}
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/**
* Constructs a CoinToss object.
* The probability on head is 0.5.
* @param N the number of realisations
* @param p the probability on head.
*/

public CoinToss(int N, double p) {
this.N = N;
this.p = p;
this.rand = new Random();

}

/**
* Constructs a CoinToss object.
* @param N the number of realisations
* @param p the probability on head.
* @param seed the random seed for the random number generator
*/

public CoinToss(int N, double p, long seed) {
this.N = N;
this.p = p;
this.rand = new Random(seed);

}
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/**
* Tosses a coin <i>N</i> times, and prints
* <i>number of heads - number of tails</i>
*/

public void printRealisation() {
int n = 0; /* initialization */
int points_A = 0;
int points_B = 0;

while (n < N) {
if (rand.nextDouble() < p) /* coin tossing */

points_A = points_A + 1; /* it is Head */
else

points_B = points_B + 1;
n = n + 1;
System.out.println("" + (points_A - points_B));

}

}

public static void main(String[] arg) {
CoinToss c = new CoinToss(1000, 0.5);
c.printRealisation();

}

}
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Fraction of time one of the players is leading

Let P (α, β) be the probability that one of the players is leading between
100α% and 100β% of the time

To determine P (α, β) do the experiment “Throw N times with a coin”
many times; an experiment is successful if one of the players is leading
between 100α% and 100β% of the time

Then
P (α, β) ≈ number of successful experiments

total number of experiments
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Simulation of M experiments

success = 0

for run = 1 to M do
coin_tossing
if alpha < time_A / N < beta
or alpha < time_B / N < beta
then success = success + 1

end

print success / M
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Simulation of coin tossing

n = 0
points_A = 0;
points_B = 0;
time_A = 0

while n < N do
if random < 0.5
then points_A = points_A + 1
else points_B = points_B + 1
if points_A - points_B >= 0
then time_A = time_A + 1
n = n + 1

end

time_B = N - time_A
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Results for M = 103, N = 104 and seed = 1

(α, β) P (α, β)
(0.50,0.55) 0.047
(0.50,0.60) 0.104
(0.90,1.00) 0.426
(0.95,1.00) 0.288
(0.98,1.00) 0.178
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Successive Heads

Let P (k) be the probability of at least k succesive Heads in case of 20 trials

To determine P (k) do the experiment “Throw 20 times with a coin” many
times; an experiment is successful is a row of at least k Heads appears

Then
P (k) ≈ number of successful experiments

total number of experiments
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Simulation of M experiments

success = 0

for run = 1 to M do
coin_tossing
if k_row = TRUE
then success = success + 1

end

print success / M
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Simulation of coin tossing

n = 0
nr_Heads = 0;
k_row = FALSE

while n < 20 and not k_row do
if random < 0.5
then nr_Heads = nr_Heads + 1
else nr_Heads = 0
if nr_Heads >= k
then k_row = TRUE
n = n + 1

end
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Results for M = 103 and seed = 1

k P (k)
1 1.000
2 0.984
3 0.761
4 0.455
5 0.251
6 0.124
7 0.049
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Birthday problem

Let P (N) be the probability that at least two persons have the same birthday
in a group of size N

To determine P (N) do the experiment “Take a group ofN randomly chosen
persons and get their birthdays” many times; an experiment is successful is
at least two persons have the same birthday

Then
P (N) ≈ number of successful experiments

total number of experiments
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Simulation of birthday problem

success = 0

for run = 1 to M do
take_group of size N
if same_birthday = TRUE
then success = success + 1

end

print success / M
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Simulation of taking random group

n = 0
for i = 1 to 365 do birthday[i] = FALSE
same_birthday = FALSE

while n < N and not same_birthday do
new = 1 + trunc(random * 365)
if birthday[new] = TRUE
then same_birthday = TRUE
else birthday[new] = TRUE
n = n + 1

end
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Results for M = 103 and seed = 1

N P (N)
10 0.126
15 0.269
20 0.422
25 0.572
30 0.693
40 0.893
50 0.974
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Simulation of the nearly birthday problem

n = 0
for i = 1 to 365 do birthday[i] = FALSE
nearly_same_birthday = FALSE

while n < N and not nearly_same_birthday do
new = 1 + trunc(random * 365)
for i = new - r to new + r do

if birthday[i] = TRUE
then nearly_same_birthday = TRUE

birthday[new] = TRUE
n = n + 1

end
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Results for M = 103 and seed = 1

N r P (N)
10 0 0.126

1 0.324
2 0.476
7 0.878

20 0 0.422
1 0.811

30 0 0.693
1 0.971



/k

12

36/62

Lottery problem

Tickets are numbered 1, . . . , N

To print covered numbers, first generate a random permutation of 1, . . . , N
and then print first number on first ticket, second one on second ticket, and
so on; hence:

Number of winners is equal to number of numbers that stay on their
position after this permutation

Average number of winners in a lottery

≈ total number of winners in all experiments
total number of experiments
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Generating a random permutation of 1, . . . , N

1. Initialize t = N and A[i] = i for i = 1, . . . , N ;

2. Generate a random number u between 0 and 1;

3. Set k = 1 + btuc; swap values of A[k] and A[t];

4. Set t = t− 1;
If t > 1, then return to step 2;
otherwise stop and A[1], . . . , A[N ] yields a permutation.

Complexity is O(N)
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Results for M = 103, N = 104 and seed = 1

Average numbers of winners is 1.005

k P (k winners)
0 0.351
1 0.385
2 0.185
3 0.066
4 0.013
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Results for M = 103, N = 105 and seed = 1

Average numbers of winners is 1.047

k P (k winners)
0 0.350
1 0.380
2 0.172
3 0.074
4 0.020
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Observe that number of winners is equal to number of loops of length 1

Further, consider 1, . . . , s;
then length of loop generated by 1 is uniform on 1, . . . , s

Loops of a random permutation of 1, . . . , N

1. Initialize t = N and W = 0;

2. Generate a random number u between 0 and 1;

3. Set l = 1 + btuc; if l = 1, then W = W + 1;

4. Set t = t− l; if t ≥ 1, return to step 2;
otherwise stop and W yields number of loops of length 1.

Complexity is O(logN)
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Results for M = 105, N = 107 and seed = 1

Average numbers of winners is 1.001

k P (k winners)
0 0.367
1 0.370
2 0.183
3 0.061
4 0.016
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Breaking matches in N parts

GenerateN positions (cracks) u1, . . . , uN in (0, 1), and order these positions
in increasing order yielding u(1), . . . , u(N) (order statistics); then lengths of
parts (or spacings)

d1 = u(1),

d2 = u(2) − u(1),

. . . ,

dN = u(N) − u(N−1),

dN+1 = 1− u(N)

But ordering is not efficient!



/k

12

43/62

Uniform spacings

Let D1, . . . , DN+1 be uniform spacings on (0, 1);

Let X1, . . . , XN+1 be exponentials with mean 1, and set

SN =

N+1∑
i=1

Xi;

Then
(D1, . . . , DN+1) and (X1/SN+1, . . . , XN+1/SN+1)

have exactly the same distribution; in other words,
uniform spacings are normalized exponentials
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Sampling from the exponential distribution

If U is uniform on (0, 1), then the random variable

X = − log(1− U)/µ

is exponential with parameter µ; since

P (X ≤ x) = P (− log(1− U)/µ ≤ x)

= P (log(1− U) ≥ −µx)

= P (1− U ≥ e−µx)

= P (U ≤ 1− e−µx)
= 1− e−µx
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Results for M = 104 and seed = 1

cracks E(small) E(large) E(small/large)
1 0.248 0.752 0.383
2 0.109 0.614 0.211
3 0.062 0.523 0.139
4 0.039 0.459 0.101
5 0.027 0.411 0.077
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Example of a discrete-event system: Two-machine production line

Machine 1 produces material and puts it into the buffer,
machine 2 takes the material out the buffer.
The material is a fluid flowing in and out the buffer.

Machine 1
Buffer

Machine 2

Fluid flow model
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The production rate of machine i is ri (i = 1, 2).
We assume that r1 > r2 (otherwise no buffer needed).
Machine 2 is perfect (never fails), but machine 1 is subject to breakdowns;
the mean up time is E(U) and the mean down time is E(D).
The size of the buffer is K .
When the buffer is full, the production rate of machine 1 slows down to r2.

Questions:

• What is the throughput (average production rate) TH?

• How does the throughput depend on the buffer size K?
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Buffer content

Time

K

Time path realization of the buffer content
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Applications

Chemical processes
Machine 1 produces a standard substance that is used by machine 2 for
the production of a range of products. When machine 2 changes from one
product to another it needs to be cleaned. Switching off machine 1 is costly,
so the buffer allows machine 1 to continu production.
How large should the buffer be?

Of course, in this application, machine 1 instead of 2 is perfect.
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Data communication
In communication networks standard packages called cells are sent from
one switch to another. In a switch incoming packages are ‘multiplexed’ on
one outgoing line. If temporarily the number of incoming cells exceeds the
capacity of the outgoing line, the excess inflow is buffered. Once the buffer
is full, an incoming cell will be lost.
How large should the buffer be such that the loss probability is sufficiently
small?

Production of discrete items
Items are produced on two consecutive workstations. The first one is a ro-
bot, the second one is manned and somewhat slower. Unfortunately the
robot is not fully reliable. Occasionally it breaks down. A buffer enables the
manned station to continu while the robot is being repaired.
What is a good size of the buffer?
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Zero buffer

Fraction of time machine 1 is working is equal to
E(U)/(E(U) + E(D)); hence

TH = r2 ·
E(U)

E(U) + E(D)
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Infinite buffer

Average production rate of machine 1 is equal to

r1 ·
E(U)

E(U) + E(D)

Hence

TH = min

{
r1 ·

E(U)

E(U) + E(D)
, r2

}



/k

12

53/62

Finite buffer

Assume exponential up and down times;
let 1/λ = E(U) and 1/µ = E(D).

The system can be described by a continuous-time Markov process with
states (i, x) where i is the state of the first machine (i = 1 means that
machine 1 is up, i = 0 means that it is down) and x is the buffer content
(0 ≤ x ≤ K).

Define F (i, x) as the (steady state) probability that machine 1 is in state i
and that the buffer content is less or equal to x; then

TH = r2 · (1− F (0, 0))
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Balance equations

µF (0, x) = λF (1, x) + r2F
′(0, x)

λF (1, x) + (r1 − r2)F
′(1, x) = µF (0, x)

or in vector-matrix notation

F ′(x) = AF (x)

where

F (x) =

(
F (0, x)
F (1, x)

)
A =

(
µ/r2 −λ/r2

µ/(r1 − r2) λ/(r1 − r2)

)
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The solution is given by

F (x) = C1v1e
σ1x + C2v2e

σ2x

where σ1 and σ2 are the eigenvalues of A, and v1 and v2 are the correspon-
ding eigenvectors. Here

σ1 = 0, σ2 =
µ

r2
− λ

r1 − r2

v1 =

(
λ
µ

)
, v2 =

(
r1 − r2
r2

)
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The coefficients C1 and C2 follow from the boundary conditions

F (1, 0) = 0, F (0, K) =
λ

λ + µ

yielding

C1 = r2 ·
λ

λ + µ
·
(
λr2 − µ(r1 − r2)e

σ2K
)−1

C2 = −µ · λ

λ + µ
·
(
λr2 − µ(r1 − r2)e

σ2K
)−1

Hence

TH = r2 ·
µ

λ + µ
· λr1 − (λ + µ)(r1 − r2)e

σ2K

λr2 − µ(r1 − r2)eσ2K
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Example: λ = 1/9, µ = 1, r1 = 5 and r2 = 4
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The throughput as a function of the buffer size
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We assumed exponentially distributed up and down times;
what about other (general) distributions?

You may use phase-type distributions;
then a Markov process description is still feasible, but the analysis becomes
(much) more complicated.

Let us develop a simulation model!
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Simulation model

System behavior only significantly changes when machine 1 breaks down or
when it has been repaired. In the simulation we jump from one event to
another, and calculate the buffer content at these moments (in between the
behavior of the buffer content is known). Based on the information obtained
we can estimate the throughput.
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Initialization

t = 0 {time}
b = 0 {buffercontent at time t

we assume that at t=0 the buffer is empty
and that the machine has just been repaired}

empty = 0 {total time upto time t
that buffer is empty}
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Main program

while (t < runlength)
do

u = up_time
t = t + u
b = min(b+u*(r1-r2), K)
d = down_time
t = t + d
if (b - d*r2 < 0)
then empty = empty + d - b/r2
b = max(b-d*r2, 0)

end

Output

TH = r2 * (1 - empty/t)
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Questions:

• How accurate is the outcome of a simulation experiment?

• What is a good choice for the runlength of a simulation experiment?

• What is the effect of the initial conditions on the outcome of a simulation
experiment?


