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Confidence intervals

Let X1, X2, . . . , Xn be independent realizations of a random variable X
with unknown mean µ and unknown variance σ2.

Sample mean

X̄(n) =
1

n

n∑
i=1

Xi

Sample variance

S2(n) =
1

n− 1

n∑
i=1

(Xi − X̄(n))2

An approximate 100(1− δ)% confidence interval for the unknown mean µ
is given by

X̄(n)± z1−δ/2
S(n)√
n
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Remark:

The width of a confidence interval can be reduced by decreasing the value
of S(n). The reduction obtained by halving S(n) is the same as the one
obtained by producing four times as much observations.

We will discuss the following variance reduction techniques:

• common random numbers;

• antithetic variables;

• control variates;

• conditioning;
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Variance reduction technique:
Common random numbers

If we compare the performance of two systems with random components it
is in general better to evaluate both systems with the same realizations of the
random components.

If X and Y are estimators for the performance of the two systems, then

var(X − Y ) = var(X) + var(Y )− 2 cov(X, Y ).

In general, use of common random numbers leads to positively correlated X
and Y :

cov(X, Y ) > 0

Hence, the variance ofX−Y (and thus the corresponding confidence inter-
val) will be smaller than in case X and Y are independent (when generated
with independent random numbers).
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Example: Job scheduling

Suppose that N jobs have to be processed on M identical machines. The
processing times are independent and exponentially distributed with mean
1.

We want to compare the completion time of the last job, Cmax, under two
different strategies:

• Longest Processing Time First (LPTF)

• Shortest Processing Time First (SPTF)
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Generating an ordered list of exponentials

Let X1, . . . , XN be independent exponentials with mean 1; denote the
smallest one by X(1), the second smallest one by X(2), and so on.

Then for i = 1, . . . , N

X(i)
d
= YN + · · · + YN−i+1

where Y1, . . . , YN are independent exponentials with E(Yi) = 1/i (Yi is the
minimum of i exponentials with mean 1).
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Results for M = 2, N = 10 without using common jobs for the SPTF and
LPTF strategy (n is the number of experiments):

n CSPTF
max − CLPTF

max
mean st.dev. half width 95% CI

103 0.860 2.43 0.151
104 0.867 2.49 0.049
105 0.849 2.50 0.016

and the results using common jobs:

n CSPTF
max − CLPTF

max
mean st.dev. half width 95% CI

103 0.840 0.497 0.031
104 0.833 0.512 0.010
105 0.838 0.518 0.003

Hence, using common jobs reduces the (sample) standard deviation of
CSPTF

max −CLPTF
max , and thus the width of the confidence interval for its mean

with a factor 5!
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Example: Single-stage production system

We want to determine the reduction in the mean waiting time when we
have an extra machine. To compare the two situations we want to use the
same realizations of arrival times and processing times in the simulation.

Assume that processing times of jobs are generated when they enter
production. Then, the order in which arrival and processing times are
generated depends on the number of machines: synchronization problem.

Solution:

• Use separate random number streams for different random variables
(arrival and proccessing times);

• Design the simulation model such that it guarantees that exactly the
same realizations of random variables are generated.

In this problem, the second aproach can be realized by assigning to each job
a processing time immediately upon arrival.
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Results for λ = 4, µ = 1 and the number of machines M is 5, resp. 6. In
each run N = 105 waiting times are generated;

i W̄
(i)
N ∆(i)

M = 5 M = 6
1 0.607 0.150 0.457
2 0.545 0.138 0.407
3 0.527 0.139 0.388
4 0.526 0.135 0.391
5 0.595 0.157 0.438
6 0.569 0.144 0.425
7 0.587 0.150 0.437
8 0.577 0.149 0.428
9 0.553 0.145 0.408

10 0.554 0.138 0.416

The standard deviation of the ∆(i) is equal to 0.022. If both systems use
independent realizations of arrival and processing times the standard dev.
of ∆(i) is 0.029; so common random numbers yields a reduction of 25%.
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Variance reduction technique:
Antithetic variables

If X1 and X2 are the outcomes of two successive simulation runs, then

var

(
X1 + X2

2

)
=

1

4
var(X1) +

1

4
var(X2) +

1

2
cov(X1, X2).

Hence, whenX1 andX2 are negatively correlated, the variance of (X1+X2)/2
will be smaller than when X1 and X2 are independent.

Observation:
If U is uniform on (0, 1), then so is 1− U and U and 1− U are negatively
correlated.

Hence, if we use the sequence U1, . . . , UN to compute the outcome X1 of
the first run, and after that the sequence 1−U1, . . . , 1−UN to computeX2
in the second run, then we expect that X1 and X2 are negatively correlated.
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Instead of generating n independent outcomes

X1, X2, . . . , Xn,

we now generate n/2 outcomes

(X2i−1 + X2i)/2, i = 1, . . . , n/2.

For each pair X2i−1 and X2i, the second one uses antithetic variables.
Then we expect that the variance of the average (X2i−1 +X2i)/2 will be less
than one half of the variance of an individual outcome.

Remark:
The method is easy to implement if all random variables are generated using
the inverse transform method.
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Example: Job scheduling

We want to estimate E(CLPTF
max ), the mean completion time of the last job

under the LPTF strategy.

The random variables Yi, i = 1, . . . , N , used to generate an ordered list
of jobs are exponential with mean 1/i; they are sampled according to (the
inverse transform method)

Yi = − ln(Ui)/i

where Ui is uniform on (0, 1).

To apply the method of antithetic variables, we generate pairs of experi-
ments; if U1, . . . , UN are used to generate Y1, . . . , YN in the first experi-
ment, then we use 1− U1, . . . , 1− UN in the second one.

The idea is that when the random variables Yi are small (Ui are close to one),
then they will be large (Ui are close to zero) in the second experiment.
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Results for M = 2, N = 10 without using antithetic variables:

n CLPTF
max

mean st.dev. half width 95% CI
103 4.998 1.51 0.094
104 5.036 1.59 0.031
105 5.053 1.60 0.010
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Results for M = 2, N = 10 using antithetic variables; n is the number
of pairs of experiments, where in each pair the second experiment uses
antithetic variables; the table shows the mean and st.dev. of the average
completion time of a pair of experiments:

2n mean st.dev. half width 95% CI
103 5.032 0.70 0.061
104 5.070 0.71 0.020
105 5.054 0.69 0.006

We conclude that use of antithetic variables reduces the width of the confi-
dence interval for E(CLPTF

max ) with a factor 1.5.
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Example: Single-stage production system

The exponential processing times B (with mean 1/µ) in the single-stage
production system are sampled as

B = − ln(U)/µ

Thus a small U gives a large processing time.

So, if we produce in the first run U1, . . . , UN yielding large processing
times and thus large waiting times, and then, by using in the second run
the random variables 1 − U1, . . . , 1 − UN , we get small processing times
and thus small waiting times.

Note that we also have to take care of synchronization.
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Results for λ = 4, µ = 1 and M = 5 without using antithetic variables. In
each run N = 105 waiting times are generated;

i W̄
(i)
N i W̄

(i)
N

1 0.607 11 0.510
2 0.545 12 0.612
3 0.527 13 0.535
4 0.526 14 0.547
5 0.595 15 0.586
6 0.569 16 0.526
7 0.587 17 0.580
8 0.577 18 0.629
9 0.553 19 0.516

10 0.554 20 0.572

Hence E(W ) = 0.563± 0.015 (95% confidence interval)
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Results for λ = 4, µ = 1 and M = 5 using antithetic variables. In each run
N = 105 waiting times are generated; in each pair the second experiment
uses antithetic variables.

i W̄
(2i−1)
N W̄

(2i)
N

1 0.607 0.533
2 0.545 0.564
3 0.527 0.537
4 0.526 0.559
5 0.595 0.530
6 0.569 0.526
7 0.587 0.529
8 0.577 0.499
9 0.553 0.567

10 0.554 0.547

Hence E(W ) = 0.552± 0.007 (95% confidence interval)
So use of antithetic variables reduces the width of the confidence interval for
E(W ) with a factor 2.
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Variance reduction technique:
Control variates

Let X1, . . . , Xn be realizations of the random variable X with unknown
meanE(X); then the sample mean X̄(n) is an unbiased estimator ofE(X):

E(X̄(n)) = E(X).

Let Y1, . . . , Yn be realizations of Y with known mean E(Y ), which can be
generated at the same time as the sequence X1, . . . , Xn.

Then also X̄(n) + c(Ȳ (n)− E(Y )) is an unbiased estimator for E(X); its
variance is equal to

var(X̄(n)) + c2var(Ȳ (n)) + 2 c cov(X̄(n), Ȳ (n)),

which is minimized for

c = −cov(X̄(n), Ȳ (n))

var(Ȳ (n))
= −cov(X, Y )

var(Y )
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The quantities var(Y ) and cov(X, Y ) are usually unknown, and may be
estimated from the simulated data, by their sample estimates

S2(n) =
1

n− 1

n∑
i=1

(Yi − Ȳ (n))2

C(n) =
1

n− 1

n∑
i=1

(Xi − X̄(n))(Yi − Ȳ (n))

Why does this method work?

Suppose X̄(n) and Ȳ (n) are positively correlated; if it happens that
X̄(n) > E(X), then probably also Ȳ (n) > E(Y ), and hence, we correct
the estimate for E(X) by lowering its value.

A similar argument applies when X̄(n) and Ȳ (n) are negatively correlated.
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Example: Fluid flow model for the two-machine production line

A natural control variate is the throughput TH for buffer sizeK = 0, which
is given by

TH = r2 ·
µ

λ + µ
,

where 1/λ and 1/µ are the mean up and down time of the first machine.
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Results for λ = 1/9, µ = 1, r1 = 5, r2 = 4 and K = 1; in each run, at
t = 0 the buffer is empty and machine 1 is up, and the runlength is 105 time
units. The variablesXi and Yi denote the throughput forK = 1 andK = 0
in run i. In this example E(Y ) = 3.6.

i Xi Yi Xi + c(Yi − E(Y ))
1 3.6848 3.6006 3.6842
2 3.6832 3.5983 3.6847
3 3.6841 3.5998 3.6843
4 3.6857 3.6008 3.6849
5 3.6879 3.6035 3.6848
6 3.6904 3.6057 3.6853
7 3.6814 3.5958 3.6852
8 3.6895 3.6056 3.6845
9 3.6846 3.6001 3.6845
10 3.6874 3.6033 3.6844



12

/k 21/26

The estimated value for c is given by

c = −0.88991

In case the control variate Y is not used, the resulting 95% confidence in-
terval is

E(X) = 3.6859± 0.0018

and when Y is used,

E(X) = 3.6847± 0.0002
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Variance reduction technique:
Conditioning

If X and Y are two random variables, then

E(E(X|Y )) = E(X)

and
var(X) = E(var(X|Y )) + var(E(X|Y ))

So
var(X) ≥ var(E(X|Y ))

How can we use this property?

Suppose we are interested in some performance characteristic X and we
want to estimate its mean E(X). If Y is some random variable for which
E(X|Y ) is known, then instead of simulating X , we can better simulate Y
and thus E(X|Y ), and estimate the mean of E(X|Y ).
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Example: single-stage production system with a finite buffer

A single machine processes jobs in order of arrival. The interarrival times
and processing times are exponential with parameters λ and µ. In front
of the machine there is a small buffer with a capacity of N − 1 jobs. Jobs
who find upon arrival N − 1 jobs in the buffer are lost (i.e., they will be
processed somewhere else).

We are interested in E(Xt), which is the mean total number of jobs that is
lost upto time t, given that the system is empty at time t = 0.
Let X (i)

t be the total number of lost jobs in the i-th simulation run, i =
1, . . . , n. Then the sample mean

X̄nt =
1

n

n∑
i=1

X
(i)
t

is an unbiased estimator of E(Xt).
But an estimator with a smaller variance can be obtained as follows.
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Let Yt be the total amount of time in (0, t) that the buffer is full. Since jobs
arrive according to a Poisson stream, we have

E(Xt|Yt) = λYt

Hence, if Y (i)
t is the total amount of time the buffer is full in the i-th simu-

lation run, then
λȲnt

is an improved estimator for E(Xt), where Ȳnt is the sample mean

Ȳnt =
1

n

n∑
i=1

Y
(i)
t
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Results for λ = 0.5, µ = 1, N = 3 and t = 1000 without using conditio-
ning.

n E(Xt) σ(Xt) half width 95% CI
101 33.1 10 6.2
102 34.1 9.2 1.8
103 33.6 8.9 0.6



12

/k 26/26

Results for λ = 0.5, µ = 1, N = 3 and t = 1000 using conditioning.

n E(Xt) = λE(Yt) λσ(Yt) half width 95% CI
101 33.6 7.2 4.4
102 33.8 6.9 1.4
103 33.4 6.6 0.4

Hence, use of conditionig reduces the standard deviation of the estimator
for E(Xt) and thus the width of the confidence interval with a factor 1.3.


