Random-number generators

It is important to be able to efficiently generate independent random variables from the uniform distribution on $(0,1)$, since:

- Random variables from all other distributions can be obtained by transforming uniform random variables;
- Simulations require many random numbers.

Most random-number generators are of the form:
Start with z_{0} (seed)
For $n=1,2, \ldots$ generate

$$
z_{n}=f\left(z_{n-1}\right)
$$

and

$$
u_{n}=g\left(z_{n}\right)
$$

f is the pseudo-random generator
g is the output function
$\left\{u_{0}, u_{1}, \ldots\right\}$ is the sequence of uniform random numbers on the interval $(0,1)$.

A 'good' random-number generator should satisfy the following properties:

- Uniformity: The numbers generated appear to be distributed uniformly on (0,1);
- Independence: The numbers generated show no correlation with each other;
- Replication: The numbers should be replicable (e.g., for debugging or comparison of different systems).
- Cycle length: It should take long before numbers start te repeat;
- Speed: The generator should be fast;
- Memory usage: The generator should not require a lot of storage.

Midsquare method

Start with a 4 -digit number z_{0} (seed)
Square it to obtain 8 -digits (if necessary, append zeros to the left)
Take the middle 4 digits to obtain the next 4 -digit number z_{1}; then square z_{1} and take the middle 4 -digits again and so on.
We get uniform random number by placing the decimal point at the left of each z_{i} (i.e., divide by поооо).

Examples

- For $z_{0}=1234$ we get 0.1234, 0.5227, 0.3215, 0.3362, 0.3030, 0.1809, $0.2724,0.420 \mathrm{I}, 0.6484,0.0422,0.1780,0.1684,0.836 \mathrm{I}, 0.856 \mathrm{I}$, $0.2907, \ldots$
- For $z_{0}=2345$ we get $0.2345,0.4990,0.9001,0.0180,0.0324,0.1049$, $0.1004,0.0080,0.0064,0.0040, \ldots$ Two succesive zeros behind the decimal will never disappear.
- For $z_{0}=2100$ we get $0.2 \mathrm{I} 00,0.4 \mathrm{IOO}, 0.8 \mathrm{I} 00,0.6 \mathrm{I} 00,0.2100,0.4100$, ... Already after four numbers the sequence starts to repeat itself.

Clearly, random-number generators involve a lot more than doing 'something strange' to a number to obtain the next.

Linear (or mixed) congruential generators

Most random-number generators in use today are linear congruential generators. They produce a sequence of integers between \circ and $m-1$ according to

$$
z_{n}=\left(a z_{n-1}+c\right) \quad \bmod m, \quad n=1,2, \ldots
$$

a is the multiplier, c the increment and m the modulus. To obtain uniform random numbers on $(0,1)$ we take

$$
u_{n}=z_{n} / m
$$

A good choice of a, c and m is very important.

A linear congruential generator has full period (cycle length is m) if and only if the following conditions hold:

- The only positive integer that exactly divides both m and c is I ;
- If q is a prime number that divides m, then q divides $a-1$;
- If 4 divides m, then 4 divides $a-1$.

Examples

- For $(a, c, m)=(1,5,13)$ and $z_{0}=1$ we get the sequence $\mathrm{I}, 6, \mathrm{II}, 3,8, \mathrm{o}$, $5,10,2,7,12,4,9$, I, ... which has full period (of 13).
- For $(a, c, m)=(1,5,13)$ and $z_{0}=1$ we get the sequence $\mathrm{I}, 7,6,4, \mathrm{o}, 5$, $2,9, \mathrm{IO}, \mathrm{I} 2,3, \mathrm{II}, \mathrm{I}, \ldots$ which has a period of I 2 . If we take $z_{0}=8$, we get the sequence $8,8,8, \ldots($ period of I$)$.

Multiplicative congruential generators

These generators produce a sequence of integers between \circ and $m-1$ according to

$$
z_{n}=a z_{n-1} \quad \bmod m, \quad n=1,2, \ldots
$$

So they are linear congruential generators with $c=0$.
They cannot have full period, but it is possible to obtain period $m-1$ (so each integer $\mathrm{I}, \ldots, m-1$ is obtained exactly once in each cycle) if a and m are chosen carefully. For example, as $a=630360016$ and $m=2^{31}-1$.

Additive congruential generators

These generators produce integers according to

$$
z_{n}=\left(z_{n-1}+z_{n-k}\right) \quad \bmod m, \quad n=1,2, \ldots
$$

where $k \geq 2$. Uniform random numbers can again be obtained from

$$
u_{n}=z_{n} / m
$$

These generators can have a long period upto m^{k}.

Disadvantage:

Consider the case $k=2$ (the Fibonacci generator). If we take three consecutive numbers u_{n-2}, u_{n-1} and u_{n}, then it will never happen that

$$
u_{n-2}<u_{n}<u_{n-1} \quad \text { or } \quad u_{n-1}<u_{n}<u_{n-2}
$$

whereas for true uniform variables both of these orderings occurs with probability $\mathrm{I} / 6$.
(Pseudo) Random number generators:

- Linear (or mixed) congruential generators
- Multiplicative congruential generators
- Additive congruential generators

How random are pseudorandom numbers?

Testing random number generators

- Empirical tests Statistical tests based on the actual U_{i} 's produced by a generator;
- Theoretical tests

Tests based on the numerical parameters of a generator, without generating U_{i} 's.

Empirical tests

Try to test two main properties:

- Uniformity;
- Independence.

Uniformity or goodness-of-fit tests:

Let X_{1}, \ldots, X_{n} be n observations. A goodness-of-fit test can be used to test the hyphothesis:
H_{0} : The X_{i} 's are i.i.d. random variables with distribution function F.
Two goodness-of-fit tests:

- Kolmogorov-Smirnov test
- Chi-Square test

Kolmogorov-Smirnov test

Let $F_{n}(x)$ be the emperical distribution function, so

$$
F_{n}(x)=\frac{\text { number of } X_{i}^{\prime} s \leq x}{n}
$$

Then

$$
D_{n}=\sup _{x}\left|F_{n}(x)-F(x)\right|
$$

has the Kolmogorov-Smirnov (K-S) distribution.
Now we reject H_{0} if

$$
D_{n}>d_{n, 1-\alpha}
$$

where $d_{n, 1-\alpha}$ is the $1-\alpha$ quantile of the K-S distribution.
Here α is the significance level of the test:
The probability of rejecting H_{0} given that H_{0} is true.

For $n \geq 100$,

$$
d_{n, 0.95} \approx 1.3581 / \sqrt{n}
$$

In case of the uniform distribution we have

$$
F(x)=x, \quad 0 \leq x \leq 1
$$

Chi-Square test

Divide the range of F into k adjacent intervals

$$
\left(a_{0}, a_{1}\right],\left(a_{1}, a_{2}\right], \ldots,\left(a_{k-1}, a_{k}\right]
$$

Let

$$
N_{j}=\text { number of } X_{i} \text { 's in }\left[a_{j-1}, a_{j}\right)
$$

and let p_{j} be the probability of an outcome in $\left(a_{j-1}, a_{j}\right]$, so

$$
p_{j}=F\left(a_{j}\right)-F\left(a_{j-1}\right)
$$

Then the test statistic is

$$
\chi^{2}=\sum_{j=1}^{k} \frac{\left(N_{j}-n p_{j}\right)^{2}}{n p_{j}}
$$

If H_{0} is true, then $n p_{j}$ is the expected number of the $n X_{i}$'s that fall in the j-th interval, and so we expect χ^{2} to be small.

If H_{0} is true, then the distribution of χ^{2} converges to a chi-square distribution with $k-1$ degrees of freedom as $n \rightarrow \infty$.

The chi-square distribution with $k-1$ degrees of freedom is the same as the Gamma distribution with parameters $(k-1) / 2$ and 2.

Hence, we reject H_{0} if

$$
\chi^{2}>\chi_{k-1,1-\alpha}^{2}
$$

where $\chi_{k-1,1-\alpha}^{2}$ is the $1-\alpha$ quantile of the chi-square distribution with $k-1$ degrees of freedom.

Chi-square test for $U(0,1)$ random variables

We divide $(0,1)$ into k subintervals of equal length and generate U_{1}, \ldots, U_{n}; it is recommended to choose $k \geq 100$ and $n / k \geq 5$. Let N_{j} be the number of the $n U_{i}$'s in the j-th subinterval.

Then

$$
\chi^{2}=\frac{k}{n} \sum_{j=1}^{k}\left(N_{j}-\frac{n}{k}\right)^{2}
$$

Example:

Consider the linear congruential generator

$$
z_{n}=a z_{n-1} \quad \bmod m
$$

with $a=630360016, m=2^{31}-1$ and seed

$$
z_{0}=1973272912
$$

Generating $n=2^{15}=32768$ random numbers U_{i} and dividing $(0,1)$ in $k=2^{12}=4096$ subintervals yields

$$
\chi^{2}=4141.0
$$

Since

$$
\chi_{4095,0.9} \approx 4211.4
$$

we do not reject H_{0} at level $\alpha=0.1$.

Serial test

This is a 2 -dimensional version of the chi-square test to test independence between successive observations.

We generate $U_{1}, \ldots, U_{2 n}$; if the U_{i} 's are really i.i.d. $U(0,1)$, then the nonoverlapping pairs

$$
\left(U_{1}, U_{2}\right),\left(U_{3}, U_{4}\right), \ldots,\left(U_{2 n-1}, U_{2 n}\right)
$$

are i.i.d. random vectors uniformly distributed in the square $(0,1)^{2}$.

- Divide the square $(0,1)^{2}$ into n^{2} subsquares;
- Count how many outcomes fall in each subsquare;
- Apply a chi-square test to these data.

This test can be generalized to higher dimensions.

Permutation test

Look at n successive d-tuples of outcomes

$$
\begin{gathered}
\left(U_{0}, \ldots, U_{d-1}\right),\left(U_{d}, \ldots, U_{2 d-1}\right) \\
\ldots,\left(U_{(n-1) d}, \ldots, U_{n d-1}\right)
\end{gathered}
$$

Among the d-tuples there are d ! possible orderings and these orderings are equally likely.

- Determine the frequencies of the different orderings among the $n d$ tuples;
- Apply a chi-square test to these data.

Runs-up test

Divide the sequence U_{0}, U_{1}, \ldots in blocks, where each block is a subsequence of increasing numbers followed by a number that is smaller than its predecessor.

Example: The realization $\mathrm{I}, 3,8,6,2,0,7,9,5$ can be divided in the blocks $(1,3,8,6),(2,0),(7,9,5)$.

A block consisting of $j+1$ numbers is called a run-up of length j. It holds that

$$
P(\text { run-up of length } j)=\frac{1}{j!}-\frac{1}{(j+1)!}
$$

- Generate n run-ups;
- Count the number of run-ups of length $0,1,2, \ldots, k-1$ and $\geq k$;
- Apply a chi-square test to these data.

Correlation test

Generate $U_{0}, U_{1}, \ldots, U_{n}$ and compute an estimate for the (serial) correlation

$$
\hat{\rho}_{1}=\frac{\sum_{i=1}^{n}\left(U_{i}-\bar{U}(n)\right)\left(U_{i+1}-\bar{U}(n)\right)}{\sum_{i=1}^{n}\left(U_{i}-\bar{U}(n)\right)^{2}}
$$

where $U_{n+1}=U_{1}$ and $\bar{U}(n)$ the sample mean.
If the U_{i} 's are really i.i.d. $U(0,1)$, then $\hat{\rho}_{1}$ should be close to zero. Hence we reject H_{0} is $\hat{\rho}_{1}$ is too large.

If H_{0} is true, then for large n,

$$
P\left(-2 / \sqrt{n} \leq \hat{\rho}_{1} \leq 2 / \sqrt{n}\right) \approx 0.95
$$

So we reject H_{0} at the 5% level if

$$
\hat{\rho}_{1} \notin(-2 / \sqrt{n}, 2 / \sqrt{n})
$$

Theoretical tests

They are based on the observation that "random numbers" fall mainly in the planes. For example, the overlapping pairs $\left(U_{0}, U_{1}\right),\left(U_{1}, U_{2}\right), \ldots$ will be arranged in a lattice fashion along parallel lines through the unit square $(0,1)^{2}$.

Tests:

- Spectral test
- Lattice test

Both tests aim at measuring the size of "gaps" between parallel planes containing tuples of U_{i} 's.

Large gaps in $(0,1)^{d}$ indicate poor behavior of the random number generator (in d dimensions).

