
Stochastic performance modelling (2WB60)

Instruction week 5, 11 March 2016

Exercise 1. Consider an M/M/1 queue with arrival rate λ and service rate µ, with µ > λ. Let
E[Cn] be the expected time for the system to empty, starting with n customers, n = 0, 1, . . .
(so C0 = 0).

(a) Show that the E[Cn]’s satisfy the following recursive relationship

E[Cn] =
1

λ+ µ
+

µ

λ+ µ
E[Cn−1] +

λ

λ+ µ
E[Cn+1], n = 1, 2, . . . (1)

Hint. Draw the transition rate diagram.

(b) Show that E[C1] = 1/(µ− λ).

Hint. Argue that E[C1] is the expected time that the server is working without interrup-
tion (busy period) and that 1/λ is the expected time that the system is empty without
interruption (idle period); then E[C1]/(E[C1] + 1/λ) must be equal to λ/µ.

(c) Argue that the expected time to decrease the queue length from 2 customers to 1 customer
is equal to E[C1], so that E[C2] = 2E[C1] and in general E[Cn] = nE[C1]. Verify this by
substitution into the recursive relation (1).

Answer.

(a) The expected time we stay in state n of the Markov process is 1/(λ+ µ). We then make
a jump to state n−1 with probability µ/(λ+µ), where we have an expected time for the
system to empty, starting with n− 1 customers, and similarly for jumping to state n+ 1.

(b) Actually, E[C1] is just the expected duration of a busy period. The reasoning then follows
from method 1 of Section 5.4.

(c) When determining the length of a busy period, the order in which we serve the customers
does not matter (for this model). So, when we start with 2 customers, we can put aside
one of the two customers, say the second customer, and start a busy period with the
first customer. The second customer is only allowed to start service when the busy
period generated by the first customer is finished. The expected duration of the busy
period generated by the first customer is E[C1], which is then immediately followed by
another busy period started by the second customer, which again has length E[C1]. Thus
E[C2] = 2E[C1]. This reasoning extends to E[Cn].

Exercise 2. One is planning to build new telephone boxes near the railway station. Measure-
ments showed that 120 persons per hour want to make a phone call. These persons arrive to
the telephone boxes according to a Poisson process. The duration of a call is exponentially
distributed with a mean of 1 minute. What is the minimum number of telephone boxes such
that

(a) The probability that a person has to wait is less than 6%? (A: 5)

(b) The mean waiting time is less than 0.1 minutes? (A: 4)



(c) At most 5% has to wait longer than 2 minutes? (A: 4)

Answer. As a time unit we choose 1 minute. Then, the arrival rate is λ = 2, the service rate
is µ = 1 and the offered load is ρ := λ/(cµ), where c is the number of telephone boxes. We
compute the equilibrium probabilities as explained in Section 4.4.1. Namely,

pn =
(cρ)n

n!
p0, n = 0, 1, . . . , c,

pc+n = ρnpc, n = 0, 1, . . . ,

p0 =
(c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

1

1− ρ

)−1
.

Note that we need at least c = 3 telephone boxes for the system to be stable. The results are
summarized in the table below.

(a) We compute the probability to wait ΠW = pc/(1− ρ) and find that we need a minimum
of c = 5 telephone boxes.

(b) We compute the mean waiting time E[W ] = ΠW /((1 − ρ)cµ) and find that we need a
minimum of c = 4 servers.

(c) The distribution of the waiting time is given by P(W > t) = ΠW e−cµ(1−ρ)t, t ≥ 0. For
t = 2, we find that we need c = 4 telephone boxes.

c 3 4 5

ΠW 0.4444 0.1739 0.0597
E[W ] 0.4444 0.0870 0.0199

P(W > 2) 0.0601 0.0032 0.0001

Exercise 3. Consider an M/E2/1 queueing system with arrival rate λ and a service consisting
of two exponential phases, both with mean 1/µ. So, the service time is Erlang-2(µ) distributed.
We wish to compute the queue length distribution using the generating function approach as
described in Section 5.5.

(a) First, we need to compute the generating function of the number of arrivals during the
service of the n-th customer. This generating function is given by

PA(z) =
∞∑
i=0

P(A = i)zi =

∫ ∞
0

e−λt(1−z)fB(t) dt,

where fB(t) is the density of the service time distribution. Show that

PA(z) =

(
µ

µ+ λ(1− z)

)2

.

(b) We can now compute the generating function of the number of customers that is left
behind by a departing customer, i.e. PXd

(z). It is given by

PXd
(z) =

∞∑
i=0

P(Xd = i)zi =
(1− ρ)(1− z)PA(z)

PA(z)− z
.

Show that, assuming z 6= 1 and ρ = λE[B] = 2λ/µ,

PXd
(z) =

(1− ρ)µ2

µ2 − 2λµz − λ2z(1− z)
=

1− ρ
1− ρz − ρ2z(1− z)/4

.



(c) Assume ρ = 1/3, then show that

PXd
(z) =

24/5

4− z
− 24/5

9− z
=

6

5

1

1− z/4
− 8

15

1

1− z/9
.

This actually indicates that the queue length distribution is a mixture of two geometric
distributions, namely

pn =
6

5

(
1

4

)n
− 8

15

(
1

9

)n
.

Answer.

(a) The density of the service time distribution is fB(t) = µ2te−µt. Thus, the integral becomes

PA(z) =

∫ ∞
0

e−λt(1−z)µ2t e−µt dt = µ2
∫ ∞
0

t e−(µ+λ(1−z))t dt =

(
µ

µ+ λ(1− z)

)2

.

(b) Substitute the above expression for PA(z) to obtain

PXd
(z) =

(1− ρ)(1− z)
(

µ
µ+λ(1−z)

)2
(

µ
µ+λ(1−z)

)2
− z

=
(1− ρ)(1− z)µ2

µ2 − z(µ+ λ(1− z))2

=
(1− ρ)(1− z)µ2

µ2 − z(µ2 + 2λµ(1− z) + λ2(1− z)2)

=
(1− ρ)µ2

µ2 − 2λµz − λ2z(1− z)

=
1− ρ

1− ρz − ρ2z(1− z)/4
.

(c) Substitute ρ = 1/3 to get

PXd
(z) =

2/3

1− z/3− z(1− z)/36
=

24

36− 13z + z2
=

24

(4− z)(9− z)

=
24/5

4− z
− 24/5

9− z
=

6

5

1

1− z/4
− 8

15

1

1− z/9
.


