STOCHASTIC PERFORMANCE MODELLING (2WB60)

INSTRUCTION WEEK 2, 19 FEBRUARY 2016

Exercise 1. Consider a Markov chain with state space {1,2,3} and transition probabilities
pi2 = 1, po1 = 1/2, pog = 1/2, p3a = 1/2 and psz = 1/2. Determine the steady-state
distribution of this Markov chain. (A: 7 = (1,2,2)/5)

Answer. Use m = nP with m = (71,72, 73) a row vector, and the normalization condition
71 + mo + w3 = 1 to obtain 7 = (1/5,2/5,2/5).

Exercise 2. A processor is inspected weekly in order to determine its condition. The condition
of the processor can either be perfect, good, reasonable, or bad. A new processor is still perfect
after one week with probability 0.7, with probability 0.2 the state is good, and with probability
0.1 it is reasonable. A processor in good condition is still good after one week with probability
0.6, reasonable with probability 0.2, and bad with probability 0.2. A processor in reasonable
condition is still reasonable after one week with probability 0.5 and bad with probability 0.5.
A bad processor must be repaired. The repair takes one week, after which the processor is
again in perfect condition.

(a) Formulate a Markov chain that describes the state of the machine, and draw the corres-
ponding transition diagram.

(b) Determine the steady-state distribution of the Markov chain. (A: = = (10, 5,4, 3)/22)

Answer.

(a) The state space is given by S = {p, g,r,b} and the transition probability matrix is

0.7 02 01 O
0 06 02 02
0 0 05 05
1 0 0 O

P =

The transition diagram is as follows

(b) Use m = wP with 7 = (mp, 7y, ™, ™) a row vector, and the normalization condition
mp + mg + mp + mp, = 1. This gives 7 = (10/22,5/22,4/22,3/22).

Exercise 3. Consider the Markov chain described in Example 3.3.



(a) Derive the balance equations
T = W1 + Ti-1q, @21, (1)

and

To = Top + TP, (2)

by using the fact that there is a balance between the probability of moving to state ¢ and
the probability of moving away from state i (‘in = out’).

(b) Show that the limiting distribution satisfies m; = (¢/p)*(1 — q/p), i > 0.

(c) Also derive the limiting distribution using probability generating functions.
Hint. Let L be the number of cells in the buffer. The probability generating function of
L is given by
o0 o0
Pu(z) =E[" =) P(L=k)F =) mz". (3)
k=0 k=0

Think about multiplying the equations by a certain factor and then summing over all
equations. The probability generating function of a geometric random variable X with
parameter p is given by

Py(2) = B[zX] = 3 P(X = k)2 = 11__;;. ()
k=0
Answer.

(a) The probability of moving away from state 7,7 > 1 is 1. The probability of moving to
state ¢ is m;+1p + m—1¢q. For state 0 we have that the probability of moving away is 1 and
the probability of arriving to state 0 is mop + m1p.

(b) From (2) we get m1 = (q¢/p)mo. Then, from (1) for i = 1 we get m = (¢/p)m1 and by
continuing like this we have m; = (¢/p)mi_1 = --- = (¢/p)*mo. With the normalization
condition Y ;7 m; = 1 we get the limiting distribution as specified.

(c) Let L be the number of cells in the buffer. Then we are interested in Pr(z) = > o, miz".
Multiply (1) by z* and sum over all i > 1 to obtain

o0 o0 o0
g T2 ZPE Ti+12 +4q E Ti—1%2,
i=1 i=1 i=1

o o
= Pr(z) — mo :p/ZZ’ﬂ'jZ‘j + QZZﬂij,
j=2 7=0

= p/z(PL(z) — o — 71'12) +qzPr(2),
= (1 —qz —p/2)Pp(z) = mo(1 — p/2) — mip.

Now use that m = ¢/pm and ¢ = 1 — p to obtain

Pu(z) = mop(l —1/2) _ mop(1 — 1/2) _m
l—qz—p/z p(1-1/2)(1—(q¢/p)2) 1-(q/p)z




We know that Pr(1) = > °ym = 1, so we get mp = 1 — ¢/p and thus

 1l—q/p S i i
Pr(z) = T (a/p)e iz;(l —q/p)(a/p)'=".

Thus, L is geometrically distributed with parameter g/p.



