How do we generate random variables?

- Sampling from continuous distributions
- Sampling from discrete distributions
- Random-number generators (Sampling from the $U(0,1)$ distribution)

Sampling from continuous distributions

Inverse Transform Method:

Let the random variable X have a continuous and increasing distribution function F. Denote the inverse of F by F^{-1}. Then X can be generated as follows:

- Generate U from $U(0,1)$;
- Return $X=F^{-1}(U)$.

If F is not continuous or increasing, then we have to use the generalized inverse function

$$
F^{-1}(u)=\min \{x: F(x) \geq u\} .
$$

Examples:

- $X=a+(b-a) U$ is uniform on (a, b);
- $X=-\ln (U) / \lambda$ is exponential with parameter λ;
- $X=(-\ln (U))^{1 / a} / \lambda$ is Weibull, parameters a and λ.

Unfortunately, for many distribution functions we do not have an easy-touse (closed-form) expression for the inverse of F.

Composition method:

This method applies when the distribution function F can be expressed as a mixture of other distribution functions F_{1}, F_{2}, \ldots,

$$
F(x)=\sum_{i=1}^{\infty} p_{i} F_{i}(x)
$$

where

$$
p_{i} \geq 0, \quad \sum_{i=1}^{\infty} p_{i}=1
$$

The method is useful if it is easier to sample from the F_{i} 's than from F. The algorithm is as follows:

- First generate an index I such that

$$
P(I=i)=p_{i}, \quad i=1,2, \ldots
$$

- Generate a random variable X with distribution function $F_{\text {I }}$.

Examples:

- Hyper-exponential distribution:

$$
F(x)=p_{1} F_{1}(x)+p_{2} F_{2}(x)+\cdots+p_{k} F_{k}(x), \quad x \geq 0,
$$

where $F_{i}(x)$ is the exponential distribution with parameter $\mu_{i}, i=$ $1, \ldots, k$.

- Double-exponential (or Laplace) distribution:

$$
f(x)= \begin{cases}\frac{1}{2} e^{x}, & x<0 \\ \frac{1}{2} e^{-x}, & x \geq 0\end{cases}
$$

where f denotes the density of F.

Convolution method:
In some case X can be expressed as a sum of independent random variables Y_{1}, \ldots, Y_{n}, so

$$
X=Y_{1}+Y_{2}+\cdots+Y_{n} .
$$

where the Y_{i} 's can be generated more easily than X.
Algorithm:

- Generate independent Y_{1}, \ldots, Y_{n}, each with distribution function G;
- Return $X=Y_{1}+\cdots+Y_{n}$.

Example:

If X is Erlang distributed with parameters n and μ, then X can be expressed as a sum of n independent exponentials Y_{i}, each with mean $1 / \mu$.

Algorithm:

- Generate n exponentials Y_{1}, \ldots, Y_{n}, each with mean μ;
- Set $X=Y_{1}+\cdots+Y_{n}$.

More efficient algorithm:

- Generate n uniform $(0,1)$ random variables U_{1}, \ldots, U_{n};
- Set $X=-\ln \left(U_{1} U_{2} \cdots U_{n}\right) / \mu$.

Acceptance-Rejection method:

Denote the density of X by f. This method requires a function g that majorizes f,

$$
g(x) \geq f(x)
$$

for all x. Now g will not be a density, since

$$
c=\int_{-\infty}^{\infty} g(x) d x \geq 1
$$

Assume that $c<\infty$. Then $h(x)=g(x) / c$ is a density.
Algorithm:
I. Generate Y having density h;
2. Generate U from $U(0,1)$, independent of Y;
3. If $U \leq f(x) / g(x)$, then set $X=Y$; else go back to step I.

The random variable X generated by the above algorithm has density f.

Validity of the Acceptance-Rejection method:

Note

$$
P(X \leq x)=P(Y \leq x \mid Y \text { accepted }) .
$$

Now,

$$
P(Y \leq x, Y \text { accepted })=\int_{-\infty}^{x} \frac{f(y)}{g(y)} h(y) d y=\frac{1}{c} \int_{-\infty}^{x} f(y) d y
$$

and thus, letting $x \rightarrow \infty$ gives

$$
P(Y \text { accepted })=\frac{1}{c} .
$$

Hence,

$$
P(X \leq x)=\frac{P(Y \leq x, Y \text { accepted })}{P(Y \text { accepted })}=\int_{-\infty}^{x} f(y) d y
$$

Note that the number of iterations is geometrically distributed with mean c.
How to choose g ?

- Try to choose g such that the random variable Y can be generated rapidly;
- The probability of rejection in step 3 should be small; so try to bring c close to 1 , which mean that g should be close to f.

Example:

The Beta $(4,3)$ distribution has density

$$
f(x)=60 x^{3}(1-x)^{2}, \quad 0 \leq x \leq 1 .
$$

The maximal value of f occurs at $x=0.6$, where $f(0.6)=2.0736$. Thus, if we define

$$
g(x)=2.0736, \quad 0 \leq x \leq 1
$$

then g majorizes f.
Algorithm:
I. Generate Y and U from $U(0,1)$;
2. If

$$
U \leq \frac{60 Y^{3}(1-Y)^{2}}{2.0736}
$$

then set $X=Y$; else reject Y and return to step i.

Generating Normal random variables

Methods:

- Central Limit Theorem
- Acceptance-Rejection method
- Box-Muller method

Central Limit Theorem:

This is an approximation method.
The Central Limit Theorem states that for a sequence of iid random variables Y_{1}, Y_{2}, \ldots with mean μ and variance σ^{2}, the distribution of

$$
\frac{\sum_{i=1}^{n} Y_{i}-n \mu}{\sigma \sqrt{n}}
$$

converges to the standard normal distribution as n tends to infinity. If we take $Y_{i}=U_{i}$, where U_{i} are from $U(0,1)$, then $\mu=1 / 2$ and $\sigma^{2}=1 / 12$. Hence, we may approximate a standard normal random variable by

$$
\sum_{i=1}^{12} U_{i}-6
$$

Acceptance-Rejection method:

If X is $N(0,1)$, then the density of $|X|$ is given by

$$
f(x)=\frac{2}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x>0 .
$$

Now the function

$$
g(x)=\sqrt{2 e / \pi} e^{-x}
$$

majorizes f. This leads to the following algorithm:
i. Generate an exponential Y with mean I;
2. Generate U from $U(0,1)$, independent of Y;
3. If

$$
U \leq e^{-(Y-1)^{2} / 2}
$$

then accept Y; else reject Y and return to step i.
4. Return $X=Y$ or $X=-Y$, both with probability $1 / 2$.

Box-Muller method:

If U_{1} and U_{2} are independent $U(0,1)$ random variables, then

$$
\begin{aligned}
& X_{1}=\sqrt{-2 \ln U_{1}} \cos \left(2 \pi U_{2}\right) \\
& X_{2}=\sqrt{-2 \ln U_{1}} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

are independent standard normal random variables.

Sampling from discrete distributions

General method:
(Discrete version of Inverse Transform Method)
Let X be a discrete random variable with probabilities

$$
P\left(X=x_{i}\right)=p_{i}, \quad i=0,1, \ldots, \quad \sum_{i=0}^{\infty} p_{i}=1 .
$$

To generate a realization of X, we first generate U from $U(0,1)$ and then set $X=x_{i}$ if

$$
\sum_{j=0}^{i-1} p_{j} \leq U<\sum_{j=0}^{i} p_{j}
$$

So the algorithm is as follows:

- Generate U from $U(0,1)$;
- Determine the index I such that

$$
\sum_{j=0}^{I-1} p_{j} \leq U<\sum_{j=0}^{I} p_{j}
$$

and return $X=x_{I}$.
The second step requires a search; for example, starting with $I=0$ we keep adding i to I until we have found the (smallest) I such that

$$
U<\sum_{j=0}^{I} p_{j}
$$

Note: The algorithm needs exactly one uniform random variable U to generate X; this is a nice feature if you use variance reduction techniques.

Fast methods when X has a finite support:

- Arraymethod.

This method requires that p_{i} is exactly equal to a q-place decimal.

- Alias method.

These methods require some 'set-up'.

Array method

Suppose $p_{i}=k_{i} / 100, i=1, \ldots, m$, where k_{i} 's are integers with $0 \leq k_{i} \leq 100$

Construct array $A[i], i=1, \ldots, 100$ as follows:
set $A[i]=x_{1}$ for $i=1, \ldots, k_{1}$
set $A[i]=x_{2}$ for $i=k_{1}+1, \ldots, k_{1}+k_{2}$, etc.
Then, first sample a random index I from $1, \ldots, 100$:
$I=1+\lfloor 100 U\rfloor$ and set $X=A[I]$

Alias method

Set-up: Express the distribution $\left\{p_{1}, \ldots, p_{m}\right\}$ as an equiprobable mixture of m distributions, each living on (at most) two points in $\{1, \ldots, m\}$.
So decompose $M=\{\mathrm{I}, \ldots, m\}$ into m pairs $\left\{A_{i}, B_{i}\right\}, i=1, \ldots, m$, such that

$$
M=\bigcup_{i=1}^{m}\left\{A_{i}, B_{i}\right\}
$$

and assign probabilities $P\left(A_{i}\right)$ and $P\left(B_{i}\right)=1-P\left(A_{i}\right)$ to each pair, such that

$$
p_{i}=\frac{1}{m} \sum_{j=1}^{m} f_{j}(i)
$$

where $f_{j}(i)$ is equal to $P\left(A_{i}\right)$ if $i=A_{i}, P\left(B_{i}\right)$ if $i=B_{i}$, and 0 otherwise.

Then, sample as follows:

- Generate a uniform random variable U_{1} on $(0,1)$ and let $I=1+\left\lfloor m U_{1}\right\rfloor$;
- Generate a uniform random variable U_{2} on $(0,1)$; if $U_{2} \leq P\left(A_{I}\right)$, then $X=A_{I}$, else $X=B_{I}$.

Sampling from special discrete distributions

Bernoulli

Two possible outcomes of X (success or failure):

$$
P(X=1)=1-P(X=0)=p
$$

Algorithm:

- Generate U from $U(0,1)$;
- If $U \leq p$, then $X=1$; else $X=0$.

Discrete uniform

The possible outcomes of X are $m, m+1, \ldots, n$ and they are all equally likely, so

$$
P(X=i)=\frac{1}{n-m+1}, \quad i=m, m+1, \ldots, n
$$

Algorithm:

- Generate U from $U(0,1)$;
- Set $X=m+\lfloor(n-m+1) U\rfloor$.

Note: No search is required, and compute $(n-m+1)$ ahead.

Geometric

A random variable X has a geometric distribution with parameter p if

$$
P(X=i)=p(1-p)^{i}, \quad i=0,1,2, \ldots ;
$$

X is the number of failures till the first success in a sequence of Bernoulli trials with success probability p.

Algorithm:

- Generate independent $\operatorname{Bernoulli}(p)$ random variables Y_{1}, Y_{2}, \ldots; let I be the index of the first successful one, so $Y_{I}=1$;
- Set $X=I-1$.

Alternative algorithm:

- Generate U from $U(0,1)$;
- Set $X=\lfloor\ln (U) / \ln (1-p)\rfloor$.

Binomial

A random variable X has a binomial distribution with parameters n and p if

$$
P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i}, \quad i=0,1, \ldots, n
$$

X is the number of successes in n independent Bernoulli trials, each with success probability p.

Algorithm:

- Generate n Bernoulli (p) random variables
Y_{1}, \ldots, Y_{n};
- Set $X=Y_{1}+Y_{2}+\cdots+Y_{n}$.

Alternative algorithms can be derived by using the following results.

Let Y_{1}, Y_{2}, \ldots be independent geometric (p) random variables, and I the smallest index such that

$$
\sum_{i=1}^{I+1}\left(Y_{i}+1\right)>n
$$

Then the index I has a binomial distribution with parameters n and p.
Let Y_{1}, Y_{2}, \ldots be independent exponential random variables with mean I , and I the smallest index such that

$$
\sum_{i=1}^{I+1} \frac{Y_{i}}{n-i+1}>-\ln (1-p)
$$

Then the index I has a binomial distribution with parameters n and p.

Negative Binomial

A random variable X has a negative-binomial distribution with parameters n and p if

$$
P(X=i)=\binom{n+i-1}{i} p^{n}(1-p)^{i}, \quad i=0,1,2, \ldots ;
$$

X is the number of failures before the n-th success in a sequence of independent Bernoulli trials with success probability p.

Algorithm:

- Generate n geometric (p) random variables
Y_{1}, \ldots, Y_{n};
- Set $X=Y_{1}+Y_{2}+\cdots+Y_{n}$.

Poisson

A random variable X has a Poisson distribution with parameter λ if

$$
P(X=i)=\frac{\lambda^{i}}{i!} e^{-\lambda}, \quad i=0,1,2, \ldots ;
$$

X is the number of events in a time interval of length 1 if the inter-event times are independent and exponentially distributed with parameter λ.

Algorithm:

- Generate exponential inter-event times Y_{1}, Y_{2}, \ldots with mean 1 ; let I be the smallest index such that

$$
\sum_{i=1}^{I+1} Y_{i}>1
$$

- Set $X=I$.

TU/e

Or:

- Generate $\mathrm{U}(\mathrm{O}, \mathrm{I})$ random variables U_{1}, U_{2}, \ldots; let I be the smallest index such that

$$
\prod_{i=1}^{I+1} U_{i}<e^{-1}
$$

- Set $X=I$.

