
11 Multi-machine systems

In the previous chapters we discussed single-machine systems. This chapter is devoted to
systems consisting of a group of multiple but identical machines. Each job requires service
from only one of the machines. There are several ways in which these parallel machine
systems can be controlled. The most common situation is the one in which in front of the
machines there is one common (central) queue. As soon as one of the machines completes
a job it picks a job from the queue according to the FCFS rule.

Another situation is the one in which the machines are, in some sense, at different
locations. In that case it might be more attractive to have a (local) queue of jobs for any
one of the machines separately. Of course, then one needs a rule to decide to which queue
a job has to be sent. The most natural rule would be the shortest queue rule.

A far more difficult system is the one in which the machines are identical, but to be
able to process a job the machine has to be tooled with the right parts or equipment. So
if the jobs belong to a number of classes, which differ with respect to the tools required,
each job can only be process by a subset of the set of all machines. For these systems, the
decision which job to do next may seriously affect the performance. Of course, as result of
the tooling, the machines are not really identical anymore.

In this chapter we treat the simplest case of truely identical machines with one common
queue. In the next section we consider the system with Poisson arrivals and exponential
production times, i.e., the M/M/c system. In the sections 11.2 and 11.3, we will present
some approximations for M/G/c and G/G/c systems. Finally, in section 11.4 we look at the
effect of machine pooling, and in section 11.5 we analyze a system with two non-identical
machines.

11.1 The M/M/c queue

In this section we will analyze the model with exponential interarrival times with mean
1/λ, exponential production times with mean 1/µ and c parallel, identical machines. Jobs
are served in order of arrival. We suppose that the occupation rate per machine,

ρ =
λ

cµ
,

is smaller than one. The state of the system is completely characterized by the number of
jobs in the system. Let pn denote the equilibrium probability that there are n jobs in the
system. Similar as for the M/M/1 system, we can derive the equilibrium equations for the
probabilities pn from the flow diagram shown in figure 1.

Instead of equating the flow into and out of a single state n, we get simpler equations
by equating the flow out of and into the set of states {0, 1, . . . , n − 1}. This amounts to
equating the flow between the two neighboring states n− 1 and n yielding

λpn−1 = min(n, c)µpn, n = 1, 2, . . .
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Figure 1: Flow diagram for the M/M/c model

Iterating gives

pn =
(cρ)n

n!
p0, n = 0, . . . , c

and

pc+n = ρnpc = ρn
(cρ)c

c!
p0, n = 0, 1, 2, . . .

The probability p0 follows from normalization, yielding

p0 =

(
c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!
· 1

1− ρ

)−1

.

An important quantity is the probability that a job has to wait. Denote this probability
by ΠW . By PASTA it follows that

ΠW = pc + pc+1 + pc+2 + · · ·
=

pc
1− ρ

=
(cρ)c

c!

(
(1− ρ)

c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

. (1)

From the equilibrium probabilities we directly obtain for the mean queue length,

E(Lq) =
∞∑
n=0

npc+n

=
pc

1− ρ

∞∑
n=0

n(1− ρ)ρn

= ΠW ·
ρ

1− ρ
, (2)

and then from Little’s law,

E(W ) = ΠW ·
1

1− ρ
· 1

cµ
. (3)

These formulas for E(Lq) and E(W ) can also be found by using the mean value technique.
If not all machines are busy on arrival the waiting time is zero. If all machines are busy
and there are zero or more jobs waiting, then a new arriving job first has to wait until
the first departure and then continues to wait for as many departures as there were jobs
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waiting upon arrival. An interdeparture time is the minimum of c exponential (residual)
production times with mean 1/µ, and thus it is exponential with mean 1/cµ. So we obtain

E(W ) = ΠW
1

cµ
+ E(Lq)

1

cµ
.

Together with Little’s law we retrieve the formulas (2)–(3). Table 1 lists the waiting
probability ΠW and the mean waiting time E(W ) in an M/M/c with mean production
time 1 for ρ = 0.9.

c ΠW E(W )
1 0.90 9.00
2 0.85 4.26
5 0.76 1.53

10 0.67 0.67
20 0.55 0.28

Table 1: Performance characteristics for the M/M/c with µ = 1 and ρ = 0.9

We see that the waiting probability slowly decreases as c increases. The mean wait-
ing time however decreases fast (a little faster than 1/c). One can also look somewhat
differently at the performance of the system. We do not look at the occupation rate of a
machine, but at the average number of idle machines. Let us call this the surplus capacity.
Table 2 shows for fixed surplus capacity (instead of for fixed occupation rate as in the
previous table) and c varying from 1 to 20 the mean waiting time and the mean number
of customers in the system.

c ρ E(W ) E(L)
1 0.90 9.00 9
2 0.95 9.26 19
5 0.98 9.50 51

10 0.99 9.64 105
20 0.995 9.74 214

Table 2: Performance characteristics for fixed surplus capacity of 0.1 server

Although the mean number of jobs in the system sharply increases, the mean waiting
time remains nearly constant.

The derivation of the distribution of the waiting time is very similar to the one for the
M/M/1. By conditioning on the state seen on arrival we obtain

P (W > t) =
∞∑
n=0

P (
n+1∑
k=1

Dk > t)pc+n,
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where Dk is the kth interdeparture time. Clearly, the random variables Dk are independent
and exponentially distributed with mean 1/cµ. Hence, we find

P (W > t) =
∞∑
n=0

n∑
k=0

(cµt)k

k!
e−cµtpcρ

n

=
∞∑
k=0

∞∑
n=k

(cµt)k

k!
e−cµtpcρ

n

=
pc

1− ρ

∞∑
k=0

(cµρt)k

k!
e−cµt

= ΠW e
−cµ(1−ρ)t, t ≥ 0.

This yields for the conditional waiting time,

P (W > t|W > 0) =
P (W > t)

P (W > 0)
= e−cµ(1−ρ)t, t ≥ 0.

Hence, the conditional waiting time W |W > 0 is exponentially distributed with parameter
cµ(1− ρ).

We finally mention that it can be shown that the departure process of an M/M/c is
again Poisson with rate λ.

11.2 The M/G/c queue

For the general M/G/c queue with c > 1, no exact results for performance measures like the
mean waiting time are available. Only for special types of production time distributions
these exact results exist. Fortunately, however, good approximations do exist. These
approximations are based on the following two facts:

1. The waiting probability ΠW in the M/G/c system only slightly differs from the
waiting probability ΠW in the M/M/c system with the same occupation rate. The
latter is known as we have seen in the previous subsection.

2. It is possible to obtain reasonably good approximations for the conditional mean
waiting time E(W |W > 0). These approximations are based on approximations for
the time until the next job completes.

For example, a very good approximation for the mean waiting time can be obtained by
using Little’s formula

E(Lq) = λE(W ), (4)

together with the approximate arrival relation

E(W ) ≈ ΠW ·
E(R)

c
+ E(Lq) · E(B)

c
, (5)
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where ΠW is the waiting probability in the M/M/c queue with arrival rate λ and mean
processing time 1/µ = E(B). In the above arrival relation we assumed, as an approx-
imation, that with c machines the time to clear the queue is c times smaller than with
one machine. Combination of (4) and (5) gives the following approximation for the mean
waiting time

E(W ) ≈ ΠW · E(R)/c

1− ρ
=

ΠW

1− ρ
· 1 + c2

B

2
· E(B)

c
,

with ρ = λE(B)/c < 1. Table 11.2 shows the quality of the approximation for the M/Ek/c
queue, i.e., the system with Erlang-k distributed processing times. In all numerical exam-
ples we have set E(B) = 1.

E(W )
ρ k c exact approx
0.2 3 2 0.03 0.028
0.5 0.23 0.22
0.9 2.86 2.84
0.2 3 4 0.0023 0.002
0.5 0.062 0.058
0.9 1.33 1.31
0.5 5 4 0.057 0.052
0.9 1.2 1.18
0.95 2.69 2.67

Table 3: Comparison of the approximation of the mean waiting time with exact results in
the M/Ek/c queue.

11.3 The G/G/c queue

For the G/G/c queue one can, for example, use the following approximation for the mean
waiting time

E(WG/G/c) ≈
E(WM/M/c)

E(WM/M/1)
· E(WG/G/1).

Here, E(WM/M/c) is the mean waiting time in the M/M/c queue with the same arrival rate
and the same mean processing time. Furthermore, E(WG/G/1) (and similarly E(WM/M/1))
is the mean waiting time in the system where the c machines are replaced by 1 superma-
chine, working c times as fast as the original machines. If we substitute the expressions for
E(WM/M/c) and E(WM/M/1) and expression (2) in section 10.2 for E(WG/G/1) we get

E(WG/G/c) ≈
ΠW

1− ρ
· c

2
A + c2

B

2
· E(B)

c
,
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where ρ = λE(B)/c and ΠW the probability of waiting in the corresponding M/M/c queue.
For the special case of Poisson arrivals the above approximation is the same as the one
presented in the previous section for the M/G/c system.

In approximating the departure process of the G/G/c system we again act as if the
interdepartures times are independent. The mean interdeparture time is equal to the
mean interarrival time (by conservation of flow) and the squared coefficient of variation c2

D

is approximated by

c2
D ≈ 1 + (1− ρ2)(c2

A − 1) +
ρ2(c2

B − 1)√
c

.

For c = 1 this approximation is the same as the one proposed for the G/G/1 system, and
for the M/M/c it yields c2

D = 1 (which agrees with the property that the output of the
M/M/c is again Poisson).

11.4 Pooling

Now we consider a production system with two parallel machines processing two job types,
type 1 and 2. The jobs arrive according to Poisson streams with rate λ1 and λ2, respectively.
The processing times are exponentially distributed with mean 1/µ1 for type 2 jobs, and
with mean 1/µ2 for type 2 jobs. Hence, the mean overall processing time is given by

λ1

λ

1

µ1

+
λ2

λ

1

µ2

=
ρ1 + ρ2

λ
,

where λ = λ1 + λ2. The question is whether it is better to dedicate each machine to one
job type or to pool the machines and use them for both types. In the first case we have
two M/M/1 models. This option is only sensible if the amount of work offered per time
unit to each of the machines is less than one, so we require that

ρ1 =
λ1

µ1

< 1, ρ2 =
λ2

µ2

< 1.

For the dedicated system the mean overall throughput time is given by

E(S) =
1

λ

(
ρ1

1− ρ1

+
ρ2

1− ρ2

)
. (6)

Note that it may happen that one machine is idle, while there are jobs waiting at the other
machine. So the production capacity is not optimally used.

Let us now consider situation where the two machines are pooled, i.e. they are both
used for processing of type 1 and type 2 jobs. Clearly, in this case it will never happen
that one of the machines is idle while there are jobs waiting. The pooled system can be
modelled as a system with two parallel identical machines where one stream of jobs arrives
with rate λ (we merge the type 1 and type 2 streams). When a machine starts processing
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a job, it is with probability p1 a type 1 job with mean processing time 1/µ1 and with
probability p2 a type 2 job with mean processing time 1/µ2, where

p1 =
λ1

λ
, p2 =

λ2

λ
.

So the processing times are hyperexponentially distributed, with mean (ρ1 + ρ2)/λ. It is
easily verified that the squared coefficient of variation of the processing time of an arbitrary
job is equal to

1 +
2ρ1ρ2

(ρ1 + ρ2)2

(
µ1

µ2

+
µ2

µ1

− 2

)
,

so it approximately increases linearly in µ1/µ2, provided µ1/µ2 is (much) greater than 1.
The mean throughput time in the pooled system can be approximated by

E(S) ≈ ΠW

1− ρ

(
1 +

ρ1ρ2

(ρ1 + ρ2)2

(
µ1

µ2

+
µ2

µ1

− 2

))
ρ1 + ρ2

2λ
+
ρ1 + ρ2

λ
,

where ρ = (ρ1 + ρ2)/2 and ΠW is the probability of waiting in the M/M/2 system with
arrival rate λ and service rate λ/(ρ1 + ρ2).

ρ1 ρ2 µ1/µ2 λ1 λ2 µ1 µ2 E(S)
Pooled Dedicated

0.8 0.8 1 0.80 0.80 1.00 1.00 2.8 5.0
2 1.07 0.53 1.33 0.67 3.0
5 1.33 0.27 1.67 0.33 4.2
10 1.45 0.15 1.82 0.18 6.4
15 1.50 0.10 1.88 0.13 8.6

0.9 0.7 1 0.90 0.70 1.00 1.00 2.8 7.1
2 1.15 0.45 1.28 0.64 3.0
5 1.38 0.22 1.54 0.31 4.2
10 1.48 0.12 1.65 0.16 6.3
15 1.52 0.08 1.69 0.11 8.5

Table 4: Comparison of the mean throughput time in the dedicated and the pooled system;
in each example the mean overall processing time is set to 1.

In table 11.4 we list the mean throughput time for the dedicated and the pooled system
for various values of the utilization rates ρ1 and ρ2 and the ratio µ1/µ2. Note that, by setting
the mean overall processing time to 1, we have λ = ρ1 + ρ2. Thus it follows from (6) that
the mean throughput time in the dedicated system only depends on ρ1 and ρ2 (and not
on µ1/µ2). The results in table 11.4 show that in most cases the pooled system leads to
smaller throughput times than in the dedicated system, except for large values of µ1/µ2.
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This may be expected, because pooling makes better use of the capacity. However, when
µ1/µ2 is large, there will be many small jobs and a few very big ones. So if the machines
are pooled, it can occur that both machines are occupied by very big jobs, while there are
a lot of small ones waiting. In this situation it may be better to dedicate the machines to
one job type.

11.5 The M/M/c queue with non-preemptive priorities

In this section we consider an M/M/c system processing different types of jobs. To keep
it simple we suppose that there are two types only, type 1 and 2 say, but the analysis
can easily be extended the situation with more types of jobs. Type 1 and type 2 jobs
arrive according to independent Poisson processes with rate λ1, and λ2 respectively. The
processing times of all jobs are exponentially distributed with the same mean 1/µ. We
assume that

ρ = ρ1 + ρ2 < 1,

where ρi = λi/(cµ), i.e. the occupation rate per machine due to type i jobs. Type 1 jobs
are treated with non-preemptive priority over type 2 jobs; i.e., type 1 jobs have priority,
but they may not interrupt the processing of type 2 jobs.

For the mean waiting time E(W1) of type 1 jobs we have

E(W1) = ΠW
1

cµ
+ E(Lq1)

1

cµ
,

where ΠW is the probability of waiting in the M/M/c with no priorities (note that, for the
probability that all machines are busy, it is not relevant in which order jobs are processed,
since the processing times do not depend on the job type). Together with Little’s law,

E(Lq1) = λ1E(W1),

we get

E(W1) =
ΠW

1− ρ1

· 1

cµ
,

and

E(Lq1) =
ΠWρ1

1− ρ1

. (7)

Since the processing times of all jobs are exponentially distributed with the same mean, it
follows that the total number of waiting jobs does not depend on the order in which the
jobs are served. So this number is the same as in the system where all jobs are served in
order of arrival. Hence,

E(Lq1) + E(Lq2) =
ΠWρ

1− ρ
,

and thus, by inserting (7), we find

E(Lq2) =
ΠWρ1

(1− ρ)(1− ρ1)
.
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By using Little’s law this yields

E(W2) =
E(Lq2)

λ2

=
ΠW

(1− ρ)(1− ρ1)
· 1

cµ
.

Note that
E(W1)

E(W2)
= 1− ρ,

which does not depend on how the total flow of jobs is split into a low and high priority
group. The conditional wating times (Wi|Wi > 0) can be approximated by exponential
distributions, with their means matching

E(Wi|Wi > 0) =
E(Wi)

ΠW

=:
1

τi
, i = 1, 2.

Thus the (unconditional) waiting time distribution may be approximated by

P (Wi > t) = ΠWP (Wi > t|Wi > 0) = ΠW e
−τit, t ≥ 0. (8)

We finally note the mean waiting times in case of r(≥ 2) job types are given by

E(Wi) =
ΠW

(1−∑i
j=1 ρj)(1−

∑i−1
j=1 ρj)

· 1

cµ
, i = 1, 2, . . . , r.

Remark 11.1 For the highest priority jobs, result (8) is exact.

11.6 The M/G/c queue with non-preemptive priorities

The (approximative) analysis of the M/G/c queue with non-preemptive priorities is very
similar to the analysis of the system with exponential processing times. Let us consider
the situation with two types, both arriving according to Poisson streams with rate λ1, and
λ2 respectively. The processing times of all jobs are generally distributed with the same
mean E(B). Denote the mean residual processing time by E(R), and assume that

ρ = ρ1 + ρ2 < 1,

where ρi = λiE(B)/c. Type 1 jobs have non-preemptive priority over type 2 jobs. For the
mean waiting time E(W1) of type 1 jobs we have, as an approximation,

E(W1) = ΠW
E(R)

c
+ E(Lq1)

E(B)

c
,

where ΠW is the probability of waiting in the corresponding M/M/c with no priorities
(i.e., the M/M/c with arrival rate λ and service rate µ = 1/E(B)). Then, together with
Little’s law, we get

E(W1) =
ΠW

1− ρ1

· E(R)

c
,
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In exactly the same way as in the previous section we obtain the following approximation
for the mean waiting time of the low priority jobs,

E(W2) =
ΠW

(1− ρ)(1− ρ1)
· E(R)

c
.

And also, the (conditional) waiting time distributions of the low and high priority jobs
may be approximated by exponential distributions.

11.7 Non-identical machines

So far we considered systems with identical parallel machines. In this section we will study
a system with two different machines, a fast and a slow one. Jobs arrive according to a
Poisson stream with rate λ. The processing times are exponentially distributed with mean
1/µ1 on machine 1 and 1/µ2 on machine 2 (µ1 > µ2). Jobs are processed in order of arrival.
A job arriving when both machines are idle is assigned to the fast machine. We assume
that

ρ =
λ

µ1 + µ2

< 1.

As state description we use the number of jobs in the system, and if the number of jobs is
equal to 1, we distinguish between state (1, f) in which the fast server is working and state
(1, s) in which the slow server is working. Then it is readily verified that balance equations
are solved by

p0 =
1− ρ

1− ρ+ C
,

p1 = p1,f + p1,s = Cp0 ,

pn = ρn−1p1 , n > 1,

where we used the notation µ = µ1 + µ2, ρ = λ/µ and

C =
λµ(λ+ µ2)

µ1µ2(2λ+ µ)
.

For the mean number of jobs in the system we find

E(L) =
∞∑
n=1

npn =
C

(1− ρ)(1− ρ+ C)
,

from which mean throughput time can be obtained by applying Little’s law. In table 11.7
we list the mean number in the system for various values of ρ and µ2/µ1. The results
show that some difference in machine speed may reduce the mean throughput time, but
when the difference becomes too large, the mean performance will detoriate. Also, a lightly
loaded system seems more sensitive to differnces in machine speed than a heavily loaded
system.
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ρ µ2/µ1 E(L)
0.5 1.0 1.33

0.5 1.30
0.1 1.56

0.8 1.0 4.44
0.5 4.43
0.1 4.72

0.9 1.0 9.47
0.5 9.47
0.1 9.75

Table 5: Mean number in the system.

It is interesting to investigate whether it is better not to use that slower machine at all,
assuming of course that λ < µ1. Let E(Lf ) denote the mean number of jobs in the system
that only uses the fast machine, so

E(Lf ) = ρ1/(1− ρ1),

where ρ1 = λ/µ1 < 1. In case µ1 = 5 and µ2 = 1, we get for λ = 3,

E(Lf ) =
3

2
>

24

17
= E(L),

but when λ = 2,

E(Lf ) =
2

3
<

81

104
= E(L).

In [1] it is shown that one should not remove the slow machine if r > 0.5 where r = µ2/µ1.
But when 0 ≤ r < 0.5 the slow machine should be removed (and the resulting system is
stable) whenever ρ ≤ ρc, where

ρc =
2 + r2 −

√
(2 + r2)2 + 4(1 + r2)(2r − 1)(1 + r)

2(1 + r2)
.

For example, for r = 0.4 the critical value ρc is equal to 0.14, and for r = 0.1 it is 0.65.
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