
14 Open jobs shop systems

The topic of this chapter is the analysis of job shop systems. A job shop consists of
groups of similar machines, linked by a material handling system (for transportation of
jobs from one machine group to another). A distinguishing feature of a job shop is that
it is capable of processing many different types of jobs, each with its own routing and
processing characteristics.

One of advantages of jobs shops is flexibility in product mix and product volume. A
disadvantage, however, is that the production of many different products typically leads to
high variations in processing times and job routing, and thus to long (and unpredictable)
production lead times and high levels of work in process (WIP). Hence, the dominant con-
cern in managing job shops is almost always trying to deal with the variety of jobs. Typical
issues in the design and control of job shops are, e.g., the required capacity, identification
of bottlenecks, and setting delivery dates for incoming orders.

In the following section we start with a simple queueing network model, with only one
job type.

14.1 Exponential open queueing network model

We consider a production system consisting of M work stations, numbered 1, 2, . . . ,M ;
see figure 1. Work station m has cm parallel identical machines. The production system
is processing one type of jobs, arriving according to a Poisson stream with rate λ. The
probability that an arriving job joins work station m is denoted by γm (thus

∑M
m=1 γm = 1).
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Figure 1: Exponential open queueing network model with M work stations, with cm ma-
chines in station m, m = 1, 2, . . . ,M
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The processing times at work station m are exponentially distributed with mean 1/µm,
and the processing order is FCFS. The routing of jobs through is system is Markovian:
after visiting work station m, a job moves to station n with probability pmn and leaves the
system (because all tasks have been completed) with probability pm0 (so

∑M
n=0 pmn = 1).

Let P be the matrix of routing probabilities pmn. We assume that P n tends to 0 as n tends
to infinity; this means that each job will eventually leave the network again.

This model is known as an open Jackson network; see, e.g., [3, 4]. It is called open,
because there is a free inflow of jobs from outside the system.

The first problem is to determine the capacity of the production network. This is the
maximum number of jobs per time unit that the system is capable to process (or the
maximum inflow the system is capable to deal with). Let vm denote the average number
of visits of a job to work station m. Then we have

vm = γm +
M∑
n=1

vnpnm, m = 1, 2, . . . ,M. (1)

This system of equations has a unique solution for v1, . . . , vM . So each job has on average
vm/µm units work for station m, and thus station m can process at most cmµm/vm jobs per
time unit. The capacity of the production network is determined by the bottleneck station,
i.e., the one with the smallest processing capacity. Hence the network capacity is given by

min
1≤m≤M

cmµm
vm

.

If the arrival rate λ is equal to or greater than the capacity, then the number of jobs in the
system will grow to infinity. From now on we assume that λ is smaller than the capacity,
so the network is stable.

Since interarrival times and processing times are assumed to be exponential and the
routing is Markovian, this network can be described by a Markov process with states
(k1, k2, . . . , kM) where km denotes the number of jobs in work station m. The equilibrium
probabilities p(k1, k2, . . . , kM) exist, since the network is stable. In the following section
we first consider the special case in which all stations have exactly one machine. We will
derive an explicit form for these probabilities, and based on this result, we can easily obtain
mean performance characteristics such as mean number of jobs at the stations and mean
production lead times.

Remark 14.1 Note that the stability condition formulated in this section does not depend
on exponential processing times and Poisson inflow; it is still valid for general processing
and interarrival times. Nor does it depend on Markovian routing; what matters is that pmn
denotes the (long-run) fraction of departures from station m that is directed to station n.

14.2 Exponential single-server network

In this section we consider the case where cm = 1 for all m. We first introduce some
notation. The vector (k1, k2, . . . , kM) is denoted by k, and em indicates the unity vector
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(0, . . . , 0, 1, 0, . . . , 0) with the one at position m. The function ε(k) is 1 if k > 0 and 0
otherwise. Then the balance equation in state k (flow out is equal to flow in) reads as
follows.

p(k)

(
λ+

M∑
m=1

µmε(km)

)
=

M∑
m=1

p(k + em)µmpm0 (2)

+
M∑
n=1

M∑
m=1

p(k + en − em)µnpnmε(nm)

+
M∑
m=1

p(k − em)λγmε(nm).

The first term at the right-hand side corresponds to a departure from the network, the
second one to an internal movement, and the third one to an arrival from outside. As
solution we are going to try the form

p(k) = Cxk1
1 x

k2
2 · · ·x

kM
M .

Substitution of this form into the balance equation (2) and dividing by common powers
yields (after rearranging terms)

M∑
m=1

(
µm −

M∑
n=1

xn
xm

µnpnm −
1

xm
λγm

)
ε(km) =

M∑
m=1

xmµmpm0 − λ. (3)

The left-hand side is a sum of functions ε(km) and the right-hand side is a constant. Thus
we can only have equality for all k if the coefficients of all ε(km) vanish, so the xm’s should
satisfy

xmµm =
M∑
n=1

xnµnpnm + λγm, m = 1, 2, . . . ,M.

If we set λm = xmµm, then we get

λm =
M∑
n=1

λnpnm + λγm, m = 1, 2, . . . ,M. (4)

Clearly λm is the total arrival rate (of internal and external arrivals) to work station m; the
above set of equations is very similar to (1) and it has a unique solution, namely λm = vmλ.
So xm is given by

xm = ρm =
λm
µm

, m = 1, . . . ,M,

where ρm is the occupation rate of work station m. Finally, since the left-hand side of (3)
vanishes, the right-hand side should also vanish. This follows by observing that, when the
system is stable, the total inflow is equal to the total outflow, so

λ =
M∑
m=1

ρmµmpm0.
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Thus we find that
p(k) = Cρk1

1 ρ
k2
2 · · · ρ

kM
M ,

where C follows from normalization. This yields

C−1 =
∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kM=0

ρk1
1 ρ

k2
2 · · · ρ

kM
M =

1

1− ρ1

· 1

1− ρ2

· · · 1

1− ρM
.

Summarizing, the conclusion is that

p(k) = p1(k1)p2(k2) · · · pM(kM), (5)

where for m = 1, 2, . . . ,M ,

pm(km) = (1− ρm)ρkmm , km = 0, 1, 2, . . . (6)

Solution (5) is a production form solution; there is a lot of literature on queueing networks
with product form solutions, see, e.g., [1, 2, 5, 6, 7]. The marginal distribution pm(·) of the
number of jobs at work station m is exactly the same as the queue length distribution of
the M/M/1 system with arrival rate λm and service rate µm. This is a surprise, since in
general the inflow at station m is not Poisson (see remark 14.2). But, clearly, to find the
marginal distribution at stationm we may act as if the inflow is Poisson! Another important
observation is that the queue length distributions of the work stations are independent, since
the simultaneous queue length distribution (5) is the product of the marginal distributions.

Remark 14.2 Let us consider the feedback queue in figure 2.
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Figure 2: Simple feedback queue with Poisson arrivals, exponential processing times and
feedback probability p

It is readily verified that

pk = (1− ρ)ρk, k = 0, 1, 2, . . . ,

where

ρ =
λ

µ(1− p)
.

The external arrivals are Poisson, but the total inflow (of external and feedback arrivals)
is not Poisson; take µ = 1/ε, p = 1 − ε (so µ(1 − p) = 1) and λ � 1. Then the arrival
pattern at the workstation looks as in figure 3.
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Figure 3: Pattern of clustered arrivals at the feedback queue

From the product form solution (5) we can immediately obtain mean performance
characteristic. Let Lm denote the number of jobs at station m and Sm the production lead
time at station m. Then we have

E(Lm) =
ρm

1− ρm
, E(Sm) =

E(Lm)

λm
=

1/µm
1− ρm

, m = 1, 2, . . . ,M.

For the total number of jobs in the system, L, and the total production lead time S it
follows that

E(L) =
M∑
m=1

E(Lm) =
M∑
m=1

ρm
1− ρm

, E(S) =
E(L)

λ
.

Remark 14.3 The product form result is also valid for non-Markovian routing, such as
a fixed route for jobs through the network. However, if jobs have to visit a work station
more than once (possibly for different operations), we have to require that the processing
times are exponentially distributed with the same mean for each visit.

14.3 Exponential multi-server network

We now extend the results of the previous section for single-server stations to multi- and
infinite-server stations. Recall that the queue length probabilities p(k) for an M/M/c
system with arrival rate λ and service rate µ are given by

p(k) =


1

k!
(cρ)kp(0), k = 0, 1, . . . , c− 1;

1

c!ck−c
(cρ)kp(0), k = c, c+ 1, . . . ,

where ρ = λ/(cµ) < 1 and

p(0) =

(
c−1∑
k=0

(cρ)k

k!
+

(cρ)c

c!(1− ρ)

)−1

.

In case c = ∞ (so there is always a server available) the queue length probabilities are
Poisson distributed with mean λ/µ (let c tend to infinity in the expressions above), so

p(k) = e−λ/µ
1

k!

(
λ

µ

)k
, k = 0, 1, 2, . . . (7)

By direct substitution into the balance equations it may be verified that the simultaneous
queue length probabilities p(k) again have a product form solution, i.e.,

p(k) = p1(k1)p2(k2) · · · pM(kM), (8)
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where the marginal queue length probabilities pm(km) at work station m are distributed as
the queue length probabilities in the M/M/c with cm servers, arrival rate λm and service
rate µm. As before the arrival rates λm satisfy the set of equations (4).

For the mean number of jobs and the mean production lead time in station m we find,
if cm <∞,

E(Lm) =
ΠWρm
1− ρm

+ ρm,

and (by Little’s law),

E(Sm) =
ΠW

1− ρm
· 1

cmµm
+

1

µm
,

where ρm = λm/(cmµm) and ΠW the probability of waiting in the M/M/c queue with cm
servers, arrival rate λm and service rate µm. If cm =∞, these expressions simplify to

E(Lm) = ρm, E(Sm) =
1

µm
.

The mean total production lead time can be determined by application of Little’s law, or
alternatively as

E(S) =
M∑
m=1

vmE(Sm).

Remark 14.4 Expression (7) and product form result (8) remain valid if the processing
times in an infinite server station are generally distributed (for example, constant processing
times). Or, in other words, these results are insensitive to the distribution of the processing
times in an M/M/∞ queue

Example 14.5 Let us assume that we have to allocate operators to the M workstations.
There are N operators available and they can operate any of the machines. In each work
station there are cm machines, and each operator may be assigned to exactly one machine.
Further,

M ≤ N ≤
M∑
m=1

cm.

Clearly, when N is strictly less than the right-hand side, we cannot allocate an operator
to every machine. The problem is to allocate the operators to the machines such that the
mean total number of jobs in the system (or equivalently, the mean total production lead
time) is minimized. Let fm(c) denote the mean number of jobs in an M/M/c queue with
arrival rate λm and service rate µm. Then we have to solve the following optimization
problem:

min
M∑
m=1

fm(am)

subject to
M∑
m=1

am = N,

1 ≤ am ≤ cm, m = 1, 2, . . . ,M.
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It can be shown that the optimal solution can be found by a greedy algorithm: start with
assigning to each station exactly one operator and then subsequently add an operator to
the station where the maximal reduction in the mean number of jobs is achieved.

14.4 Incorporation of material handling

Infinite server stations are very useful to describe transportation delays in production
systems. At least, when there are always sufficiently many transporters for transporting
a job from one station to another (so no waiting for transportion occurs). This is, for
example, the situation when jobs are transported on a conveyor system.

Suppose the mean transportation time from station m to n is Tmn time units. Then,
to incorporate transportation in our queueing network model, we add between any two
stations m and n, an infinite server station with mean processing time Tmn. From the
results of the previous section it follows that the number of jobs in transit from station m
to n is Poisson distributed with mean ρmn = λmpmnTmn. Thus

P (k jobs in transit from station m to n) = e−ρmn
ρkmn
k!

.

Since the sum of Poisson random variables is again Poisson, we also find

P (k jobs in transit in the system) = e−ρT
ρkT
k!
,

with

ρT =
M∑
m=1

M∑
n=1

ρmn.

Note that ρT is the mean number of jobs in transit in the production system, and by
Little’s law, the mean total time spent in transit of a job is ρT/λ.

14.5 General multi-server network

In this section we consider the situation where the interarrival times and processing times
have general (instead of exponential) distributions. The lesson we have learned from the
exponential job shops is that each work station can be analyzed in isolation with an appro-
priate arrival process, and these results can be combined to yield the overall performance.
In the general setting we are going to adopt this lesson to derive approximate results.

We model each work station m as a G/G/cm system with interarrival times with mean
1/λm and an appropriate coefficient of variation cAm . Let pm(·) denote the (approximate)
queue length distribution of this G/G/cm system, with mean E(Lm). For the overall
performance we now obtain

p(k) ≈ p1(k1)p2(k2) · · · pM(kM),

E(L) ≈ E(L1) + E(L2) + · · ·+ E(LM),

E(S) ≈ E(L)/λ.

7



The remaining problem is to find good estimates for the coefficients of variation cAm . Here
we restrict ourselves to the observation that in large randomly routed jobs shops the arrival
process in each work station can be safely approximated by a Poisson process (so we may
model each station m as an M/G/cm system).

14.6 General multi-class multi-server network

So far we have looked at job shops processing one job type. Now we are going to treat the
situation in which the job shop processes R job types, numbered 1, 2, . . . , R. Typically R
may be very large. We suppose that each job type requires exactly nr operations. These
operations have to be performed in a fixed (predetermined) sequence. The work station for
the first operation is C1r with processing time B1r, the second one is C2r with processing
time B2r and so on, up to the nrth operation. The arrival rate of type r jobs is Λr; the
total arrival rate is

λ =
R∑
r=1

Λr.

For the total flow into (or out of) station m we have

λm =
R∑
r=1

Λr

nr∑
i=1

I(Cir = m),

where I(Cir = m) indicates whether the ith station in the production sequence of a type
r job is station m or not, so

I(Cir = m) =

{
1 if Cir = m;
0 otherwise.

To predict the performance we are going to model each station as an M/G/cm system;
it is reasonable to approximate the inflow at station m by a Poisson stream, since the
number of job types R is large and each type has its own production sequence. Denote
the processing time of an arbitrary job in station m by Bm; so we have Bm = Bir with
probability ΛrI(Cir = m)/λm. Hence,

E(Bm) =
1

λm

R∑
r=1

nr∑
i=1

ΛrI(Cir = m)E(Bir),

and

E(B2
m) =

1

λm

R∑
r=1

nr∑
i=1

ΛrI(Cir = m)E(B2
ir).

The workload per machine in station m is given by

ρm = λmE(Bm)/cm.
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Now we have all ingredients to approximate the mean waiting time in workstation m. As
approximation we may use

E(Wm) =
ΠW

1− ρm
· E(B2

m)

2cmE(Bm)
,

where ΠW is the probability of waiting in an M/M/cm with arrival rate λm and service
rate 1/E(Bm). For the mean production lead time E(Sir) of the ith operation for a type
r job we get

E(Sir) =
M∑
m=1

E(Wm)I(Cir = m) + E(Bir).

The mean total production lead time E(Sr) of a type r job follows by adding up the mean
production lead times for each operation required; so

E(Sr) =
nr∑
i=1

E(Sir).

Finally, by application of Little’s law, we obtain for the mean total number of jobs in the
system E(L) (or WIP level),

E(L) =
R∑
r=1

ΛrE(Sr).

Example 14.6 Consider a production system consisting of two single machine work sta-
tions. The system is processing two job types. The processing characteristics for each job
type are presented in table 1.

r Λr (jobs/hour) Cir E(Bir) (min) σ(Bir) E2(Bir)
1 3 1,2,1 10,5,6 2,5,2 104,50,40
2 2 2 20 0 400

Table 1: Processing characteristics for job types 1 and 2

In table 2 we translate the characteristics above to the processing time characteristics
of an arbitrary (or aggregate) job processed by machine 1 and 2, respectively.

m λm (jobs/hour) E(Bm) (min) E(B2
m) ρm

1 6 8 72 0.80
2 5 11 175 0.83

Table 2: Processing characteristics for an arbitrary job in station 1 and 2

Hence, the mean waiting time at workstation 1 and 2 may be approximated by

E(W1) =
0.8

0.2
· 72

2 · 8
= 18 (min), E(W2) =

0.83

0.17
· 175

2 · 11
= 39.8 (min).
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For the mean total production lead time of a type 1 job we get

E(S1) = (18 + 10) + (39.8 + 5) + (18 + 6) = 96.8 (min)

and for a type 2 job,
E(S2) = 39.8 + 20 = 59.8 (min).
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