
/k

12

1/29

Systems:

• Continuous systems
State changes continuously in time (e.g., in chemical applications)

• Discrete systems
State is observed at fixed regular time points (e.g., periodic review inven-
tory system)

• Discrete-event systems
The system is completely determined by random event times t1, t2, . . .
and by the changes in state taking place at these moments (e.g., produc-
tion line, queueing system)



/k

12

2/29

Time advance:

• Look at regular time points 0,∆, 2∆, . . . (synchronous simulation); in
continuous systems it may be necessary to take ∆ very small

• Jump from one event to the next and describe the changes in state at
these moments (asynchronous simulation)

We will concentrate on asynchronuous simulation of discrete-event systems



/k

12

3/29

Terms often used:

• System
Collection of objects interacting through time (e.g. production system)

• Model
Mathematical representation of a system (e.g., queueing or fluid model)

• Entity
An object in a system (e.g., jobs, machines)

• Attribute
Property of an entity (e.g., arrival time of a job)

• Linked list
Collection of records chained together



/k

12

4/29

• Event
Change in state of a system

• Event notice
Record describing when event takes place

• Process
Collection of events ordered in time

• Future-event set
Linked list of event notices ordered by time (FES)

• Timing routine
Procedure maintaining FES and advancing simulated time



/k

12

5/29

Basic approaches for constructing a discrete-event simulation model:

• Event-scheduling approach
Focuses on events, i.e., the moments in time when state changes occur

• Process-interaction approach
Focuses on processes, i.e., the flow of each entity through the system

In general-purpose languages one mostly uses the event-scheduling appro-
ach; simulation languages (e.g., χ) use the process-interaction approach



/k

12

6/29

Event-scheduling approach

Example: Single-stage production system

Machine
Jobs

A single machine processes jobs in order of arrival. The interarrival times
and processing times are exponential with parameters λ and µ (with λ < µ).

• What is the mean waiting time?

• What is the mean queue length?

• What is the mean length of a busy period?

• How does the performance change if we speed up the machine?



/k

12

7/29

Discrete simulation:

An the interarrival time between job n and n + 1

Bn the processing time of job n

Wn the waiting time of job n

Then (Lindley’s equation):

Wn+1 = max(Wn + Bn − An, 0)



/k

12

8/29

Initialization

n = 0 {job number}
w = 0 {waiting time of job n

we assume that initially the system is empty}
sum_w = 0 {sum of all waiting times upto job n}

Main program

while (n < N)
do

a = interarrival_time
b = service_time
w = max(w + b - a, 0)
sum_w = sum_w + w
n = n + 1

end

Output
Mean waiting time = sum_w / N



/k

12

9/29

Discrete-event simulation:

Entity Attribute

Job Arrival time

Machine Status (idle or busy)

Job is a temporary entity
Machine is a permanent entity



/k

12

10/29

Elementary events

Job: Machine:

arrival remove from queue

departure become busy

begin service become idle

end service

join queue



/k

12

11/29

Compound events

Arrival

become busy

join queue

begin service

arrival



/k

12

12/29

Departure

remove from

begin service

become idle

departureend service

queue



/k

12

13/29

State of the system at time t:

• status of the machine (i = 0, 1)

• number of jobs in the queue (n = 0, 1, 2, . . .)

• remaining interarrival time (a ≥ 0)

• remaining service time (b ≥ 0)

Then the remaining time until the next event is given by

min(a, b)



/k

12

14/29

Prototypical event-scheduling approach:

program

schedule

initial events

timing
routine

end 

simulation

show
statistics

end



/k

12

15/29

timing
routine

execute
event

advance time
to next event
time

time <
run length?

simulation
end

select next
event from

FES

no

yes



/k

12

16/29

Record Job = (arrival time, ..., successor address)

Record Event = (class, clock, ..., successor address)

The queue is a linked list of Job records ordered according to arrival time

The FES is a linked list of Event records ordered according to clock time

arrival
time

arrival
time

arrival
time

nilQueue

clockclassFES class clock nilclass clock



/k

12

17/29

Arrival event:

arrival create
Job

determine
time next
arrival

schedule
next
arrival

attempt
service

succes?
service
arrange

yes

no

join queue

select next
event



/k

12

18/29

Departure event:

departure queue
empty?

get first
job from
queue

arrange
service

select next
event

machine
becomes
idle

no

yes



/k

12

19/29

Initialization

t = 0 {current time}
queue = nil {queue is empty}
generate and schedule first arrival
N = 0 {number of jobs processed}
sum_w = 0 {sum of waiting times of processed jobs}



/k

12

20/29

Main program

while (t < run_length)
do

determine next_event
t = event_time
case next_event of

arrival_event:
generate and schedule next arrival
if machine = busy
then create and add job to queue
else

machine = busy
N = N + 1
generate and schedule next departure



/k

12

21/29

departure_event:
if queue not empty
then

get first job from queue
N = N + 1
sum_w = sum_w + waiting_time
generate and schedule next departure

else machine = idle
end

Output

Mean waiting time = sum_w / N



/k

12

22/29

Implementation in C

Definition of records: Events and Jobs
typedef struct job {

double arrival_time;
struct job *next_job;

}

job;

typedef struct event {
int class;
double clock;
struct event *next_event;

}

event;

event *FES, /* linked list of events */
*Used_events; /* linked list of used event notices */

job *Queue, /* linked list of jobs */
*Used_jobs; /* linked list of used job records */



/k

12

23/29

Operations on the FES: create and destroy
event *create_event()
{

event *temp;

if (Used_events == NIL)
return (event *) malloc(sizeof(event));

else {
temp = Used_events;
Used_events = Used_events->next_event;
return temp;

}
}

void destroy_event(event * pntr)
{

pntr->next_event = Used_events;
Used_events = pntr;

}



/k

12

24/29

Operations on the FES: next and add

event *next_event()
{

event *pntr;

if (FES == NIL)
return NIL; /* FES is empty */

else {
pntr = FES;
FES = FES->next_event;
return pntr;

}
}



/k

12

25/29

void add_event(event * pntr)
{

event *link,
*prev;

if (FES == NIL) {
FES = pntr;
FES->next_event = NIL;

} else {
if (pntr->clock <= FES->clock) {

pntr->next_event = FES;
FES = pntr;

} else {
prev = FES;
link = FES->next_event;
while (link != NIL && pntr->clock > link->clock) {

prev = link;
link = link->next_event;

}
prev->next_event = pntr;
pntr->next_event = link;

}
}

}



/k

12

26/29

Initialization

void initialization()
{

srand48(seed);

t = 0.0;
busy = FALSE;
Queue = NIL;
Used_jobs = NIL;

/* initialize FES */
FES = create_event();
FES->class = ARRIVAL;
FES->clock = interarrivaltime();
FES->next_event = NIL;

Used_events = NIL;

N = 0;
sum_w = 0.0;

}



/k

12

27/29

Main program

main()
{

event *pntr;

getinput();
initialization();

while (t < run_length) {
pntr = next_event();
t = pntr->clock; /* advance time */
switch (pntr->class) {
case ARRIVAL:

arrival_event();
break;

case DEPARTURE:
departure_event();
break;

case NIL:
printf("FES is empty\n");
exit(1);
break;

}
destroy_event(pntr);

}

output();
}



/k

12

28/29

Compound event Arrival

void arrival_event()
{

event *pntr_event;
job *pntr_job;

pntr_event = create_event(); /* schedule next arrival */
pntr_event->class = ARRIVAL;
pntr_event->clock = t + interarrivaltime();
add_event(pntr_event);

if (busy) {
pntr_job = create_job();
pntr_job->arrival_time = t;
add_job(pntr_job);
if (Queue == NIL)

printf("queue is nil\n");
} else {

busy = TRUE;
N ++;
pntr_event = create_event();
pntr_event->class = DEPARTURE;
pntr_event->clock = t + servicetime();
add_event(pntr_event);

}
}



/k

12

29/29

Compound event Departure

void departure_event()
{

double waiting_time;
event *pntr_event;
job *pntr_job;

if (Queue != NIL) {
pntr_job = next_job();
N ++;
waiting_time = t - pntr_job->arrival_time;
sum_w += waiting_time;
destroy_job(pntr_job);
pntr_event = create_event(); /* schedule next departure */
pntr_event->class = DEPARTURE;
pntr_event->clock = t + servicetime();
add_event(pntr_event);

} else /* Queue is empty */
busy = FALSE;

}


