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Issues for the next couple of weeks

• Input of a simulation
(Choice of input distributions, values of parameters)

• Output analysis of a simulation
(how many runs, length of a run, confidence intervals)

• How do we generate uniform random variables?

• How do we generate arbitrarily distributed random variables?
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INPUT OF A SIMULATION

Specifying distributions of random variables (e.g., interarrival times, proces-
sing times) and assigning parameter values can be based on:

• Historical numerical data

• Expert opinion

In practice, there is sometimes real data available, but often the only in-
formation of random variables that is available is their mean and standard
deviation.
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Empirical data can be used to:

• construct empirical distribution functions and generate samples from
them during the simulation;

• fit theoretical distributions and then generate samples from the fitted
distributions.
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Fitting a distribution

Methods to determine the parameters of a distribution:

• Maximum likelihood estimation

• Moment fitting
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Maximum likelihood estimation

Let f (x; θ) denote the probability density function with unknown parameter
(vector) θ.
Let X = (X1, . . . , Xn) denote a vector of i.i.d. observations from f .
Then

L(θ,X) =

n∏
i=1

f (Xi, θ)

is the likelihood function and θ̂ satisfying

L(θ̂, X) = sup
θ

L(θ,X)

is the maximum likelihood estimator of θ.
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Examples:

• Exponential distribution

f (x, µ) = µe−µx

Then
1

µ̂
=

1

n

n∑
i=1

Xi

• Uniform (a, b)

f (x, a, b) =
1

b− a
Then

â = minXi, b̂ = maxXi.

But for many distributions θ̂ has to be calculated numerically.
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Moment fitting

Obtain an approximating distribution by fitting a phase-type distribution on
the mean, E(X), and the coefficient of variation,

cX =
σX
E(X)

,

of a given positive random variable X , by using the following simple appro-
ach.



12

/k 8/28

Coefficient of variation less than 1

If 0 < cX < 1, then fit an Ek−1,k distribution as follows. If

1

k
≤ c2

X ≤
1

k − 1
,

for certain k = 2, 3, . . ., then the approximating distribution is with proba-
bility p (resp. 1 − p) the sum of k − 1 (resp. k) independent exponentials
with common mean 1/µ. By choosing

p =
1

1 + c2
X

[kc2
X − {k(1 + c2

X)− k2c2
X}1/2], µ =

k − p
E(X)

,

the Ek−1,k distribution matches E(X) and cX .
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Coefficient of variation greater than 1

In case cX ≥ 1, fit a H2(p1, p2;µ1, µ2) distribution.

Phase diagram for the Hk(p1, . . . , pk;µ1, . . . , µk) distribution:
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But theH2 distribution is not uniquely determined by its first two moments.
In applications, the H2 distribution with balanced means is often used. This
means that the normalization

p1

µ1
=
p2

µ2

is used. The parameters of the H2 distribution with balanced means and
fitting E(X) and cX (≥ 1) are given by

p1 =
1

2

(
1 +

√
c2
X − 1

c2
X + 1

)
, p2 = 1− p1,

µ1 =
2p1

E(X)
, µ1 =

2p2

E(X)
.
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In case c2
X ≥ 0.5 one can also use a Coxian-2 distribution for a two-moment

fit.

Phase diagram for the Coxian-k distribution:

1 2 k

µ1 µ2 µk

p 1 p 2 pk −1

1 − p 1 1 − p 2 1 − pk −1

The following parameter set for the Coxian-2 is suggested:

µ1 = 2E(X), p1 = 0.5/c2
X, µ2 = µ1p1.
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Phase-type distributions may also naturally arise in practical applications.

Example:
The processing of a job involves performing several tasks, where each task
takes an exponential amount of time; then the processing time can be de-
scribed by an Erlang distribution.
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Fitting nonnegative discrete distributions

Let X be a random variable on the non-negative integers with mean EX
and coefficient of variation cX . Then it is possible to fit a discrete distribu-
tion on E(X) and cX using the following families of distributions:

• Mixtures of Binomial distributions;

• Poisson distribution;

• Mixtures of Negative-Binomial distributions;

• Mixtures of geometric distributions.

This fitting procedure is described in Adan, van Eenige and Resing (see
Probability in the Engineering and Informational Sciences, 9, 1995, pp 623-
632).
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Adequacy of fit

• Grapical comparison of fitted and empirical curves;

• Statistical tests (goodness-of-fit tests).
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OUTPUT ANALYSIS OF A SIMULATION

Confidence intervals

Let X1, X2, . . . , Xn be independent realizations of a random variable X
with unknown mean µ and unknown variance σ2.

Sample mean

X̄(n) =
1

n

n∑
i=1

Xi

Sample variance

S2(n) =
1

n− 1

n∑
i=1

(Xi − X̄(n))2

Clearly X̄(n) is an estimator for the unknown mean µ.
How can we construct a confidence interval for µ?
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Central limit theorem states that for large n∑n
i=1Xi − nµ
σ
√
n

is approximately a standard normal random variable, and this remains valid
if σ is replaced by S(n).
Hence, let zβ = Φ−1(β) (e.g., z1−0.025 = 1.96), then

P (−z1−δ/2 ≤
∑n

i=1Xi − nµ
S(n)
√
n

≤ z1−δ/2) ≈ 1− δ

or equivalently

P

(
X̄(n)− z1−δ/2

S(n)√
n
≤ µ ≤ X̄(n) + z1−δ/2

S(n)√
n

)
≈ 1− δ
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Conclusion:

An approximate 100(1− δ)% confidence interval for the unknown mean µ
is given by

X̄(n)± z1−δ/2
S(n)√
n

As a consequence, to obtain one extra digit of the parameter µ, the required
simulation time increases with approximately a factor 100.
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100 confidence intervals for the mean of uniform random variable on
(−1, 1); each interval is based on 100 observations.
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Remark:
If the observations Xi are normally distributed, then∑n

i=1Xi − nµ
S(n)
√
n

has for all n a Student’s t distribution with n − 1 degrees of freedom;
so an exact confidence interval can be obtained by replacing z1−δ/2 by the
corresponding quantile of the t distribution with n− 1 degrees of freedom.

Remark:
The width of a confidence interval can be reduced by

• increasing the number of observations n;

• decreasing the value of S(n).

The reduction obtained by halving S(n) is the same as the one obtained
by producing four times as much observations. Hence, variance reduction
techniques are important.
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Remark:
Recursive computation of the sample mean and variance of the realizations
X1, . . . , Xn of a random variable X :

X̄(n) =
n− 1

n
X̄(n− 1) +

1

n
Xn

and
S2(n) =

n− 2

n− 1
S2(n− 1) +

1

n

(
Xn − X̄(n− 1)

)2

for n = 2, 3, . . ., where

X̄(1) = X1, S2(1) = 0.
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OUTPUT ANALYSIS OF A SIMULATION

Method of independent replications

Example: Long-term ("steady-state") mean waiting time E(W ) in the
single-stage production line

Produce n independent sample paths of waiting times W (i)
1 ,W

(i)
2 , . . . ,W

(i)
N

and compute

W̄
(i)
N =

1

N

N∑
j=1

W
(i)
j , i = 1, . . . , n.



12

/k 22/28

Then, for large N , an approximate 100(1 − δ)% confidence interval for the
mean waiting time E(W ) is

W̄n,N ± z1−δ/2
Sn,N√
n

where W̄n,N and S2
n,N are the sample mean and variance of the realizations

W̄
(1)
N , . . . , W̄

(n)
N ;

W̄n,N =
1

n

n∑
i=1

W̄
(i)
N

S2
n,N =

1

n− 1

n∑
i=1

(W̄
(i)
N − W̄n,N)2
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Results for λ = 0.5, µ = 1 and 10 runs, each of N = 104 waiting times

i W̄
(i)
N

1 0.995
2 1.002
3 0.959
4 1.037
5 0.902
6 1.011
7 1.125
8 1.007
9 1.075

10 1.044

E(W ) = 1.016± 0.036 (95% confidence interval)
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Results for λ = 0.9, µ = 1 and 10 runs, each of N = 104 waiting times

i W̄
(i)
N

1 7.373
2 8.496
3 8.574
4 7.752
5 8.637
6 7.404
7 9.556
8 8.863
9 8.537

10 11.000

E(W ) = 8.619± 0.632 (95% confidence interval)

Clearly, a more congested system is harder to simulate! To obtain a more
accurate estimate should we increase the number of runs and/or the length
of each run? And, how much?
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Problem of the initialization effect

We are interested in the long-term behaviour of the system and maybe the
choice of the initial state of the simulation will influence the quality of our
estimate.
One way of dealing with this problem is to choose N very large and to ne-
glect this initialization effect. However, a better way is to throw away in each
run the first k observations, i.e. we set

W̄
(i)
N =

1

N − k

N∑
j=k+1

W
(i)
j .

We call k the length of the warm-up period and it can be determined by a
graphical procedure.
Disadvantage of the independent replication method is that we have the ini-
tialization effect in each simulation run.
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OUTPUT ANALYSIS OF A SIMULATION

Batch means

Instead of doing n independent runs, we try to obtain n independent
observations by making a single long run and, after deleting the first k
observations, dividing this run into n subruns.

The advantage is that we have to go through the warm-up period only once.
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Let W1,W2, . . . ,WnN be the output of a single run, where we have already
deleted the first k observations and renumbered the remaining ones. Hence
W1,W2, . . . ,WnN will be representative for the steady-state. We divide the
observations into n batches of length N . Thus, batch 1 consists of

W1,W2, . . . ,WN ;

batch 2 of
WN+1,WN+2, . . . ,W2N ,

and so on. Let W̄ (i)
N be the sample (or batch) mean of the N observations in

batch i, so

W̄
(i)
N =

1

N

iN∑
j=(i−1)N+1

Wj
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The W̄ (i)
N ’s play the same role as the ones in the independent replication

method. Unfortunately, the W̄ (i)
N ’s will now be dependent.

But, under mild conditions, for large N the W̄ (i)
N ’s will be approximately

independent, each with the same mean E(W ).
Hence, for N large enough, it is reasonable to treat the W̄ (i)

N ’s as i.i.d.
random variables with mean E(W ); thus

W̄n,N ± z1−δ/2
Sn,N√
n

provides again a 100(1 − δ)% confidence interval for E(W ), with
W̄n,N and S2

n,N again the sample mean and variance of the realizations
W̄

(1)
N , . . . , W̄

(n)
N ; .


