
Stochastic performance modelling (2WB60)

Instruction week 2, 19 February 2016

Exercise 1. Consider a Markov chain with state space {1, 2, 3} and transition probabilities
p12 = 1, p21 = 1/2, p23 = 1/2, p32 = 1/2 and p33 = 1/2. Determine the steady-state
distribution of this Markov chain. (A: π = (1, 2, 2)/5)

Answer. Use π = πP with π = (π1, π2, π3) a row vector, and the normalization condition
π1 + π2 + π3 = 1 to obtain π = (1/5, 2/5, 2/5).

Exercise 2. A processor is inspected weekly in order to determine its condition. The condition
of the processor can either be perfect, good, reasonable, or bad. A new processor is still perfect
after one week with probability 0.7, with probability 0.2 the state is good, and with probability
0.1 it is reasonable. A processor in good condition is still good after one week with probability
0.6, reasonable with probability 0.2, and bad with probability 0.2. A processor in reasonable
condition is still reasonable after one week with probability 0.5 and bad with probability 0.5.
A bad processor must be repaired. The repair takes one week, after which the processor is
again in perfect condition.

(a) Formulate a Markov chain that describes the state of the machine, and draw the corres-
ponding transition diagram.

(b) Determine the steady-state distribution of the Markov chain. (A: π = (10, 5, 4, 3)/22)

Answer.

(a) The state space is given by S = {p, g, r, b} and the transition probability matrix is

P =


0.7 0.2 0.1 0
0 0.6 0.2 0.2
0 0 0.5 0.5
1 0 0 0

 .

The transition diagram is as follows
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(b) Use π = πP with π = (πp, πg, πr, πb) a row vector, and the normalization condition
πp + πg + πr + πb = 1. This gives π = (10/22, 5/22, 4/22, 3/22).

Exercise 3. Consider the Markov chain described in Example 3.3.



(a) Derive the balance equations

πi = πi+1p+ πi−1q, i ≥ 1, (1)

and

π0 = π0p+ π1p, (2)

by using the fact that there is a balance between the probability of moving to state i and
the probability of moving away from state i (‘in = out’).

(b) Show that the limiting distribution satisfies πi = (q/p)i(1− q/p), i ≥ 0.

(c) Also derive the limiting distribution using probability generating functions.

Hint. Let L be the number of cells in the buffer. The probability generating function of
L is given by

PL(z) = E[zL] =
∞∑
k=0

P(L = k)zk =
∞∑
k=0

πkz
k. (3)

Think about multiplying the equations by a certain factor and then summing over all
equations. The probability generating function of a geometric random variable X with
parameter p is given by

PX(z) = E[zX ] =
∞∑
k=0

P(X = k)zk =
1− p
1− pz

. (4)

Answer.

(a) The probability of moving away from state i, i ≥ 1 is 1. The probability of moving to
state i is πi+1p+πi−1q. For state 0 we have that the probability of moving away is 1 and
the probability of arriving to state 0 is π0p+ π1p.

(b) From (2) we get π1 = (q/p)π0. Then, from (1) for i = 1 we get π2 = (q/p)π1 and by
continuing like this we have πi = (q/p)πi−1 = · · · = (q/p)iπ0. With the normalization
condition

∑∞
i=0 πi = 1 we get the limiting distribution as specified.

(c) Let L be the number of cells in the buffer. Then we are interested in PL(z) =
∑∞

i=0 πiz
i.

Multiply (1) by zi and sum over all i ≥ 1 to obtain

∞∑
i=1

πiz
i = p

∞∑
i=1

πi+1z
i + q

∞∑
i=1

πi−1z
i,

⇒ PL(z)− π0 = p/z

∞∑
j=2

πjz
j + qz

∞∑
j=0

πjz
j ,

= p/z
(
PL(z)− π0 − π1z

)
+ qzPL(z),

⇒ (1− qz − p/z)PL(z) = π0(1− p/z)− π1p.

Now use that π1 = q/pπ0 and q = 1− p to obtain

PL(z) =
π0p(1− 1/z)

1− qz − p/z
=

π0p(1− 1/z)

p(1− 1/z)(1− (q/p)z)
=

π0
1− (q/p)z

.



We know that PL(1) =
∑∞

i=0 πi = 1, so we get π0 = 1− q/p and thus

PL(z) =
1− q/p

1− (q/p)z
=
∞∑
i=0

(1− q/p)(q/p)izi.

Thus, L is geometrically distributed with parameter q/p.


