
12

/k 1/29

How do we generate random variables?

• Sampling from continuous distributions

• Sampling from discrete distributions

• Random-number generators
(Sampling from the U(0, 1) distribution)

12

/k 2/29

Sampling from continuous distributions

Inverse Transform Method:

Let the random variable X have a continuous and increasing distribution
function F . Denote the inverse of F by F−1. Then X can be generated as
follows:

• Generate U from U(0, 1);

• Return X = F−1(U).

If F is not continuous or increasing, then we have to use the generalized
inverse function

F−1(u) = min{x : F (x) ≥ u}.

12

/k 3/29

Examples:

• X = a + (b− a)U is uniform on (a, b);

• X = − ln(U)/λ is exponential with parameter λ;

• X = (− ln(U))1/a/λ is Weibull, parameters a and λ.

Unfortunately, for many distribution functions we do not have an easy-to-
use (closed-form) expression for the inverse of F .

12

/k 4/29

Composition method:

This method applies when the distribution function F can be expressed as
a mixture of other distribution functions F1, F2, . . .,

F (x) =

∞∑
i=1

piFi(x),

where

pi ≥ 0,
∞∑
i=1

pi = 1

The method is useful if it is easier to sample from the Fi’s than from F . The
algorithm is as follows:

• First generate an index I such that

P (I = i) = pi, i = 1, 2, . . .

• Generate a random variable X with distribution function FI .

12

/k 5/29

Examples:

• Hyper-exponential distribution:

F (x) = p1F1(x) + p2F2(x) + · · · + pkFk(x), x ≥ 0,

where Fi(x) is the exponential distribution with parameter µi, i =
1, . . . , k.

• Double-exponential (or Laplace) distribution:

f (x) =

1
2e

x, x < 0;

1
2e
−x, x ≥ 0,

where f denotes the density of F .

12

/k 6/29

Convolution method:

In some caseX can be expressed as a sum of independent random variables
Y1, . . . , Yn, so

X = Y1 + Y2 + · · · + Yn.

where the Yi’s can be generated more easily than X .

Algorithm:

• Generate independent Y1, . . . , Yn, each with distribution function G;

• Return X = Y1 + · · · + Yn.

12

/k 7/29

Example:

If X is Erlang distributed with parameters n and µ, then X can be expres-
sed as a sum of n independent exponentials Yi, each with mean 1/µ.

Algorithm:

• Generate n exponentials Y1, . . . , Yn, each with
mean µ;

• Set X = Y1 + · · · + Yn.

More efficient algorithm:

• Generate n uniform (0, 1) random variables
U1, . . . , Un;

• Set X = − ln(U1U2 · · ·Un)/µ.

12

/k 8/29

Acceptance-Rejection method:

Denote the density of X by f . This method requires a function g that majo-
rizes f ,

g(x) ≥ f (x)

for all x. Now g will not be a density, since

c =

∫ ∞

−∞
g(x)dx ≥ 1.

Assume that c <∞. Then h(x) = g(x)/c is a density.

Algorithm:

1. Generate Y having density h;

2. Generate U from U(0, 1), independent of Y ;

3. If U ≤ f (x)/g(x), then set X = Y ; else go back to step 1.

The random variable X generated by the above algorithm has density f .

12

/k 9/29

Validity of the Acceptance-Rejection method:

Note
P (X ≤ x) = P (Y ≤ x|Y accepted).

Now,

P (Y ≤ x, Y accepted) =

∫ x

−∞

f (y)

g(y)
h(y)dy =

1

c

∫ x

−∞
f (y)dy,

and thus, letting x→∞ gives

P (Y accepted) =
1

c
.

Hence,

P (X ≤ x) =
P (Y ≤ x, Y accepted)

P (Y accepted)
=

∫ x

−∞
f (y)dy.

12

/k 10/29

Note that the number of iterations is geometrically distributed with mean c.

How to choose g?

• Try to choose g such that the random variable Y can be generated
rapidly;

• The probability of rejection in step 3 should be small; so try to bring c
close to 1, which mean that g should be close to f .

12

/k 11/29

Example:

The Beta(4,3) distribution has density

f (x) = 60x3(1− x)2, 0 ≤ x ≤ 1.

The maximal value of f occurs at x = 0.6, where f (0.6) = 2.0736. Thus, if
we define

g(x) = 2.0736, 0 ≤ x ≤ 1,

then g majorizes f .

Algorithm:

1. Generate Y and U from U(0, 1);

2. If

U ≤ 60Y 3(1− Y)2

2.0736
,

then set X = Y ; else reject Y and return to step 1.

12

/k 12/29

Generating Normal random variables

Methods:

• Central Limit Theorem

• Acceptance-Rejection method

• Box-Muller method

12

/k 13/29

Central Limit Theorem:

This is an approximation method.
The Central Limit Theorem states that for a sequence of iid random varia-
bles Y1, Y2, . . . with mean µ and variance σ2, the distribution of∑n

i=1 Yi − nµ
σ
√
n

converges to the standard normal distribution as n tends to infinity.
If we take Yi = Ui, where Ui are from U(0, 1), then µ = 1/2 and σ2 = 1/12.
Hence, we may approximate a standard normal random variable by

12∑
i=1

Ui − 6

12

/k 14/29

Acceptance-Rejection method:

If X is N(0, 1), then the density of |X| is given by

f (x) =
2√
2π
e−x

2/2, x > 0.

Now the function
g(x) =

√
2e/πe−x

majorizes f . This leads to the following algorithm:

1. Generate an exponential Y with mean 1;

2. Generate U from U(0, 1), independent of Y ;

3. If
U ≤ e−(Y−1)2/2,

then accept Y ; else reject Y and return to step 1.

4. Return X = Y or X = −Y , both with probability 1/2.

12

/k 15/29

Box-Muller method:

If U1 and U2 are independent U(0, 1) random variables, then

X1 =
√
−2 lnU1 cos(2πU2)

X2 =
√
−2 lnU1 sin(2πU2)

are independent standard normal random variables.

12

/k 16/29

Sampling from discrete distributions

General method:

(Discrete version of Inverse Transform Method)

Let X be a discrete random variable with probabilities

P (X = xi) = pi, i = 0, 1, . . . ,

∞∑
i=0

pi = 1.

To generate a realization of X , we first generate U from U(0, 1) and then
set X = xi if

i−1∑
j=0

pj ≤ U <
i∑

j=0

pj.

12

/k 17/29

So the algorithm is as follows:

• Generate U from U(0, 1);

• Determine the index I such that
I−1∑
j=0

pj ≤ U <
I∑
j=0

pj

and return X = xI .

The second step requires a search; for example, starting with I = 0 we keep
adding 1 to I until we have found the (smallest) I such that

U <

I∑
j=0

pj

Note: The algorithm needs exactly one uniform random variable U to gene-
rate X ; this is a nice feature if you use variance reduction techniques.

12

/k 18/29

Fast methods when X has a finite support:

• Arraymethod.
This method requires that pi is exactly equal to a q-place decimal.

• Alias method.

These methods require some ‘set-up’.

12

/k 19/29

Array method

Suppose pi = ki/100, i = 1, . . . ,m,
where ki’s are integers with 0 ≤ ki ≤ 100

Construct array A[i], i = 1, . . . , 100 as follows:
set A[i] = x1 for i = 1, . . . , k1
set A[i] = x2 for i = k1 + 1, . . . , k1 + k2, etc.

Then, first sample a random index I from 1, . . . , 100:
I = 1 + b100Uc and set X = A[I]

12

/k 20/29

Alias method

Set-up: Express the distribution {p1, . . . , pm} as an equiprobable mixture of
m distributions, each living on (at most) two points in {1, . . . ,m}.
So decomposeM = {1, ..., m} intom pairs {Ai, Bi}, i = 1, . . . ,m, such that

M =

m⋃
i=1

{Ai, Bi}

and assign probabilities P (Ai) and P (Bi) = 1 − P (Ai) to each pair, such
that

pi =
1

m

m∑
j=1

fj(i)

where fj(i) is equal to P (Ai) if i = Ai, P (Bi) if i = Bi, and 0 otherwise.

12

/k 21/29

Then, sample as follows:

• Generate a uniform random variable U1 on (0, 1)
and let I = 1 + bmU1c;
• Generate a uniform random variable U2 on (0, 1);

if U2 ≤ P (AI), then X = AI , else X = BI .

12

/k 22/29

Sampling from special discrete distributions

Bernoulli

Two possible outcomes of X (success or failure):

P (X = 1) = 1− P (X = 0) = p.

Algorithm:

• Generate U from U(0, 1);

• If U ≤ p, then X = 1; else X = 0.

12

/k 23/29

Discrete uniform

The possible outcomes of X are m,m + 1, . . . , n and they are all equally
likely, so

P (X = i) =
1

n−m + 1
, i = m,m + 1, . . . , n.

Algorithm:

• Generate U from U(0, 1);

• Set X = m + b(n−m + 1)Uc.
Note: No search is required, and compute (n−m + 1) ahead.

12

/k 24/29

Geometric

A random variable X has a geometric distribution with parameter p if

P (X = i) = p(1− p)i, i = 0, 1, 2, . . . ;

X is the number of failures till the first success in a sequence of Bernoulli
trials with success probability p.

Algorithm:

• Generate independent Bernoulli(p) random variables Y1, Y2, . . .; let I be
the index of the first successful one, so YI = 1;

• Set X = I − 1.

Alternative algorithm:

• Generate U from U(0, 1);

• Set X = bln(U)/ ln(1− p)c.

12

/k 25/29

Binomial

A random variable X has a binomial distribution with parameters n and p
if

P (X = i) =

(
n

i

)
pi(1− p)n−i, i = 0, 1, . . . , n;

X is the number of successes in n independent Bernoulli trials, each with
success probability p.

Algorithm:

• Generate n Bernoulli(p) random variables
Y1, . . . , Yn;

• Set X = Y1 + Y2 + · · · + Yn.

Alternative algorithms can be derived by using the following results.

12

/k 26/29

Let Y1, Y2, . . . be independent geometric(p) random variables, and I the
smallest index such that

I+1∑
i=1

(Yi + 1) > n.

Then the index I has a binomial distribution with parameters n and p.

Let Y1, Y2, . . . be independent exponential random variables with mean 1,
and I the smallest index such that

I+1∑
i=1

Yi
n− i + 1

> − ln(1− p).

Then the index I has a binomial distribution with parameters n and p.

12

/k 27/29

Negative Binomial

A random variable X has a negative-binomial distribution with parameters
n and p if

P (X = i) =

(
n + i− 1

i

)
pn(1− p)i, i = 0, 1, 2, . . . ;

X is the number of failures before the n-th success in a sequence of inde-
pendent Bernoulli trials with success probability p.

Algorithm:

• Generate n geometric(p) random variables
Y1, . . . , Yn;

• Set X = Y1 + Y2 + · · · + Yn.

12

/k 28/29

Poisson

A random variable X has a Poisson distribution with parameter λ if

P (X = i) =
λi

i!
e−λ, i = 0, 1, 2, . . . ;

X is the number of events in a time interval of length 1 if the inter-event
times are independent and exponentially distributed with parameter λ.

Algorithm:

• Generate exponential inter-event times Y1, Y2, . . . with mean 1; let I be
the smallest index such that

I+1∑
i=1

Yi > 1;

• Set X = I .

12

/k 29/29

Or:

• Generate U(0,1) random variables U1, U2, . . .;
let I be the smallest index such that

I+1∏
i=1

Ui < e−1;

• Set X = I .

