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Preface

This course presents an introduction to queueing theory and its application to the perfor-
mance modelling and analysis of computers and communication systems. It starts with a
global introduction to the subject area (Chapter 1). Queueing theory heavily relies on con-
cepts from probability theory. Therefore, Chapter 2 presents a reminder of some aspects of
probability theory that are very useful in queueing and performance analysis, and Chapter
3 gives a brief introduction to some important stochastic processes: Markov chains and
Markov processes. Chapters 4-6 are devoted to a discussion of the main ideas of queueing
theory and to an analysis of the basic single-node queueing models. Networks of queues
and their applications in computer-communications form the subject of Chapter 7.

Note. These lecture notes are partly based on the lecture notes ”Stochastic Performance
Modelling” of J. van der Wal, and the lecture notes ”Stochastic methods for design and
planning” of I.J.B.F. Adan and J.A.C. Resing.



Chapter 1

Queueing models and some
fundamental relations

1.1 Introduction

In everyday life, many situations arise where customers require some service, and where the
service facility has limited capacity to supply this service. If a customer cannot immediately
receive service, he/she may leave or wait. In the latter case, he/she joins a queue. Examples
of such situations occur, e.g., at:
post offices and banks (customer: person, server: clerk),
traffic lights (customer: car, server: traffic light),
production systems (customer: part, server: machine),
computer systems (customer: job, server: processor),
communication systems (customer: message or packet, server: channel, telephone line).
These applications concern in particular design problems, where answers are required to
questions like: Is the capacity sufficient?, What should be the layout? or How do we
have to divide work among several resources? To answer such questions, one would like
to have detailed information about the arrival process of customers at the facility and of
the required services. However, very detailed information is usually neither available (in
particular not about future arrivals and service requests) nor manageable. In queueing
theory one therefore usually assumes that the interarrival and service times satisfy some
probability distribution. Obviously, one then has to be satisfied with probability statements
about key performance measures, like the probability one has to wait or the mean waiting
time.

In many applications the variability in the arrival and service process has turned out
to be essential to the behavior of the system. The analysis of some key queueing models
in later chapters will illustrate that.

In this chapter we describe the basic queueing model and we discuss some important
fundamental relations for this model. These results can be found in every standard text-
book on this topic, see e.g. [9, 15, 26, 33].
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1.2 Queueing models and Kendall’s notation

The basic queueing model is shown in figure 1.1.

Figure 1.1: Basic queueing model

Among others, a queueing model is characterized by:

• The arrival process of customers.
Usually we assume that the interarrival times are independent and have a common
distribution. In many practical situations customers arrive according to a Poisson
stream (i.e., with exponential interarrival times; see the next chapter). Customers
may arrive one by one, or in batches. An example of batch arrivals is the customs
office at the border where travel documents of bus passengers have to be checked.

• The behaviour of customers.
Customers may be patient and willing to wait. Or customers may be impatient and
leave after a while. For example, in call centers, customers will hang up when they
have to wait too long before an operator is available, and they possibly try again
after a while.

• The service times.
Usually we assume that the service times are independent and identically distributed,
and that they are independent of the interarrival times. For example, the service
times can be deterministic or exponentially distributed. It can also occur that service
times are dependent of the queue length. For example, the processing rates of the
machines in a production system can be increased once the number of jobs waiting
to be processed becomes too large.

• The service discipline.
Customers can be served one by one or in batches. We have many possibilities for
the order in which they enter service. We mention:

– first come first served, i.e. in order of arrival;

– random order;
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– last come first served (e.g. in a computer stack or a shunt buffer in a production
line);

– priorities (e.g. rush orders first, shortest processing time first);

– processor sharing (in computers that equally divide their processing power over
all jobs in the system).

• The service capacity.
There may be a single server or a group of servers helping the customers.

• The waiting room.
There can be limitations with respect to the number of customers in the system. For
example, in a data communication network, only finitely many cells can be buffered
in a switch. The determination of good buffer sizes is an important issue in the design
of these networks.

Kendall introduced a shorthand notation to characterize a range of these queueing mod-
els. It is a three-part code a/b/c. The first letter specifies the interarrival time distribution
and the second one the service time distribution. For example, for a general distribution
the letter G is used, M for the exponential distribution (M stands for Memoryless or
Markov) and D for deterministic times. The third letter specifies the number of servers.
Some examples are M/M/1, M/M/c, M/G/1, G/M/1 and M/D/1. The notation can
be extended with an extra letter to cover other queueing models. For example, a system
with exponential interarrival and service times, one server and a waiting room only for N
customers (including the one in service) is abbreviated by the code M/M/1/N .

In the basic model G/G/1, customers arrive one by one and they are always allowed
to enter the system, there is always room, there are no priority rules and customers are
served in order of arrival. It will be explicitly indicated (e.g. by additional letters) when
one of these assumptions does not hold.

1.3 Occupation rate

In a single-server system G/G/1 with arrival rate λ and mean service time E(B) the
amount of work arriving per unit time equals λE(B). The server can handle 1 unit work
per unit time. To avoid that the queue eventually grows to infinity, we have to require that
λE(B) < 1. Without going into details, we note that the mean queue length also explodes
when λE(B) = 1, except in the D/D/1 system, i.e., the system with no randomness at all.

It is common to use the notation

ρ = λE(B).

If ρ < 1, then ρ is called the occupation rate or server utilization, because it is the fraction
of time the server is working.

In a multi-server system G/G/c we have to require that λE(B) < c. Here the occupa-
tion rate per server is ρ = λE(B)/c.
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1.4 Performance measures

Relevant performance measures in the analysis of queueing models are:

• The distribution of the waiting time and the sojourn time of a customer. The sojourn
time is the waiting time plus the service time.

• The distribution of the number of customers in the system (including or excluding
the one or those in service).

In particular, we are interested in mean performance measures, such as the mean waiting
time, the mean sojourn time and the mean queue length.

1.5 Little’s law

Little’s law gives a very important relation between E(L), the mean number of customers
in the system, E(S), the mean sojourn time and λ, the average number of customers
entering the system per unit time. Little’s law states that

E(L) = λE(S). (1.1)

Here it is assumed that the capacity of the system is sufficient to deal with the customers
(i.e. the number of customers in the system does not grow to infinity; ρ < 1 should hold).

Intuitively, this result can be understood as follows. Suppose that all customers pay 1
dollar per unit time while in the system. This money can be earned in two ways. The first
possibility is to let pay all customers “continuously” in time. Then the average reward
earned by the system equals E(L) dollar per unit time. The second possibility is to let
customers pay 1 dollar per unit time for their residence in the system when they leave. In
equilibrium, the average number of customers leaving the system per unit time is equal
to the average number of customers entering the system. So the system earns an average
reward of λE(S) dollar per unit time. Obviously, the system earns the same in both cases.
For a rigorous proof, see [19, 30].

To demonstrate the use of Little’s law we consider the basic queueing model in figure
1.1 with one server. For this model we can derive relations between several performance
measures by applying Little’s law to suitably defined (sub)systems. Application of Little’s
law to the system consisting of queue plus server yields relation (1.1). Applying Little’s
law to the queue (excluding the server) yields a relation between the queue length Lq and
the waiting time W , namely

E(Lq) = λE(W ).

Finally, when we apply Little’s law to the server only, we obtain (cf. section 1.3)

ρ = λE(B),

where ρ is the mean number of customers at the server (which is the same as the fraction
of time the server is working) and E(B) the mean service time.
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1.6 PASTA property

For queueing systems with Poisson arrivals, so for M/·/· systems, the very special property
holds that arriving customers find on average the same situation in the queueing system
as an outside observer looking at the system at an arbitrary point in time. More precisely,
the fraction of customers finding on arrival the system in some state A is exactly the same
as the fraction of time the system is in state A.

In general this property is not true. For instance, in a D/D/1 system which is empty
at time 0, and with arrivals at 1, 3, 5, . . . and service times 1, every arriving customer finds
an empty system, whereas the fraction of time the system is empty is 1/2.

This property of Poisson arrivals is called PASTA property, which is the acronym for
Poisson Arrivals See Time Averages. Intuitively, this property can be explained by the
fact that Poisson arrivals occur completely random in time (see below (2.5)). A rigorous
proof of the PASTA property can be found in [37, 38].

In the following chapters we will show that in many queueing models it is possible to
determine mean performance measures, such as E(S) and E(L), directly (i.e. not from
the distribution of these measures) by using the PASTA property and Little’s law. This
powerful approach is called the mean value approach.
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Chapter 2

Basic concepts from probability
theory

This chapter is devoted to some basic concepts from probability theory, which play a key
role in performance analysis.

2.1 Random variable

Random variables are denoted by capitals: X, Y , etc. The expected value or mean of X is
denoted by E(X) and its variance (a measure for the deviation from the mean) by σ2(X)
= E[{X −E(X)}2] = E(X2)−E2(X), where σ(X) is called the standard deviation of X.

An important quantity is the coefficient of variation of a positive random variable X,
defined as (for E(X) 6= 0):

cX =
σ(X)

E(X)
.

The coefficient of variation is a (dimensionless) measure of the variability of the random
variable X.

2.2 Useful probability distributions

This section discusses a number of important distributions which have been found useful
for describing random variables in many queueing applications.

2.2.1 Geometric distribution

A geometric random variable X with parameter p has probability distribution

P (X = n) = (1− p)pn, n = 0, 1, 2, . . .
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For this distribution we have

E(X) =
p

1− p
, σ2(X) =

p

(1− p)2
, c2

X =
1

p
.

2.2.2 Poisson distribution

A Poisson random variable X with parameter µ has probability distribution

P (X = n) =
µn

n!
e−µ, n = 0, 1, 2, . . .

For the Poisson distribution it holds that

E(X) = µ, σ2(X) = µ, c2
X =

1

µ
.

2.2.3 Exponential distribution

The density of an exponential distribution with parameter µ is given by

f(t) = µe−µt, t > 0.

The distribution function equals

F (t) = 1− e−µt, t ≥ 0.

For this distribution we have

E(X) =
1

µ
, σ2(X) =

1

µ2
, cX = 1.

An important property of an exponential random variable X with parameter µ is the
memoryless property. This property states that for all x ≥ 0 and t ≥ 0,

P (X > t+ x|X > t) = P (X > x) = e−µx.

So the remaining lifetime of X, given that X is still alive at time t, is again exponentially
distributed with the same mean 1/µ.

If X1, . . . , Xn are independent exponential random variables with parameters µ1, . . . , µn
respectively, then min(X1, . . . , Xn) is again an exponential random variable with parameter
µ1 + · · ·+µn and the probability that Xi is the smallest one is given by µi/(µ1 + · · ·+µn),
i = 1, . . . , n.
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2.2.4 Erlang distribution

A random variable X has an Erlang-k (k = 1, 2, . . .) distribution with mean k/µ if X
is the sum of k independent random variables X1, . . . , Xk having a common exponential
distribution with mean 1/µ. The common notation is Ek(µ) or briefly Ek. The density of
an Ek(µ) distribution is given by

f(t) = µ
(µt)k−1

(k − 1)!
e−µt, t > 0.

The distribution function equals

F (t) = 1−
k−1∑
j=0

(µt)j

j!
e−µt, t ≥ 0.

The parameter µ is called the scale parameter, k is the shape parameter. A phase diagram
of the Ek distribution is shown in figure 2.1.

1 2 k

µ µ µ

Figure 2.1: Phase diagram for the Erlang-k distribution with scale parameter µ

In figure 2.2 we display the density of the Erlang-k distribution with mean 1 (so µ = k)
for various values of k.

The mean, variance and squared coefficient of variation are equal to

E(X) =
k∑
i=1

E(Xi) =
k

µ
, σ2(X) =

k∑
i=1

σ2(Xi) =
k

µ2
, c2

X =
1

k
.

Remark 2.1
A convenient distribution arises when we take a mixture (weighted sum) of an Ek−1 and
Ek distribution with the same scale parameters. The notation used is Ek−1,k. A random
variable X has an Ek−1,k(µ) distribution, if X is with probability p (resp. 1− p) the sum
of k − 1 (resp. k) independent exponentials with common mean 1/µ. The density of this
distribution has the form

f(t) = pµ
(µt)k−2

(k − 2)!
e−µt + (1− p)µ (µt)k−1

(k − 1)!
e−µt, t > 0,

where 0 ≤ p ≤ 1. As p runs from 0 to 1, the squared coefficient of variation of the
mixed Erlang distribution varies from 1/k to 1/(k − 1). It will appear (later on) that this
distribution is useful for fitting a distribution if only the first two moments of a random
variable are known.
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Figure 2.2: The density of the Erlang-k distribution with mean 1 for various values of k

2.2.5 Hyperexponential distribution

A random variable X is hyperexponentially distributed if X is with probability pi, i =
1, . . . , k an exponential random variable Xi with mean 1/µi. For this random variable we
use the notation Hk(p1, . . . , pk;µ1, . . . , µk), or simply Hk. The density is given by

f(t) =
k∑
i=1

piµie
−µit, t > 0,

and the mean is equal to

E(X) =
k∑
i=1

pi
µi
.

The coefficient of variation cX of this distribution is always greater than or equal to 1.
A phase diagram of the Hk distribution is shown in figure 2.3.

2.3 Fitting distributions

In practice it often occurs that the only information of random variables that is available
is their mean and standard deviation, or if one is lucky, some real data. To obtain an
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Figure 2.3: Phase diagram for the hyperexponential distribution

approximating distribution it is common to fit a phase-type distribution on the mean,
E(X), and the coefficient of variation, cX , of a given positive random variable X, by using
the following simple approach.

In case 0 < cX < 1 one fits an Ek−1,k distribution (see subsection 2.2.4). More specifi-
cally, if

1

k
≤ c2

X ≤
1

k − 1
,

for certain k = 2, 3, . . ., then the approximating distribution is with probability p (resp.
1 − p) the sum of k − 1 (resp. k) independent exponentials with common mean 1/µ. By
choosing (see e.g. [33])

p =
1

1 + c2
X

[kc2
X − {k(1 + c2

X)− k2c2
X}1/2], µ =

k − p
E(X)

,

the Ek−1,k distribution matches E(X) and cX .
In case cX ≥ 1 one fits a H2(p1, p2;µ1, µ2) distribution. However, the hyperexponential

distribution is not uniquely determined by its first two moments. In applications, the H2
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distribution with balanced means is often used. This means that the normalization

p1

µ1

=
p2

µ2

is used. The parameters of the H2 distribution with balanced means and fitting E(X) and
cX (≥ 1) are given by

p1 =
1

2

(
1 +

√
c2
X − 1

c2
X + 1

)
, p2 = 1− p1,

µ1 =
2p1

E(X)
, µ2 =

2p2

E(X)
.

2.4 Poisson process

Suppose that Y1, Y2, . . . are independent random variables, that are all exponentially dis-
tributed with mean 1/λ, i.e., P (Y1 > t) = e−λt, t ≥ 0. It follows from section 2.2.4
that

P (Y1 + · · ·+ Yk+1 ≤ t) = 1−
k∑
j=0

(λt)j

j!
e−λt, t ≥ 0, k = 0, 1, . . . , (2.1)

and hence

P (Y1 + . . . Yk+1 > t) =
k∑
j=0

(λt)j

j!
e−λt, t ≥ 0, k = 0, 1, . . . . (2.2)

Suppose that Y1, Y2, . . . are the intervals between successive occurences of events, like
arrivals of customers at some service facility. Let N(t) be the number of arrivals in [0, t].
Then P (N(t) ≤ k) = P (Y1 + · · · + Yk+1 > t). The probability distribution of the number
of arrivals in [0, t] is then a Poisson distribution:

P (N(t) = k) =
(λt)k

k!
e−λt, t ≥ 0, k = 0, 1, . . . . (2.3)

The process {N(t), t ≥ 0} that is constructed as counting the number of events in [0, t]
when the times between events are independent, identically exp(λ) distributed, is called a
Poisson process with rate λ. The mean, variance and coefficient of variation of N(t) are
equal to (see subsection 2.2.2)

E(N(t)) = λt, σ2(N(t)) = λt, c2
N(t) =

1

λt
.

Using the memoryless property of the exponential distribution it follows for the Poisson
process that, for small ∆t,

P (no arrival in (t, t+ ∆t]) = e−λ∆t ≈ 1− λ∆t. (2.4)
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Similarly, it can be shown that

P (one arrival in (t, t+ ∆t]) ≈ λ∆t. (2.5)

So in each small time interval of length ∆t the occurence of an arrival is equally likely. In
other words, Poisson arrivals occur completely random in time. In figure 2.4 we show a
realization of a Poisson process and an arrival process with Erlang-10 interarrival times.
Both processes have rate 1. The figure illustrates that Erlang arrivals are much more
equally spread out over time than Poisson arrivals.

Poisson

t

Erlang-10

t

Figure 2.4: A realization of Poisson arrivals and Erlang-10 arrivals, both with rate 1

The Poisson process is an extremely useful process for modelling purposes in many
practical applications, such as to model the occurence of software errors, of machine break-
downs, and of the arrival of jobs at a processor, of emails, and of orders at a production
system. It is empirically found that in many circumstances the arising stochastic process
can be well approximated by a Poisson process.

Remark 2.2
A theoretical motivation for the natural occurence of the Poisson process is the following.
Let X be binomially distributed with parameters n and p.

P (X = k) =

(
n
k

)
pk(1− p)n−k, k = 0, 1, . . . , n. (2.6)

Let n→∞, p→ 0 such that np = λt (fixed). Then one can prove that, in this limit,

P (X = k)→ (λt)k

k!
e−λt, t ≥ 0, k = 0, 1, . . . . (2.7)

For example, if n persons independently have a very small probability p of submitting a job
to a particular printer in a small interval [0, t], then the probability of k of them submitting
in [0, t] is given by the binomial probability in (2.6), which is closely approximated by the
Poisson probability in (2.7).

Next we mention two important properties of a Poisson process (see e.g. [26]).

15



(i) Merging.
Suppose that N1(t) and N2(t) are two independent Poisson processes with respective
rates λ1 and λ2. Then the sum N1(t) +N2(t) of the two processes is again a Poisson
process, with rate λ1 + λ2.

(ii) Splitting.
Suppose that N(t) is a Poisson process with rate λ and that each arrival is marked
with probability p independent of all other arrivals. Let N1(t) and N2(t) denote
respectively the number of marked and unmarked arrivals in [0, t]. Then N1(t) and
N2(t) are both Poisson processes with respective rates λp and λ(1 − p). And these
two processes are independent.

So Poisson processes remain Poisson processes under merging and splitting.
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Chapter 3

Markov chains and Markov processes

3.1 Introduction

A stochastic process is a collection of random variables {X(t), t ∈ T}. That is, for each
t ∈ T , X(t) is a random variable. We often interpret t as time, and call X(t) the state of
the process at time t. If T = {0, 1, . . . }, then we usually write X0, X1, . . . and we speak of
a discrete-time stochastic process. An important class of discrete-time stochastic processes
is constituted by the Markov chains. A Markov chain is characterized by the (Markov)
property that the future behaviour, given the past and present behaviour, only depends
on the present and not on the past. A Markov process is the continuous-time analogue of
a Markov chain. Many queueing models are in fact Markov processes. This chapter gives
a short introduction into the theory of Markov chains and Markov processes, focussing on
those characteristics that are needed for the modelling and analysis of queueing problems.

3.2 Markov chains

Definition 3.1
A discrete-time stochastic process {Xn, n = 0, 1, . . . } with state space S is a Markov chain
if it has the following dependence structure between the successive random variables:

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i), (3.1)

for all n = 0, 1, . . . and for all i0, . . . , in−1, i, j ∈ S.

Usually (as in these lecture notes) it is assumed that the Markov chain has stationary
one-step transition probabilities, viz.,

P (Xn+1 = j|Xn = i) = pij, i, j ∈ S,

for all n = 0, 1, . . . . A Markov chain, studied at the discrete time points 0, 1, 2, . . ., is
characterized by the state space S and the one-step transition probabilities pij between
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the states. The matrix P with elements pij is called the transition probability matrix of the
Markov chain. Note that the definition of the pij implies that P is a so-called stochastic
matrix: the elements of P are non-negative, and the row sums of P are equal to 1.

Example 3.1
(i) Consider a communication system which transmits the digits 0 and 1. Each digit passes
through several stages. At each stage there is a probability p that the digit is unchanged.
If Xn denotes the digit entering stage n, then {Xn, n = 0, 1, . . . } is a two-state Markov
chain with transition probability matrix

P =

(
p 1− p

1− p p

)
.

(ii) (cf. Resnick [24]) Harry dines every night in one out of two restaurants, A and B.
His choice of restaurant on a particular night only depends on the location of the previous
diner. Assuming that Harry, after having dined in A (B), returns the next evening to A
(B) with probability 0.4 (0.7), his dining pattern follows a Markov chain with transition
probability matrix

P =

(
0.4 0.6
0.3 0.7

)
.

Given matrix P and the initial probabilities P (X0 = i), i ∈ S, of a Markov chain {Xn, n =
0, 1, . . . }, one obtains P (X1 = j) for j ∈ S via

P (X1 = j) =
∑
i∈S

P (X1 = j,X0 = i) =
∑
i∈S

P (X1 = j|X0 = i)P (X0 = i). (3.2)

In vector-matrix notation, with π(k) denoting the row vector (P (Xk = j), j ∈ S), k =
0, 1, . . . :

π(1) = π(0)P. (3.3)

In order to study the performance characteristics of Markov chains, we should understand
how the chain develops in time. Hence, we are interested in the n-step transition proba-
bilities

p
(n)
ij := P (Xr+n = j|Xr = i), n = 1, 2, . . . ,

(where p
(1)
ij = pij), and in particular in their limiting behaviour for n→∞. The Chapman-

Kolmogorov equations provide a method to compute the n-step transition probabilities from
the one-step transition probabilities. These equations are:

p
(m+n)
ij =

∑
k∈S

p
(m)
ik p

(n)
kj , (3.4)

18



for all i, j and all m,n ≥ 0. They can be derived by manipulating conditional probabilities,
determining the probability to reach j from i in m+n steps by conditioning on the position
reached after m steps. Intuitively, they can be understood by observing that, once the
process has reached state k at time m, the past behaviour of the process plays no further
role in the evolution of the process; the future behaviour only depends on the present state
k. If we let P (n) denote the matrix of n-step transition probabilities, then (3.4) states that

P (m+n) = P (m)P (n); (3.5)

we obtain P (m+n) from P (m) and P (n) by matrix multiplication! In particular, P (2) =
P.P = P 2, and by induction, P (n) = P n. Hence the n-step transition probability matrix
can be obtained by multiplying the one-step transition probability matrix P by itself n
times. Furthermore, the row vector π(n) with elements π

(n)
j = P (Xn = j), j ∈ S, is given

by

π(n) = π(n−1)P = · · · = π(0)P n. (3.6)

It is instructive to multiply the transition matrix of Harry’s restaurants 2, 3, 4, . . . times
with itself. One then observes that P (n) = P n is rapidly converging to the matrix

P (∞) =

(
1/3 2/3
1/3 2/3

)
. (3.7)

So, regardless where Harry started on night 0, in the long run he is in restaurant A with
probability 1/3. For an important class of Markov chains, indeed a limiting distribution
for Xn exists when n→∞, regardless of the initial state X0. Under the following

Condition 3.1

1. the Markov chain is irreducible,

2. the Markov chain is aperiodic,

3. the Markov chain is positive recurrent,

to be discussed below, the probability π
(n)
i that the system is in state i at time n converges

to a limit πi as n tends to infinity, independently of the state at time 0. These limiting
probabilities, or equilibrium probabilities, can be computed from a set of so-called balance
equations.

The balance equations balance the probability of leaving and entering a state in equi-
librium. This leads to the equations

πi
∑
j 6=i

pij =
∑
j 6=i

πjpji , i ∈ S,
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or (including on both sides the term πipii, corresponding to the one-step transition from i
to itself)

πi =
∑
j∈S

πjpji .

In vector-matrix notation this becomes, with π the row vector with elements πi,

π = πP .

Together with the normalization condition∑
i∈S

πi = 1 ,

and under Condition 3.1, the solution of this equation is unique (cf. [25], p. 175).

Remark 3.1
If limn→∞π

(n) exists, then taking the limit in π(n) = π(n−1)P , cf. (3.6), indeed yields π = πP .

Let us now briefly discuss Condition 3.1 (for more extensive discussions of this condition,
see textbooks like [24, 25, 33]).

Discussion of Condition 3.1
(i) Irreducibility

State j is said to be accessible from state i if p
(n)
ij > 0 for some n ≥ 0, viz., starting from

state i there is a positive probability of ever reaching state j (note that we define p
(0)
ij = 1 if

i = j and 0 otherwise). Two states i and j are said to communicate (to be communicating
states, denoted by i ↔ j) if j is accessible from i and i is accessible from j. The relation
of communication can be shown to satisfy the following properties:
(i) i↔ i,
(ii) if i↔ j then j ↔ i,
(iii) if i↔ j and j ↔ k then i↔ k.

Two states that communicate are said to be in the same class. It is seen from (i), (ii) and
(iii) that any two classes are either disjoint or identical: communication is an equivalence
relation. Hence communication breaks up the state space of a Markov chain in separate
classes (equivalence classes). If all states communicate with each other, then there is only
one class. We then call the Markov chain irreducible. The importance of the irreducibility
concept w.r.t. the existence of the limiting distribution of a Markov chain can be easily
understood. If there are two or more classes, then for the long-run behaviour it makes
a difference in which class one starts. For example, a class may be absorbing, i.e., once
entered, the class is never left anymore. An example occurs for a two-state Markov chain
with, say, p11 = p12 = 1/2, p21 = 0, p22 = 1. The Markov chain is now reducible into two
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classes {1} and {2}, and state 2 is absorbing.

(ii) Periodicity

A state i of a Markov chain is said to have period d if p
(n)
ii = 0 whenever n is not divisible by

d, while d is the largest integer with this property. A state with period 1 is said to be ape-
riodic. The states of a two-state Markov chain are periodic with period 2 if p12 = p21 = 1:
starting in state i, that state is revisited at times 2, 4, 6, . . . . The importance of the con-
cept of periodicity of a Markov chain w.r.t. the existence of its limiting distribution can
be easily understood. In the above example, the limiting probability of being in state 1
depends crucially on the position of the Markov chain at time 0: p

(n)
ii = 1 if n is even, and

0 if n is odd, so no limiting distribution exists.

(iii) Recurrence and transience
A state is called recurrent if the process returns to that state with probability one. Other-
wise the state is called transient. In the transient case, the state will only be visited a finite
number of times. In the recurrent case, the state will be visited an infinite number of times
(one can show that, equivalently, state i is recurrent iff

∑∞
n=1 p

(n)
ii =∞; for details of this

and the following statements about recurrence, see [25]). Absorbing states are obviously
recurrent.

If the mean return time to a recurrent state is finite, then that state is called positive
recurrent, otherwise null recurrent. If the Markov chain has only a finite number of states,
then a recurrent state is always positive recurrent. Periodicity, aperiodicity, transience,
positive recurrence and null recurrence all are class properties: All states of the class be-
have in that sense the same.

In practice one has the following types of Markov chains:
(i) one class, all states recurrent;
(ii) some transient classes and some recurrent classes; and eventually we end up in one of
the recurrent classes (absorption).

In case (i) we would like to know the long-run fraction of time spent in each state. In case
(ii) we would like to know the (mean) time until entering one of the recurrent classes, the
probability of ending up in a particular recurrent class, as well as the long-run fraction of
time spent in each of its states.

Below we first present two examples of determining the equilibrium distribution of an ir-
reducible, aperiodic, positive recurrent Markov chain. Subsequently we give formulas for
determining, when starting in a transient state, the mean time until absorption, and the
probability of absorption in a particular state.

Example 3.2
Let us return to Example 3.1 (ii), viz., Harry’s restaurants. Verify that the corresponding
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Markov chain is irreducible, aperiodic and positive recurrent. Its limiting distribution is
obtained by solving the set of equations

π1 + π2 = 1,

and either

π1 = 0.4π1 + 0.3π2 or π2 = 0.6π1 + 0.7π2.

We thus find π1 = 1/3, π2 = 2/3; compare with the matrix P (∞) in (3.7).

Example 3.3
Consider the transmission of data cells in a switch in an ATM (Asynchronous Transfer
Mode) network. The transfers are governed by a discrete time clock. Let us look at the
following simple traffic example. At the beginning of each slot, with probability q a batch
of 2 cells arrives. With probability p = 1 − q > 0 no cell arrives. Cells arriving at the
beginning of a slot can be processed in that slot. In each time slot exactly one cell can be
transmitted (if there is any). Cells which cannot be transferred immediately are put into a
buffer where they wait for transmission. What is the distribution of the number of packets
in the buffer at the beginning of a time slot?

This system can be described by a Markov chain with states i, i = 0, 1, 2, . . . where i
denotes the number of cells in the buffer at the beginning of a time slot. All transition
probabilities are 0 except pi−1,i = q, pi,i−1 = p, i ≥ 1 and p0,0 = p. We assume that q < p;
otherwise at least as many cells would arrive per time unit as can be transmitted, and
the Markov chain would not be positive recurrent. The Markov chain is irreducible and
aperiodic (check). Let π

(n)
i denote the probability that there are i cells in the buffer at the

beginning of time slot n, n = 0, 1, 2, . . .. The probabilities π
(n)
i satisfy

π
(n+1)
i = π

(n)
i+1p+ π

(n)
i−1q.

If we let n tend to infinity then the limiting probabilities πi satisfy the relation

πi = πi+1p+ πi−1q, i ≥ 1,

and

π0 = π0p+ π1p.

Together with the normalizing condition that the probabilities sum up to 1 this gives the
limiting distribution

πi = (q/p)i(1− q/p), i ≥ 0.

Note that this formula reflects the necessity of the condition q < p. A quick way to derive
this formula is to realize that, for a limiting distribution to exist, there should be a balance
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between the probability of moving from state i to state i+ 1 and the probability of moving
from state i+ 1 to state i (‘local balance’); hence

πiq = πi+1p, i = 0, 1, . . . .

We end this example with the following observation. In reality buffer sizes are not infinite
but finite. Suppose that the buffer offers room for at most N data packets; packets arriving
when the buffer is full are lost. A relevant question then is: What should be the size of
the buffer such that no more than a given fraction of the packets will be lost?

Remark 3.2
Consider a Markov chain in which eventually absorption occurs in an absorbing class A.
Starting in a transient state i ∈ T , the collection of all transient states, the mean time
until absorption ai is given by the following set of equations:

ai = 1 +
∑
j∈T

pijaj, i ∈ T. (3.8)

This is easily seen by conditioning on the first step, starting in i (where do we use the
Markov property?).
And when A consists of a number of absorbing states A1, . . . , AM , then the probability of
absorption in Aj, starting from i ∈ T , can in a similar way be shown to satisfy

zij = pij +
∑
k∈T

pikzkj, i ∈ T, j = 1, . . . ,M. (3.9)

3.3 Markov processes

Definition 3.2. A continuous-time stochastic process {X(t), t ≥ 0} with state space S is
a Markov process if

P(X(t+ s) = j|X(s) = i, X(u) = x(u), 0 ≤ u < s) =

P(X(t+ s) = j|X(s) = i),

for all s, t ≥ 0, and all i, j, x(u) ∈ S, 0 ≤ u < s.
In words: The conditional distribution of X(t+s), given the present X(s) and the past,

only depends on the present and not on the past.
We restrict ourself to Markov processes with stationary transition probabilities:

P(X(t+ s) = j|X(s) = i) = pij(t),

independently of s.
It can be shown that for this independence of the past to occur, it is necessary and

sufficient that
(i) the time Ti in state i is exp(νi) distributed, for some parameter νi and all i;
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(ii) if state i is left, the process moves to state j with some probability pij (with
∑

j 6=i pij =
1).

Property (ii) states that, at jump epochs, the Markov process behaves like a Markov chain.
Property (i) states that Ti has a memoryless distribution: No matter how long the process
has been in state i, the remaining time in state i is exponentially distributed with rate
νi. Notice that the exponential distribution is the only continuous distribution with the
memoryless property:

P(Ti > x+ t|Ti > t) = P(Ti > x).

Define the transition rates from i to j:

qij := νipij, j 6= i,

qii := −νi.

Q = (qij)i,j∈S is called the rate matrix or generator of the Markov process. Note that the
definition of qii implies that

∑
j 6=i qij = νi, so that all row sums of Q are zero. For j 6= i,

qij really is the rate at which the process moves from i to j: The departure rate from state
i is νi, and a fraction pij from the transitions out of i is to j.

Examples of Markov processes.
(i) The Poisson process: take qi,i+1 = λ, qii = −λ, qij = 0 otherwise. This obviously is a
transient process.
(ii) The birth-and-death process: take qi,i+1 = λi for i ≥ 0, qi,i−1 = µi for i ≥ 1,
qii = −(λi + µi) for i ≥ 0, qij = 0 for |i − j| > 1. Only transitions to neighbouring
states (births and deaths) are possible.

Kolmogorov has derived the following so-called forward equations: For all i, j ∈ S,

p′ij(t) =
∑
k 6=j

pik(t)qkj − νjpij(t) =
∑
k∈S

pik(t)qkj,

or in matrix form: p′(t) = p(t)Q. In special cases, and given the initial condition p(0),
one may be able to solve Kolmogorov’s set of forward equations and obtain the complete
time-dependent distribution of the Markov process. An example is the Poisson process; a –
difficult – exercise is to show by induction, using the Kolmogorov forward equations, that
p0j(t) = e−λt(λt)j/j!. Usually one must be satisfied with the limiting distribution of the
Markov process – to which we now turn. It is closely related to the limiting distribution
of the underlying Markov chain at jump epochs.

Limiting probabilities of the Markov process
It can be shown that the Markov process {X(t), t ≥ 0} has a positive limiting distribution
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pj := limt→∞pij(t) if the underlying Markov chain at jump epochs has a positive limiting
distribution {πj, j ≥ 0}, and then (if

∑
i∈S πi/νi <∞),

pj =
πj/νj∑
i∈S πi/νi

. (3.10)

To show the latter relation, observe the following. If pj = limt→∞pij(t) exists, then
necessarily p′ij(t) → 0 as t → ∞. Hence Kolmogorov’s forward equations yield 0 =∑

k 6=j pkqkj − νjpj, or

νjpj =
∑
k 6=j

pkqkj =
∑
k 6=j

pkνkpkj. (3.11)

Remember that if the Markov chain with stationary transition probabilities pkj has a non-
null limiting distribution πj, then that distribution satisfies

πj =
∑
k∈S

πkpkj with
∑
j∈S

πj = 1.

Now (3.10) follows.

Remark 3.3
An interpretation of (3.11), usually called the balance equations of the Markov process, is:
the rate at which the process leaves state j (the lefthand side) should equal
the rate at which the process enters state j (the righthand side).
Interpretation of (3.10): In the underlying Markov chain, the process visits state j a frac-
tion πj of the steps. But the mean time per visit in j is 1/νj for the Markov process; so
the Markov process spends a fraction of time proportional to πj/νj in state j.

Remark 3.4
One can rewrite (3.11) in vector notation as (with 0 a vector):

0 = pQ. (3.12)

Together with the normalizing condition
∑
pi = 1, the solution of this set of equations is

known to be unique under the conditions of irreducibility and positive recurrence. In the
next chapters we shall use these equations to determine the queue length distribution in
some ‘Markovian’ queueing systems.
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Chapter 4

Markovian queueing systems

4.1 Introduction

In this chapter we consider queueing systems with independent, exponentially distributed
interarrival and service times. We mainly concentrate on the number of customers X(t) in
the system at time t, t ≥ 0. Under the above exponential (memoryless) assumptions, the
stochastic process {X(t), t ≥ 0} will be a Markov process. We shall successively discuss
the M/M/1 queue; the M/M/1/N queue with finite capacity of N − 1 customers in the
waiting buffer and 1 in service; and the multiserver queue M/M/c.

Throughout the chapter, the arrival rate is denoted by λ. The processing rate is denoted
by µ, so the mean processing time is 1/µ. The jobs are processed in order of arrival (FCFS
= first come first served). We define

ρ :=
λ

µ
.

The quantity ρ is the amount of work offered to the system per unit of time. As remarked
in Section 2.4, the assumption of independent, exponentially distributed interarrival times
(hence of a Poisson arrival process) is often a realistic one. The assumption of exponentially
distributed service times is usually less realistic, but it can be viewed as a useful first
approximation of reality. Although in reality a service system (processor, communication
channel, machine) is never as mathematically simple as the M/M/1 or M/M/c queue,
these models contain most of the essential characteristics. Their analysis will clearly show
the sometimes devastating consequences of randomness both in the arrival process and in
the service times.

4.2 The M/M/1 queue

The M/M/1 queue models, e.g., a transmitter with rate c bps where packets arrive as a
Poisson process with rate λ, having independent, exponentially distributed packet lengths
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with mean 1/µc bits. The successive transmission times of the packets are then exponen-
tially distributed with mean 1/µ. Packets are being transmitted in order of arrival. The
results of this subsection enable us to obtain the distribution of the number of packets at
the transmitter and its mean, but also the distribution of the sojourn time of a packet
at the transmitter and its mean. The latter distribution shows us which fraction of the
packets has a sojourn time above a certain prescribed standard. The results translate
immediately to many other applications. In the sequel, we shall usually speak of jobs or
customers.

The assumptions we made about the system (i.e., Poisson arrivals, exponential pro-
cessing times and FCFS servicing) make it possible to simply describe the state of the
system at an arbitrary point in time by the number of jobs in the system. Without these
assumptions, the state description would be very complicated and would have to contain
not only the number of jobs in the system, but also, for example, the residual processing
time of the job in service. The reason for this simplification is that, in the case of expo-
nential interarrival times and exponential processing times, the distribution of the time
until the next arrival and/or service completion is not affected by the time that elapsed
since the last arrival and the last completion. This is the essential memoryless property
of the exponential distribution (see Section 2.2.3). Further, the FCFS order of processing
means that the past gives no information about the jobs waiting in the queue. Note that
if, for instance, the processing order would be Shortest Processing Time First, then the
jobs waiting in the queue will on average be longer than an arbitrary job. For the M/M/1
queue, the exact distribution P (X(t) = j|X(0) = i) can be obtained from the theory of
Markov processes, cf. [5]. In fact, the Markov process now is a birth-and-death process,
with birth rate qi,i+1 = λi = λ and death rate qi,i−1 = µi = µ. However, even for this
relatively simple queueing system, the distribution of the time-dependent Markov process
is quite complicated. Therefore we restrict ourself to the limiting distribution:

pj := limt→∞P (X(t) = j|X(0) = i), i, j = 0, 1, . . . , t ≥ 0.

When does this limiting distribution exist? It is easily seen that the Markov process
{X(t), t ≥ 0} is irreducible: all states can be reached from each other. The question
remains whether the Markov process is also positive recurrent (see end of Chapter 3). One
can prove (cf. [5]) that the Markov process is positive recurrent if and only if ρ < 1. This
is intuitively obvious: every finite state i (i customers) will be visited infinitely often, with
finite mean intervisit times, as long as the server is offered less customers per time unit
than it can handle. The limiting distribution now follows from Chapter 3. The limiting
probabilities pj satisfy the following equations, cf. (3.11):

0 = −λp0 + µp1 (4.1)

0 = λpk−1 − (λ+ µ)pk + µpk+1, k = 1, 2 . . . , (4.2)

and
∞∑
k=0

pk = 1, (4.3)
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which is called the normalization equation.
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Figure 4.1: Flow diagram for the M/M/1 model

It is also possible to derive the equations (4.1) and (4.2) directly from a flow diagram,
as shown in figure 4.1. The arrows indicate possible transitions. The rate at which a tran-
sition occurs is λ for a transition from k to k + 1 (an arrival) and µ for a transition from
k+ 1 to k (a departure). The number of transitions per unit time from k to k+ 1, which is
also called the flow from k to k+1, is equal to pk, the fraction of time the system is in state
k, times λ, the rate at which arrivals occur while the system is in state k. The equilibrium
equations (4.1) and (4.2) follow by equating the flow out of state k and the flow into state k.

Remark 4.1
The use of flow diagrams is quite intuitive, but also quite risky. It is absolutely necessary
that the states give a complete description of the state of the queue length process. As we
discussed above, the number of jobs in the system is usually not the full state description.
If, e.g., the processing times are not exponential then the state description has to contain
the remaining processing time, and thus a simple flow diagram is not available.

A further simplification of the equations can be obtained by using the typical transition
structure in the system. State changes are always of the form k to k + 1 or k to k −
1. Equating the mean rate of transitions out of the set {0, 1, ..., k} to the mean rate of
transitions into that set, we get

pkλ = pk+1µ, k ≥ 0. (4.4)

We can rewrite this as

pk+1 = ρpk, k ≥ 0.

From this, we obtain pk = ρkp0 and, by setting the sum of the probabilities equal to 1,

pk = (1− ρ)ρk, k ≥ 0.

From now on, we will call this the equilibrium distribution of the system.

4.2.1 Performance characteristics

From the equilibrium distribution we can compute the most important performance mea-
sures, such as the mean number of jobs in the system, denoted by E(L), and the mean
throughput time or system or sojourn time, denoted by E(S).
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The first one is easily obtained as

E(L) =
∞∑
k=0

kpk =
∞∑
k=0

k(1− ρ)ρk =
ρ

1− ρ
.

As we see, if ρ, the load of the system or utilization, approaches 1 the mean number of
jobs in the system goes to infinity. For example, if the load is 0.95 and the mean job
size is 4 hours then the mean amount of work in the system is equal to 76 hours! This
dramatic behaviour is caused by the variation in the arrival and service process and it is
characteristic for almost every queueing system.

Equally, or even more important, is the mean sojourn time. From Little’s formula we
get

E(S) = E(L)/λ =
ρ

1− ρ
1

λ
=

1

1− ρ
1

µ
.

So, we see that the behaviour of E(S) is similar to the behaviour of E(L), when ρ ap-
proaches 1. For ρ = 0.95, the mean sojourn time is 20 times as big as the mean processing
time (job size).

4.2.2 The Mean Value Approach

There is another direct way to compute the mean number of jobs in the system E(L) and
the mean sojourn time E(S), without knowing the probabilities pk. This approach uses
three important properties. The first one is Little’s formula (see Section 1.5), the second
one is the PASTA property (see Section 1.6), and the third one is the fact that if a job
has an exponentially distributed service time, then the residual service time of the job in
service on an arrival instant is again exponential.

Based on the PASTA property we know that the mean number of jobs in the system
seen at an arrival instant of a job equals E(L). Furthermore, by the third property, each
of them (also the one in service) has a (residual) service time with mean 1/µ. Finally, the
sojourn time of a job also includes its own service time. Hence,

E(S) = E(L)
1

µ
+

1

µ
.

This relation is known as the arrival relation. Together with Little’s formula,

E(L) = λE(S),

we have two equations from which we get

E(S) = λE(S)
1

µ
+

1

µ
= ρE(S) +

1

µ
.
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Thus,

E(S) =
1

1− ρ
1

µ
,

and

E(L) =
ρ

1− ρ
.

4.2.3 The distribution of the sojourn time

The mean value approach is, although a very powerful tool, not able to lead us to the
distribution of the sojourn time. We can, however, compute this distribution from the
equilibrium distribution. To do so, note that if an arriving job finds k jobs in the system,
then the sojourn time of this job consists of k + 1 independent exponential service times
(one of which may be a residual service time). Recall that the sum of k + 1 independent
and identically distributed service times is Erlang distributed with parameters k + 1 and
µ, so with density

fk+1(t) = µ
(µt)k

k!
e−µt .

By PASTA, the probability that an arriving job finds k jobs in the system is equal to pk.
So, we get for the overall density

f(t) =
∞∑
k=0

pkfk+1(t) =
∞∑
k=0

(1− ρ)ρkµ
(µt)k

k!
e−µt = µ(1− ρ)e−µ(1−ρ)t.

Hence, the sojourn time is also exponentially distributed, but with parameter µ(1− ρ).

4.3 The M/M/1/N queue

In real life, buffers are often too small to be taken as infinite. Hence let us consider the
M/M/1/N queue. This is an M/M/1 queue with N − 1 < ∞ waiting positions in the
queue. Such a system can hold at most N jobs. Arriving jobs which find the buffer full
disappear (are processed elsewhere). Like in the M/M/1 case, X(t) denotes the number
of jobs or customers in the system at time t, and again {X(t), t ≥ 0} is an irreducible
Markov process. All states of the Markov process are now positive recurrent, even if ρ ≥ 1
(why?). The global balance equations (4.1) and (4.2), and also the local balance equations
(4.4), remain valid, for k < N . The limiting distribution of the Markov process of number
of customers is now given by pk = ρkp0 for k = 0, . . . , N , with

p0[
N∑
k=0

ρk] = 1,
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and hence

pk =
1− ρ

1− ρN+1
ρk, k = 0, 1, . . . , N.

4.4 The M/M/c queue

In this section we analyze the model with exponential interarrival times with mean 1/λ,
exponential service times with mean 1/µ and c parallel, identical servers. Jobs are served
in order of arrival. We suppose that the occupation rate per server,

ρ :=
λ

cµ
,

is smaller than one.
The M/M/c queue is an important model from the viewpoint of applications. Its study

allows us to obtain insight into the advantages of having several parallel servers (processors,
or counters at the post office or supermarket). For c = ∞ obviously no queue arises; the
M/M/∞ and, more generally, the M/G/∞ may be used to model, e.g., transportation
along a conveyor belt.

4.4.1 The queue length distribution

The state of the system is completely characterized by the number of jobs in the system.
Let pn denote the equilibrium probability that there are n jobs in the system. Similar as
for the M/M/1 system, we can derive the equilibrium equations for the probabilities pn
from the flow diagram shown in figure 4.2.
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Figure 4.2: Flow diagram for the M/M/c model

Instead of equating the flow into and out of a single state n, we get simpler equations
by equating the flow out of and into the set of states {0, 1, . . . , n − 1}. This amounts to
equating the flow between the two neighboring states n− 1 and n yielding

λpn−1 = min(n, c)µpn, n = 1, 2, . . .

Iterating gives

pn =
(cρ)n

n!
p0, n = 0, . . . , c,
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and

pc+n = ρnpc = ρn
(cρ)c

c!
p0, n = 0, 1, 2, . . .

The probability p0 follows from normalization, yielding

p0 =

(
c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

1

1− ρ

)−1

.

An important quantity is the probability that a job has to wait. Denote this probability
by ΠW . By PASTA it follows that

ΠW = pc + pc+1 + pc+2 + · · ·
= pc[1 + ρ+ ρ2 + . . . ] =

pc
1− ρ

=
(cρ)c

c!

(
(1− ρ)

c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

. (4.5)

4.4.2 Mean queue length and mean waiting time

From the equilibrium probabilities we directly obtain for the mean queue length,

E(Lq) =
∞∑
n=0

npc+n

=
pc

1− ρ

∞∑
n=0

n(1− ρ)ρn

= ΠW

∞∑
n=0

n(1− ρ)ρn

= ΠW ·
ρ

1− ρ
(4.6)

and then from Little’s law,

E(W ) = ΠW ·
1

1− ρ
· 1

cµ
. (4.7)

These formulas for E(Lq) and E(W ) can also be found by using the mean value technique:
If not all servers are busy on arrival the waiting time is zero. If all servers are busy and
there are zero or more jobs waiting, then a new arriving job first has to wait until the first
departure and then continues to wait for as many departures as there were jobs waiting
upon arrival. An interdeparture time is the minimum of c exponential (residual) service
times with mean 1/µ, and thus it is exponential with mean 1/cµ. So we obtain

E(W ) = ΠW
1

cµ
+ E(Lq)

1

cµ
.
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Together with Little’s law we retrieve the formulas (4.6)–(4.7). Table 4.1 lists the waiting
probability ΠW and the mean waiting time E(W ) in an M/M/c with mean service time 1
for ρ = 0.9.

c ΠW E(W )
1 0.90 9.00
2 0.85 4.26
5 0.76 1.53

10 0.67 0.67
20 0.55 0.28

Table 4.1: Performance characteristics for the M/M/c queue with µ = 1 and ρ = 0.9

We see that the waiting probability slowly decreases as c increases. The mean wait-
ing time however decreases fast (a little faster than 1/c). One can also look somewhat
differently at the performance of the system. We do not look at the occupation rate of
a server, but at the average number of idle servers. Let us call this the surplus capacity.
Table 4.2 shows for fixed surplus capacity (instead of for fixed occupation rate as in the
previous table) and c varying from 1 to 20 the mean waiting time and the mean number
of customers in the system.

c ρ E(W ) E(L)
1 0.90 9.00 9
2 0.95 9.26 19
5 0.98 9.50 51

10 0.99 9.64 105
20 0.995 9.74 214

Table 4.2: Performance characteristics for fixed surplus capacity of 0.1 server

Although the mean number of jobs in the system sharply increases, the mean waiting
time remains nearly constant. It is clear that a c-server system is more efficient than c
separate single-server queues: in the latter system, some servers may be idle while there
are waiting customers at other queues.

4.4.3 Distribution of the waiting time

The derivation of the distribution of the waiting time is very similar to the one in section
4.2.3 for the M/M/1 queue. By conditioning on the state seen on arrival we obtain

P (W > t) =
∞∑
n=0

P (
n+1∑
k=1

Dk > t)pc+n,
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where Dk is the kth interdeparture time. Clearly, the random variables Dk are independent
and exponentially distributed with mean 1/cµ. Hence, we find

P (W > t) =
∞∑
n=0

n∑
k=0

(cµt)k

k!
e−cµtpc+n

=
∞∑
k=0

∞∑
n=k

(cµt)k

k!
e−cµtpcρ

n

=
pc

1− ρ

∞∑
k=0

(cµρt)k

k!
e−cµt

= ΠW e
−cµ(1−ρ)t, t ≥ 0.

This yields for the conditional waiting time,

P (W > t|W > 0) =
P (W > t)

P (W > 0)
= e−cµ(1−ρ)t, t ≥ 0.

Hence, the conditional waiting time W |W > 0 is exponentially distributed with parameter
cµ(1− ρ).
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Chapter 5

The M/G/1 system

5.1 Introduction

In the previous chapter we considered queueing systems with Poisson arrivals, which is
in many cases a fairly realistic model for the arrival process, and with exponentially dis-
tributed service times. In practice exponentially distributed service times are not very
common. Therefore it is important to extend the theory to the case of more generally
distributed service times.
In this chapter we will study the case of Poisson arrivals and generally distributed, though
independent, service times. So we will be looking at the M/G/1 system. The service order
is again FCFS. We use the same notation as before; in particular, ρ = λE(B) denotes the
traffic load: the product of the arrival rate and the mean service time. One can show that,
like for the M/M/1 queue, ρ is the probability that in equilibrium there is at least one
customer present.

5.2 The mean value approach

Performance measures like the mean waiting time and the mean number of jobs in the
queue can be, similar to the M/M/1 queue, obtained by the mean value approach. First,
let us derive the arrival relation. A new arriving job first has to wait for the residual
processing time of the job in service (if there is one) and then continues to wait for the
processing of all jobs which are already waiting in the queue on arrival. By PASTA we
know that with probability ρ the machine is working on arrival. Let the random variable
R denote the residual service time and let Lq denote the number of jobs waiting in the
queue. Hence,

E(W ) = E(Lq)E(B) + ρE(R).

Furthermore, we get by Little’s law (applied to the queue),

E(Lq) = λE(W ).
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Combining these two relations, we find

E(W ) =
ρE(R)

1− ρ
. (5.1)

Formula (5.1) is commonly referred to as the Pollaczek-Khinchin mean value formula. It
remains to calculate the mean residual service time. In the following section we will show
that

E(R) =
E(B2)

2E(B)
, (5.2)

which may also be written in the form

E(R) =
E(B2)

2E(B)
=
σ2
B + E(B)2

2E(B)
=

1

2
(c2
B + 1)E(B). (5.3)

An important observation is that, clearly, the mean waiting time depends on the service
time distribution only through its first two moments. So in practice it is sufficient to know
the mean and standard deviation of the service time in order to estimate the mean waiting
time and mean queue length:

E(W ) =
λE(B2)

2(1− ρ)
, E(Lq) =

λ2E(B2)

2(1− ρ)
. (5.4)

Once we know E(W ) and E(Lq), expressions for E(S) and E(L) follow of course using
E(S) = E(W ) + E(B) and E(L) = E(Lq) + ρ.

Example 5.2.1 (Exponential service times)
For exponential service times we have E(R) = E(B) (memoryless property!), which indeed
correponds to (5.3). So, in this case the expressions for the mean performance measures
simplify to

E(W ) =
ρ

1− ρ
E(B), E(Lq) =

ρ2

1− ρ
, E(S) =

1

1− ρ
E(B), E(L) =

ρ

1− ρ
.

Example 5.2.2 (Deterministic service times)
For deterministic service times we have c2

B = 0 and hence E(R) = E(B)/2. In this case
we have

E(W ) =
ρ

1− ρ
E(B)

2
, E(Lq) =

ρ2

2(1− ρ)
,

E(S) =
ρ

1− ρ
E(B)

2
+ E(B), E(L) = ρ+

ρ2

2(1− ρ)
.
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5.3 Residual service time

Suppose that a job arrives when the server is working and denote the total service time of
the job in service by Y . Further let fY (·) denote the density of Y . The basic observation
to find fY (·) is that it is more likely that a job arrives during a long service time than
during a short one. So the probability that Y is of length x should be proportional to the
length x as well as the frequency of such service times, which is denoted by fB(x)dx. Thus
we may write

P (x ≤ Y ≤ x+ dx) = fY (x)dx = CxfB(x)dx,

where C is a constant to normalize this density. So

C−1 =

∫ ∞
0

xfB(x)dx = E(B).

Hence

fY (x) =
xfB(x)

E(B)
.

We conclude that

E(Y ) =

∫ ∞
0

xfY (x)dx =
1

E(B)

∫ ∞
0

x2fB(x)dx =
E(B2)

E(B)
.

Because the arrival point of the job will be a random point within this service time Y , we
conclude that the mean residual service time is given by

E(R) =
E(Y )

2
=
E(B2)

2E(B)
.

Example 5.3.1 (Erlang service times)
For an Erlang-r service time with mean r/µ we have

E(B) =
r

µ
, σ2(B) =

r

µ2
,

so

E(B2) = σ2(B) + (E(B))2 =
r(1 + r)

µ2
.

Hence

E(R) =
1 + r

2µ
.
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5.4 The busy period

An important performance measure of queueing systems is the busy period, a period during
which the server is uninterruptedly busy. We denote the length of a busy period by P .
Each busy period is followed by an idle period in which the server is idle. A busy period
and the subsequent idle period together constitute a busy cycle. In this section we indicate
two ways to determine the mean E(P ) of the length of a busy period in the M/G/1 queue.

Method 1.
The server is busy during a fraction ρ of the time, and hence

E(P )

E(C)
=

E(P )

E(P ) + E(I)
= ρ. (5.5)

The memoryless property of the interarrival times implies that E(I) = 1/λ. Hence it
follows that

E(P ) =
E(B)

1− ρ
. (5.6)

Method 2.
A busy period consists of its first service plus the service of all the work that enters while
the busy period is ongoing. The mean of the latter term equals ρE(P ), since ρ work arrives
per unit of time. (why is it important to have Poisson arrivals here?) Hence

E(P ) = E(B) + ρE(P ), (5.7)

again leading to (5.6). It is at first sight paradoxal, that the mean length of a whole busy
period in the M/G/1 queue can be smaller than the mean sojourn time of one customer
(for example, in the M/M/1 case they are equal; in the M/Hk/1 queue, E(P ) is indeed
smaller). Can you explain this paradox?

5.5 The queue length distribution

In this section we shall consider the equilibrium distribution of the number of customers
in the system just before arrival epochs, immediately after departure epochs, and at ar-
bitrary points in time. Let Xa,n be the number of customers found by the n-th arriving
customer after t = 0, let Xd,n be the number of customers that is left behind by this
customer upon departure, and let X(t) be the number of customers in the system at
time t. Xa, Xd and X have the corresponding equilibrium distributions. We indicate
how the equilibrium distribution P(Xd = j) can be obtained; subsequently we argue that
P(X = j) = P(Xa = j) = P(Xd = j).
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Let An be the number of arrivals during the service of the n-th customer. The following
recursion holds:

Xd,n+1 = Xd,n − 1 + An+1 if Xd,n > 0,

= An+1 if Xd,n = 0.

Verify that {Xd,n, n = 1, 2, . . . } is a Markov chain. The transition probabilities pij of this
Markov chain are (to make the argument slightly easier, we assume that the density b(·)
of the service time distribution exists): for j = 0, 1, . . . ,

p0j = P(An = j) =

∫ ∞
0

e−λt
(λt)j

j!
b(t)dt,

and for i = 1, 2, . . . , j = i− 1, i, . . . :

pij = P(An = j − i+ 1) =

∫ ∞
0

e−λt
(λt)j−i+1

(j − i+ 1)!
b(t)dt,

while pij = 0 for j = 0, 1, . . . , i− 2.

Example 5.5.1 (The M/M/1 queue)
In this case, b(t) = µe−µt. Check that p0j = ( λ

λ+µ
)j µ
λ+µ

. This can be proven by observing
that

p0j =

∫ ∞
0

e−λt
(λt)j

j!
µe−µtdt

= (
λ

λ+ µ
)j

µ

λ+ µ

∫ ∞
0

e−(λ+µ)t ((λ+ µ)t)j

j!
(λ+ µ)dt,

and noticing that the last integrand is exactly the density of the Erlang-j distribution
with parameter λ + µ. That the last integral equals one can also be verified via partial
integration.
Another method to prove that p0j = ( λ

λ+µ
)j µ
λ+µ

is the following. The arrival intervals and

service times are exponentially distributed (memoryless). The probability that an arrival
interval is shorter than a service time equals λ

λ+µ
. The memoryless property of the service

time distribution implies that the probability that the first j arrivals all take place before
the end of that same service equals ( λ

λ+µ
)j.

The equilibrium distribution P(Xd = j) can be obtained from the above recurrence rela-
tions between Xd,n+1 and Xd,n via generating functions. We give the result without proof.
Let A(z) =

∑∞
j=0 P(An = j)zj:

A(z) =

∫ ∞
0

e−λtb(t)
∞∑
j=0

(λtz)j

j!
dt

=

∫ ∞
0

e−λt(1−z)b(t)dt.
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It can be shown that
∞∑
j=0

P(Xd = j)zj =
(1− ρ)(1− z)A(z)

A(z)− z
.

By differentiation of this expression w.r.t. z and substitution of z = 1, it follows after some
calculation that

EXd = ρ+
λ2((E(B))2 + σ2(B))

2(1− ρ)
= ρ+

λ2E(B2)

2(1− ρ)
,

which is the same value as we found for E(L) = ρ+E(Lq) in (5.4). For given service time
distribution P(Xd = j) can be determined from the generating function.

Example 5.5.2 (The M/M/1 queue)
Now

A(z) =

∫ ∞
0

e−λt(1−z)µe−µtdt =
µ

µ+ λ(1− z)
.

Hence
∞∑
j=0

P(Xd = j)zj =
(1− ρ)(1− z)µ

µ− z(µ+ λ(1− z))
=

1− ρ
1− ρz

,

so that (geometric sum):

P(Xd = j) = (1− ρ)ρj, j = 0, 1, . . . .

Now that we have obtained the (generating function of the) probability distribution P(Xd =
j), we shall indicate why that distribution equals the distribution of the numbers of cus-
tomers just before arrivals and at arbitrary moments in time. That P(Xa = j) ≡ P(Xd = j)
follows from the fact that in equilibrium the number of customers changes just as many
times from j to j+1 as from j+1 to j (this equality holds much more generally, for queue-
ing systems in which customers arrive individually and are served individually). That
P(Xa = j) ≡ P(X = j) follows from PASTA: arriving customers see the system in steady
state.

Remark 5.1
For the G/G/1 system with general interarrival times and arbitrary processing times only
approximations exist. The simplest approximation for the mean waiting time assumes that
the randomness of the interarrival process has more or less the same effect on the mean
waiting time as the randomness in the service times. Denoting the coefficient of variation
of the interarrival times by cA and the coefficient of variation of the processing times by
cB, the approximation is given by

E(W ) ≈ ρ

1− ρ
· c

2
A + c2

B

2
· E(B). (5.8)
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Other approximations that are proposed in the literature are

E(W ) ≈ ρ

1− ρ
· (1 + c2

B) (c2
A + ρ2c2

B)

2 (1 + ρ2c2
B)

· E(B) (5.9)

and

E(W ) ≈ ρ

1− ρ
· (1 + c2

B) ((2− ρ)c2
A + ρc2

B)

2 (2− ρ+ ρc2
B)

· E(B) (5.10)

Remark that all three approximations are exact for the case that the arrival process is
a Poisson process, i.e., c2

A = 1 (cf. (5.1) and (5.3)). In the next table we compare the
approximations with exact results in the case of Erlang distributed interarrival and pro-
cessing times. We have chosen ρ = 0.9, E(B) = 1, c2

B = 1/4 and c2
A = 1/4, 1/3 and 1/2,

respectively.

c2
A

1/4 1/3 1/2
(5.8) 2.250 2.625 3.375
(5.9) 2.117 2.507 3.287
(5.10) 2.122 2.512 3.290
exact 2.076 2.466 3.250

Table 5.1: Comparison of the approximations of the mean waiting times with exact results

43



44



Chapter 6

The M/G/1 priority system

6.1 Introduction

Usually not all jobs have the same urgency. In production systems, some jobs are supposed
to be ready within a day or a week, while other jobs have a delivery date of 4 to 6 weeks
after the placement of the order. Furthermore, some customers may be regular ones with
contracts specifying short sojourn times, others are occasional and receive a delivery date
according to the present amount of work in process. And in a Real Time Database (RTDB)
system that is consulted from many different sites, it is also natural to have priorities (e.g.,
give write jobs priority over read jobs). In communication networks, there are various types
of traffic with very different characteristics to which, accordingly, often different priorities
must be assigned. For example, one may wish to distinguish between data-, voice-, and
video traffic.

These circumstances make it quite natural to study a simplified queueing system in
which arriving jobs belong to different job classes and in which the job classes have different
priorities. If we number the priority classes from 1 upto r, then class 1 is top priority, class
2 has the second highest priority, etc.

Furthermore, the job classes may have different service time characteristics. We denote
the service time of class i by Bi, with mean E(Bi) and mean residual service time E(Ri)
with E(Ri) = E(B2

i )/2E(Bi). Class i jobs arrive according to a Poisson process with rate
λi.

We will consider two variants of the priority rule. In the first one a job that has started
can not be interrupted, in the second one the service of a job can be interrupted by newly
arrived jobs of higher priority classes. If all higher priority jobs are served, the servicing of
the job is resumed where it was preempted, i.e., no work is lost. The first type of priority
is called non-preemptive, the second type is called preemptive-resume.

If we think of the situation in which all servicing is done on one processor, non-
preemptive priorities are far more natural, since an interrupt might lead to extra setup
time or even to destruction of the job. If however one considers a production environment
in which the production capacity is mainly labour, then switching from one job to another
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might be fairly easy.

6.2 The non-preemptive priority system

The analysis is again based on the mean value approach, and a more or less straightforward
extension of what we have seen in Chapter 5. The quantities of interest are for class i jobs
the mean waiting time E(Wi), the mean number of jobs waiting in the queue E(Lqi ), the
mean sojourn time E(Si) and the mean number of jobs in the system E(Li).

Let us denote by ρi := λiE(Bi) the utilization by class i jobs. Then according to
the PASTA property an arriving job finds with probability ρi a class i job in service.
Furthermore, upon arrival the job finds on the average E(Lqi ) jobs of class i in the queue.

Let us first look at a job of class 1. This job must wait for jobs of its own class that
arrived before, and also for the job (if any) in service. So,

E(W1) = E(Lq1)E(B1) +
r∑
i=1

ρiE(Ri) .

Defining,

ρ :=
r∑
i=1

ρi

and

E(R) :=
r∑
i=1

ρi
ρ
E(Ri),

(note that ρi/ρ is not the probability that an arbitrary customer is of type i, but the
fraction of time that a service is a type i service), this becomes

E(W1) = E(Lq1)E(B1) + ρE(R), (6.1)

where the term ρE(R) can be interpreted as the expected remaining amount of work
currently present at the server. Further we have Little’s formula again, stating

E(Lq1) = λ1E(W1). (6.2)

Combining (6.1) and (6.2) gives us

E(W1) =
ρE(R)

1− ρ1

.

Thus

E(S1) =
ρE(R)

1− ρ1

+ E(B1), E(Lq1) =
λ1ρE(R)

1− ρ1

, E(L1) =
λ1ρE(R)

1− ρ1

+ ρ1.
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For the job classes i = 2, ..., r the situation is more complicated. Besides the amount of
work found upon arrival that a job has to wait for, a job also has to wait for higher priority
jobs that arrive later while it is waiting in the queue.

Now let us consider a job of class i. According to the reasoning above we get intuitively

E(Wi) =
i∑

j=1

E(Lqj)E(Bj) + ρE(R) + E(Wi)
i−1∑
j=1

ρj .

One may formally show the correctness of the third term, but we will not do this here.
Moving the third term to the lefthand side we have

E(Wi)(1−
i−1∑
j=1

ρj) =
i∑

j=1

E(Lqj)E(Bj) + ρE(R) . (6.3)

Using Little

E(Lqi ) = λiE(Wi),

we can rewrite (6.3) as

E(Wi)(1−
i∑

j=1

ρj) =
i−1∑
j=1

E(Lqj)E(Bj) + ρE(R) .

The right-hand side in this expression is exactly the righthand side of (6.3) with i replaced
by i− 1. Thus

E(Wi)(1−
i∑

j=1

ρj) =
i−1∑
j=1

E(Lqj)E(Bj) + ρE(R) = E(Wi−1)(1−
i−2∑
j=1

ρj) .

From this and the expression for E(W1) we easily derive recursively

E(Wi) =
ρE(R)

(1−
∑i

j=1 ρj)(1−
∑i−1

j=1 ρj)
, i = 1, 2, .., r. (6.4)

From this we directly find E(Si), E(Lqi ) and E(Li) using

E(Si) = E(Wi) + E(Bi),

E(Lqi ) = λiE(Wi)

and

E(Li) = E(Lqi ) + ρi.
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Example 6.2.1 In an RTDB three types of jobs have to be processed. Jobs of different
types arrive according to independent Poisson processes. Type 1 jobs have a mean service
time of 1 second, type 2 jobs require 4 seconds on average, and type 3 jobs 10 seconds.
Within each class the service times are exponentially distributed. 70 % of all arriving jobs
is type 1, 20 % is type 2 and 10 % is type 3. The total arrival rate is 20 jobs per minute.
Since the overall mean service time is 2.5 seconds (check), the traffic load is ρ = 5/6. If
we treat all jobs equally (no priorities), then the mean waiting time is 27.8. With non-
preemptive priorities, we get EW1 = 6.04, EW2 = 12.09 and EW3 = 55.6 (we have used
that ER = 5.56; please verify).

6.3 The preemptive-resume priority system

If jobs are preempted, everything becomes more complicated. We no longer have at most
one residual service time, but there may be several, although at most one per job class.
This makes it difficult to follow the reasoning we used in the non-preemptive case. However,
there is an easy way out: don’t concentrate on jobs, but on work in the system and note
that the performance of a job of class i is completely unaffected by the jobs of the classes
j > i. The system only works on these jobs if there are no class i or higher priority jobs.
So if we try to derive the performance of a class i job we can act as if λj = 0 for j > i.

Now note that the mean time in the system, E(Si), for a class i job consists of three
parts:

E(Si) = E(Wi) + E(Bi) + E(Ii). (6.5)

The first term, E(Wi), is the mean time until the job goes into service for the first time.
The second term, E(Bi), is the job’s own mean service time and the third term, E(Ii), is
the mean total interruption time during its service time.

So let us look at a system in which the classes i + 1 upto r do not exist. And let us
compare the waiting time in this system for a lowest priority job, i.e. a class i job, in the
non-preemptive and preemptive-resume systems.

First note that the total amount of work in the system is not affected by any of these
two priority rules. The rules are so-called work conserving, i.e., no capacity is lost. So,
although the order in which jobs are treated is different from the non-preemptive case, the
total amount of work found upon arrival is the same. Thus

E(Wi) =

∑i
j=1 ρjE(Rj)

(1−
∑i

j=1 ρj)(1−
∑i−1

j=1 ρj)
.

Notice that this is the same expression as in (6.4), in case there are only i types of customers.
The second term in (6.5) is the mean service time E(Bi) and the third term is the sum
of the interruptions. The total interruption time consists of two parts, the sum of the
service times of the jobs that interrupt the job we are looking at, and the sum of service
times of the jobs with higher priority that arrive during periods in which the job is already
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interrupted.
Hence, we get (do we again use that the arrival process is Poisson?)

E(Ii) = E(Bi)
i−1∑
j=1

λjE(Bj) + E(Ii)
i−1∑
j=1

λjE(Bj) .

So the second and third term in (6.5), the mean service time and the mean total interrupt
time, add up to what one might call the generalized service time

E(Bi) + E(Ii) =
E(Bi)

(1−
∑i−1

j=1 ρj)
.

Hence the total mean sojourn time becomes

E(Si) =

∑i
j=1 ρjE(Rj)

(1−
∑i−1

j=1 ρj)(1−
∑i

j=1 ρj)
+

E(Bi)

(1−
∑i−1

j=1 ρj)
.

Example 6.3.1 Returning to the RTDB example, we now allow preemptions. Then the
mean total sojourn times of types 1 and 2 decrease, at the expense of those of type 3 jobs:
ES1 = 1.30, ES2 = 8.61 and ES3 = 75.6.
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Chapter 7

Queueing networks

7.1 Introduction

Often, congestion phenomena do not just occur in one isolated service facility but at various
interconnected stages.

• When a product is made in a plant, it usually passes several production stages with
different machines, and in addition it may experience delays in packing and billing.

• A computer job may be delayed at several successive visits to a processor and to
memory devices, and finally also at the printer.

• A message traveling from sender to receiver along a path in a communication network
may have to wait at the entrance to the network, and also in various switches between
the successive channels.

All these service systems may be described as queueing networks. In the last fifty years,
often spurred by questions from the manufacturing, computing and communications in-
dustries, much progress has been made in the performance analysis of queueing networks.
A key development has been the identification and analysis of the so-called product-form
networks, a class of queueing networks for which the joint steady-state distribution of the
numbers of customers X1, . . . , XN at the N queues has a product form:

P (X1 = n1, . . . , XN = nN) = C
N∏
i=1

pi(ni), (7.1)

for all possible values of n1, . . . , nN , with pi(ni) a term that only refers to the i-th station,
and with C a normalizing constant.

In this chapter we shall give a global introduction to such product-form networks. More
detailed discussions and results can be found in [6, 8, 13, 14, 16, 20, 34]. In the next section
we give a model description. Sections 7.3 and 7.4 successively discuss closed and open
models of two exponential single server queues. Sections 7.5 and 7.6 consider more general
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open and closed networks of exponential single server queues. Extensions to more general
networks, also involving other service disciplines than FCFS (first-come first-served), are
briefly mentioned in Section 7.7. An efficient method for numerically determining mean
values of numbers of customers and sojourn times in product-form queueing networks is
presented in Section 7.8.

7.2 Model description

We consider in this chapter a network of N stations or queues, Q1, . . . , QN . With the
exception of Section 7.7, it is assumed that the service requests of a customer at Qi are
exponentially distributed with mean 1/µi, i = 1, . . . , N . If a customer has been served
in Qm, then it is routed to Qn with probability pmn. This is called Markov routing: the
routing is described by a Markov chain.

An important distinction is the one between open and closed networks. In a closed
network, there are always K customers. There are no external arrivals, and

∑N
n=1 pmn = 1,

viz., no customer ever leaves the network. In an open network, we assume that new cus-
tomers arrive at the network according to a Poisson process with rate Λ, choosing Qi with
probability λi/Λ. Put differently (cf. Section 2.4), new customers arrive at the queues
according to independent Poisson processes, with rate λi at Qi. We also assume in an
open network that a customer who has received service in Qm leaves the network with
probability pm0 := 1 −

∑N
n=1 pmn. Throughout the chapter it is assumed that all exter-

nal interarrival times and all service times are independent. In the next four sections we
assume that each queue has only one server, and that this server serves according to the
first-come first-served discipline.

Remark 7.1 (examples of closed queueing networks)
Closed networks of queues may seem unnatural at first sight, but they do occur quite
naturally.

• In a production plant there may be K pallets in use, each one carrying a product in
some phase of its development. As soon as a product is completed, it is transferred
with its pallet to another department, and the pallet then returns with new parts (a
new job). One can model this as a closed network with K customers.

• In the classical multiprogrammed computer system with fixed level K of multipro-
gramming, at most K programs are admitted in main memory. Customers (pro-
grams) alternately visit the central processing unit and a data storage and transfer
facility which has access to and can transfer information for only one program at a
time. If one is interested in the performance of this system, it is natural to consider
the ‘heavy-traffic’ situation in which always K programs are running; as soon as a
program is completed, it is replaced by another one.

• In exercising flow control along a path between sender and receiver in a communi-
cation network, a ‘window’ mechanism is often being used. Suppose that a source
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generates messages according to a Poisson process with rate Λ. The window flow
control mechanism requires that at most K messages may be on their way to the
destination. The destination acknowledges each received message, and subsequently
the source may transmit a new message. To model this situation [22], replace a model
of N queues in series (representing the N successive switches in the communication
path) by a closed model of N + 1 queues, by adding a single server queue Q0 with
exp(Λ) service times which feeds into Q1 and which receives customers from QN . If
Q1, . . . , QN together contain K customers (i.e., K unacknowledged messages), then
Q0 is empty, so that no new customers can arrive at Q1. If Q1, . . . , QN together con-
tain less than K customers, then new customers arrive at Q1 according to a Poisson
process with rate Λ.

7.3 Two simple closed systems

In this section we use two simple examples of closed queueing systems to develop some
intuition for the general closed queueing network.

The CP - Disk model
In the CP-Disk system (actually a model for a computer with fixed level of multiprogram-
ming) we distinguish two stations: A central processor CP, and a disk D. K jobs move
around in the system, each representing one program in execution. We assume that both
CP and D operate as a FCFS single server. The jobs alternately visit the two stations. In
station CP their service requires an exponential time with mean 1/µCP ; in station D the
service time is exponential with mean 1/µD. Since all service times are exponential, the
number of jobs at the CP at time t forms a Markov process.

For this Markov process we can easily make a flow diagram, which subsequently yields
the following balance equations for the equilibrium probabilities pk of having k jobs at the
CP:

pkµD = pk+1µCP , k = 0, 1, . . . , K − 1,

so

pk =

(
µD
µCP

)k
p0, k = 0, 1, . . . , K.

If instead of the one-dimensional state description we use the two-dimensional state
description (kCP , kD) of numbers of jobs in CP and D, we can write this in the following
elegant symmetric product form.

p(kCP , kD) = C

(
1

µCP

)kCP
(

1

µD

)kD
, (7.2)

53



with C the normalization constant. Going back to the one-dimensional form, it is easily
verified that

pkCP
= p(kCP , kD) =

( µD
µCP

)kCP∑K
j=0( µD

µCP
)j

=
1− µD

µCP

1− ( µD
µCP

)K+1
(
µD
µCP

)kCP , kCP = 0, 1, . . . , K. (7.3)

Remark 7.2 (connection to M/M/1/K)
Notice that pkCP

= p(kCP , kD) in (7.3) equals the probability of having kCP customers in
an M/M/1/K queue with arrival rate µD and service rate µCP (explanation?).

Remark 7.3 (example)
Suppose that µD = 1, µCP = 2 and K = 100. What is the mean number of jobs at
CP? Instead of exactly evaluating this mean (which is given by

∑
kp(k,K − k)), we shall

present an insightful and very accurate approximation (please guess first what the mean
approximately is!). The probability that D is empty equals

p(100, 0) =
1− 1

2

1− (1
2
)101

(
1

2
)100 ≈ (

1

2
)101,

which is O(10−30). Hence, for all practical purposes, one can say that D is never empty.
So CP receives customers according to a Poisson process with rate µD = 1. Hence CP
very closely resembles an M/M/1 queue with arrival rate 1 and service rate 2. The mean
number of customers in an M/M/1 queue with traffic load ρ = 1/2 equals ρ

1−ρ = 1. The
above-described phenomenon is not uncommon: The bottleneck queue, D, has almost all
jobs (99, on average). Verify that, if µD = 1 and µCP = 3/2, then the division of mean
numbers of jobs is approximately 98 versus 2.

Computer - Terminal model
In the so-called computer - terminal model there are two stations: a terminal station
denoted by T and a computer denoted by C. The terminal station consists of a set of
K identical terminals. The computer is modelled as a single server with FCFS service
discipline. All terminals are occupied. The system works as follows. A terminal user
creates a job for the computer and sends it away. Then he waits for the results. As soon as
he gets his reply he starts to create a new job. So for every terminal there is an alternation
of think and wait periods.

Let us assume that the job sizes at the computer are exponentially distributed with
mean 1/µC and that the think times are exponential with mean 1/µT .

Although each terminal is used by a different user, it is possible to look at the terminal
station as one multi-server station. If we are not interested in which terminals are thinking
but only in how many, then a one-dimensional state description suffices. Using as state
descriptor the number of ’thinking’ terminals, kT , we can make a flow diagram. From the
flow diagram we easily find

pk =
1

k!

(
µC
µT

)k
p0, k = 0, 1, . . . , K.
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As in the previous example the one-dimensional state description hides the structure.
If we take as state (kT , kC), then the equilibrium distribution can be given in the form

p(kT , kC) = D
1

kT !

(
1

µT

)kT ( 1

µC

)kC
, (7.4)

with D again a normalizing constant.
Since kT + kC = K, it is easily verified that

pkT = p(kT , kC) =
(µC
µT

)kT /kT !∑K
j=0(µC

µT
)j/j!

, kT = 0, 1, . . . , K. (7.5)

Remark 7.4 (the machine - repairman model)
Mathematically, this model is the same as the Machine - Repairman model. That is a
model with K machines, which break down after an exp(µT ) distributed time, and then
go to a repairman who repairs machines in FCFS order, with exp(µC) repair times. So the
terminals are replaced by the machines and the computer by the repairman. The think
time corresponds to the time until the next failure and the computer time corresponds to
the repair time.

Remark 7.5
Consider the M/M/K/K system, also known as the Erlang loss system (A.K. Erlang was
a Danish telephone engineer, who made important contributions to queueing theory and
its communications applications): Customers arrive according to a Poisson(µC) process
at K servers (e.g., calls requesting a telephone line, or cars requesting a parking place).
When all servers are busy, the arriving customer disappears never to return. Service times
of admitted customers are exp(µT ) distributed. The number of customers in this system
forms a Markov process. The corresponding balance equations are identical to those for
the number of thinking terminals (or operative machines). Hence, Formula (7.5) also gives
the steady-state distribution of the number of busy servers in the M/M/K/K system.

7.4 Two M/M/1 queues in series

Following R.R.P. Jackson [12], we now consider the open tandem queue: Two single server
queues Q1 and Q2 in series. Q1 is an M/M/1 queue with arrival rate λ and service rate µ1.
All customers who leave Q1 are routed to Q2, where they require an exp(µ2) distributed
service time. Upon service completion in Q2, a customer leaves the system.

The two-dimensional process {(X1(t), X2(t)), t ≥ 0} of numbers of customers in Q1

and Q2 at time t is an irreducible Markov process. If λ < min(µ1, µ2) (which is henceforth
assumed to hold: It guarantees that less work arrives at each queue per time unit than
its server can handle), then this Markov process is positive recurrent, and a steady-state
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distribution p(m,n) := limt→∞P (X1(t) = m,X2(t) = n) exists. The balance equations for
this steady-state distribution are given by:

(λ+ µ1 + µ2)p(m,n) = λp(m− 1, n) + µ1p(m+ 1, n− 1) + µ2p(m,n+ 1),

m, n = 1, 2, . . . , (7.6)

(λ+ µ1)p(m, 0) = λp(m− 1, 0) + µ2p(m, 1), m = 1, 2, . . . ,

(λ+ µ2)p(0, n) = µ1p(1, n− 1) + µ2p(0, n+ 1), n = 1, 2, . . . ,

λp(0, 0) = µ2p(0, 1),

with normalizing condition

∞∑
m=0

∞∑
n=0

p(m,n) = 1.

Jackson [12] has verified that this set of equations has the following solution (and the
theory of Markov processes implies that it is the unique solution):

p(m,n) = (1− λ

µ1

)(
λ

µ1

)m(1− λ

µ2

)(
λ

µ2

)n, m, n = 0, 1, . . . . (7.7)

Summing over n yields the marginal distribution p1(m) := limt→∞ P (X1(t) = m) =
(1 − λ

µ1
)( λ
µ1

)m, the result we should have expected: Q1 is an M/M/1 queue. It is more
remarkable that, similarly,

p2(n) := limt→∞P (X2(t) = n) = (1− λ

µ2

)(
λ

µ2

)n, (7.8)

so that Q2 also behaves like an M/M/1 queue.

Remark 7.6
Notice the product form of the steady-state distribution:

p(m,n) = p1(m)p2(n),

and notice that, apparently, the steady-state numbers of customers at Q1 and Q2 are in-
dependent.

Inspired by Jackson’s result, P.J. Burke [2] has proven his output theorem:
(i) the successive interdeparture times of an M/M/c queue in steady state form a Poisson
process, with the same rate as the arrival process.
(ii) The departure process of an M/M/c queue before time t is independent of the number
of customers at time t.

Statement (i) immediately implies the result (7.8) for Q2. Statement (ii) implies the inde-
pendence of the simultaneously present numbers of customers at Q1 and Q2.
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Remark 7.7 (reversibility)
Reich [21] has proved the above ‘output theorem’ of Burke using the concept of reversibil-
ity. A stochastic process is called reversible if it has the following property: When the
direction of time is reversed, then the behavior of the process remains the same. Speaking
intuitively, if we take a film of such a process and run the film backwards, the resulting
process will be statistically indistinguishable from the original process. This property is
formally described in the following definition:
A stochastic process X(t) is reversible if (X(t1), X(t2), . . . , X(tn)) has the same distribu-
tion as (X(τ − t1), X(τ − t2), . . . , X(τ − tn)) for all t1, t2, . . . , tn and τ .

It is well known that the queue length process in an M/M/c queue is reversible. This
reversibility immediately leads to the two statements of the output theorem:
(i) the output process of Q1 is Poisson(λ), since in the time-reversed situation, the output
process becomes the original input process (which is Poisson(λ)).
(ii) the number of customers in Q1 at time t is independent of the departure process from
Q1 before time t. Indeed, in the time-reversed case this is the obvious statement that the
number of customers in Q1 at time t is independent of the arrival process at Q1 after time
t (we used the memoryless property of the arrivals here!).

7.5 Open Jackson networks

Inspired by the results of R.R.P. Jackson [12] and Burke [2], J.R. Jackson [10] has consid-
ered the open queueing network of N ./M/1 queues that has been described in Section 7.2:
Customers arrive according to independent Poisson processes, and they travel from queue
to queue according to Markovian routing with matrix (pmn), requiring exponentially dis-
tributed service times at single FCFS servers. Because of all the memoryless assumptions,
the process {(X1(t), X2(t), . . . , XN(t)), t ≥ 0} of numbers of customers at Q1, . . . , QN is a
Markov process. Jackson [10] has verified that the balance equations for its steady-state
distribution p(n1, . . . , nN) are satisfied by

p(n1, . . . , nN) =
N∏
i=1

(1− Λi

µi
)(

Λi

µi
)ni , n1, . . . , nN = 0, 1, . . . , (7.9)

with

Λi = λi +
N∑
j=1

Λjpji, (7.10)

(in vector-matrix notation: Λ = λ + ΛP ). Here Λi is the throughput of Qi: The sum of
external arrival rate λi and all the internal flows going from Q1, . . . , QN to Qi. It can be
shown that the steady-state distribution exists if Λi < µi for i = 1, . . . , N . (Exercise: write
down the balance equations, and verify that they are satisfied by (7.9)).
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The product form of (7.9) implies that in steady state the numbers of customers at the
various queues at each particular point in time are independent. We further conclude that
each queue Qi in this so-called Jackson network behaves like an M/M/1 queue with arrival
rate Λi and service rate µi. In particular, with ρi := Λi/µi, the mean number of customers
at Qi is ELi = ρi/(1 − ρi), and Little’s formula (which again holds; think of the money
argument!) implies that the mean sojourn time at Qi is ESi = 1/(µi(1− ρi)).

Remark 7.8
Jackson[10] believed that the M/M/1 behavior of Qi is not surprising in view of Burke’s
output theorem. As observed in Section 2.4, if two independent Poisson processes with
rates ν1 and ν2 are merged, the resulting sum process is a Poisson process with rate ν1 +ν2;
and if in a Poisson arrival process with rate ν each arrival is sent left with probability
p and right with probability 1 − p, then this splitting results in two independent Poisson
processes with rates νp and ν(1− p). So one would indeed readily believe that all flows in
the above Jackson network are Poisson, leading to the result that each queue behaves like an
M/M/1 queue. However, this argument is incorrect when feedback can occur in the network,
viz., a customer may return to a queue where it has been served before. The resulting
dependence destroys the Poisson property, as is demonstrated in the following example.
Consider a single server queue with external Poisson(λ) arrival process, independent exp(µ)
service times, and feedback: After a service completion, a customer leaves the system with
probability 1 − p and returns to the end of the queue with probability p. The number of
customers in this system is a Markov process, and its steady-state distribution exists if
λ < µ(1− p). In the latter case, it is easily verified by writing down the balance equations
that the steady-state distribution is given by

P (X = k) = (1− λ

µ(1− p)
)(

λ

µ(1− p)
)k, k = 0, 1, . . . ,

(as if the arrival process is Poisson(λ/(1 − p))). But is the total arrival process at this
queue really Poisson? Take λ = 10−3, µ = 106, p = 1 − 10−6; then typically there will be
a burst of arrivals, continuing for about 1/(µ(1 − p)) = 1 time unit, and then on average
one has to wait 1/λ = 1000 time units for another burst of arrivals. This is clearly not a
Poisson process!
Thanks to the work of Kelly [13] and others, much insight has been obtained into the
phenomenon that each queue in the above-described Jackson network behaves as if it is an
M/M/1 queue, although the arrival processes at a queue are not necessarily Poisson. The
concept of quasi-reversibility [6, 13] plays a key role here; but its discussion lies outside the
scope of these lecture notes.

7.6 Closed Jackson networks

In 1963, J.R. Jackson [11] extended the results of his paper [10] to closed networks of
./M/1 (actually, ./M/c) queues. This model is obtained from that of the previous section
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by taking λi = 0 and pi0 = 0, i = 1, . . . , N , and starting with, say, K customers. Jackson
[11] proved that the steady-state distribution of the numbers of customers X1(t), . . . , XN(t)
at time t is given by

p(n1, . . . , nN) =
1

G(N,K)

N∏
i=1

(
Λi

µi
)ni ,

n1, . . . , nN = 0, 1, . . . , n1 + · · ·+ nN = K, (7.11)

with (Λ1, . . . ,ΛN) satisfying

Λi =
N∑
j=1

Λjpji, (7.12)

and the normalizing constant G(N,K) being given by

G(N,K) =
∑ N∏

i=1

(
Λi

µi
)ni ,

the sum being taken over the
(
N+K−1

K

)
possible combinations with n1, . . . , nN ≥ 0, n1 +

· · · + nN = K. (Question: In how many ways can you put K balls into N urns? Equiva-
lently, in how many ways can you form a row of K zeros and N − 1 ones?)

Remark 7.9
Equation (7.12) has the same form as the equation π = πP for the steady-state distri-
bution of a Markov chain with transition matrix P . However, the normalizing condition∑

Λi = 1 does not hold: The Λi are determined up to a multiplicative constant. Indeed,
if (Λ1, . . . ,ΛN) is a solution, then so is (cΛ1, . . . , cΛN). Of course, the numerator in (7.11)
then is multiplied by cn1+···+nN = cK , but so is the normalizing constant G(N,K) in the de-
nominator. The actual throughput of node Qi depends on the total number of customers K
in the system. In Section 7.8 we show how one can easily determine this throughput Λi(K).

Remark 7.10
In the special case that p12 = p23 = · · · = pN1 = 1, (7.12) yields Λ1 = · · · = ΛN , which
makes sense for this closed cyclic system. We can now choose all Λi equal to one, say, or
all Λi equal to µ1, for the purpose of presenting the steady-state distribution in an elegant
form. Verify that we thus obtain the result of (7.3) for the model of a CPU and disk.

Remark 7.11
Although (7.11) again has a product form, here – contrary to the situation in open Jack-
son networks – the numbers of customers at the various queues are not independent. For
N = 2, they are even linearly correlated, since X1(t) +X2(t) = N for all t.
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Remark 7.12 (the curse of dimensionality)
For networks of a realistic size, the number of states of the N -dimensional Markov process
may be excessively large. E.g., if there are N = 10 stations and K = 30 customers, then
the number of states is

(
39
9

)
≈ 2 108. Hence, it may be prohibitively difficult to evaluate

G(N,K) by just summing all
(
N+K−1

K

)
terms. Fortunately, there is an efficient algorithm to

compute this normalizing constant: Buzen’s convolution algorithm. Details may be found
in [16] or [17].

7.7 Generalizations

The product-form results of Sections 7.5 and 7.6 have been extended in many directions.
Key publications are [1] and [13]. Without proof we state the following. Consider the
queueing network of Section 7.2, with the following extensions.

1. Instead of FCFS with exponential service times at all nodes, one may have processor
sharing at some nodes (i.e., if there are j customers in a node, then they all receive
service simultaneously, each with service speed 1/j), and Last-Come First-Served
Preemptive Resume at some other nodes. In nodes with those two disciplines, the
service time distribution may be general, with mean 1/µi at Qi; the product-form
expressions (7.9) and (7.11) then remain unchanged. This demonstrates a remarkable
insensitivity for the actual service time distribution in nodes with processor sharing
and with LCFS Preemptive Resume.

2. A FCFS queue Qi may have a service intensity µi(ni) if there are ni customers in
Qi, i = 1, . . . , N . In particular, we may allow ci ≥ 1 servers in Qi (take µi(ni) =
min(ni, ci)µi), where ci may even be infinite. In the latter case, it has been shown
that the above-mentioned insensitivity for the service time distribution again holds.

Remark 7.13
In the case of a closed network of N = 2 queues, with K customers, and with Q1 an
infinite server queue with mean service time 1/µ1 and Q2 a single server queue with exp(µ2)
distributed service times and FCFS service discipline, one has

p(n1, n2) =
1

G(2, K)

(Λ1

µ1
)n1

n1!
(
Λ2

µ2

)n2 , n1, n2 ≥ 0, n1 + n2 = K. (7.13)

The balance of flows (throughputs) (7.12) here results in Λ1 = Λ2, which may be chosen
equal to, say, µ2. This results in

p(n1, K − n1) =
(µ2
µ1

)n1/n1!∑K
j=0(µ2

µ1
)j/j!

, n1 = 0, 1, . . . , K. (7.14)

This is the same form as (7.5) which has been derived for the computer - terminal and
machine - repair models (and for the Erlang loss model) of Section 7.3. Indeed, working
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machines or thinking terminals experience no waiting time, and this part of the network
may be viewed as a service facility with an infinite number of servers.

A third extension of the product-form networks is obtained by allowing several customer
classes (but without priorities). Each class may have its own arrival rates, service rates and
routing probabilities. Some classes may be open, others closed. In a station with FCFS
service, all service times of all classes must be exponentially distributed with the same
service rate. The joint distribution of numbers of customers of each class at the various
queues again has a product form – in fact, this becomes a double product form, as one
product is taken w.r.t. the queues and another product w.r.t. the customer classes. We
refrain from giving details, for which we refer to [6, 13, 17].

7.8 Mean value analysis

In an open product-form network, an extension of PASTA has been shown to hold: An
arriving customer (external arrival, or customer coming from another queue) sees time
averages, i.e., sees the network in equilibrium. Hence it is easy to obtain the mean number
of customers seen at Qi by an arriving customer: Just take the steady-state mean number
of customers. Furthermore, the mean sojourn time at Qi follows by an application of
Little’s formula.

It is more difficult to determine the mean number of customers and mean sojourn time
in a queue of a closed product-form network. Let us first consider the steady-state number
of customers ELi in Qi. Formally, ELi can be obtained from (7.11), but then not only
G(N,K) must be determined, but evaluating

∑
kip(k1, . . . , ki, . . . , kN) requires summing

over a possibly very large number of terms. Fortunately, there is a very efficient way
of determining EL1, . . . , ELN in the closed product-form network of Section 7.6, without
evaluating the actual distributions: The MVA algorithm (Mean Value Analysis algorithm)
of Reiser and Lavenberg [23]. The MVA algorithm is based upon the following arrival
theorem of Lavenberg and Reiser [18], see also Sevcik and Mitrani [29]:

Arrival theorem in closed product-form networks
When a customer leaves a station in the closed product-form network of Section 7.6, then
the joint distribution of the numbers of customers in all stations at this jump epoch equals
the steady-state distribution of the numbers of customers in the same network but with
K − 1 customers.

So the jumping customer sees the remainder of the network in equilibrium, but not count-
ing himself in; this should be compared with the PASTA result for open product-form
networks. The arrival theorem is remarkable and even counterintuitive. Although the
jumping customer has been in the system forever, and has thus influenced the past system
behavior, at the moment of its jump the remainder of the system behaves as if the jumping
customer has never been there.
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Remark 7.14
In the computer - terminal model of Section 7.3, the correctness of the arrival theorem can
readily be verified, using the equivalence of that model with the M/M/K/K Erlang loss
model. In the M/M/K/K model, PASTA implies that

P (arriving customer meets n customers) =
(µ2
µ1

)n/n!∑K
j=0(µ2

µ1
)j/j!

, n = 0, 1, . . . , K. (7.15)

Hence

P (arriving customer is admitted) =

∑K−1
j=0 (µ2

µ1
)j/j!∑K

j=0(µ2
µ1

)j/j!
, (7.16)

and therefor

P (arriving customer meets n customers | he is admitted) =
(µ2
µ1

)n/n!∑K−1
j=0 (µ2

µ1
)j/j!

,

n = 0, 1, . . . , K − 1. (7.17)

The latter probability also is the probability that a jumping customer in the computer -
terminal model sees n thinking terminals (here we use the equivalence of the computer -
terminal model and the Erlang loss model).

The arrival theorem forms the basis for the MVA algorithm. Denote the mean number of
customers, throughput and mean sojourn time at Qi in a closed network with K customers
by ELi(k), Λi(K) and ESi(K), respectively. The MVA algorithm consists of an iterative
evaluation of the following three steps (once more we remind the reader that we restrict
ourself to the model of Section 7.6):

1. Little’s formula for Qi:

ELi(K) = Λi(K)ESi(K). (7.18)

2. Arrival theorem:

ESi(K) =
1

µi
[ELi(K − 1) + 1]. (7.19)

3. Little’s formula for all N queues:

K =
N∑
j=1

ELj(K) =
N∑
j=1

Λj(K)ESj(K)

= Λi(K)
N∑
j=1

λj
λi
ESj(K), (7.20)
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(here λj/λi = Λj/Λi denotes the fixed ratio of throughputs at Qj and Qi, which we
determine once and for all from (7.12)), so that

Λi(K) =
K∑N

j=1
λj
λi
ESj(K)

. (7.21)

Starting with ESi(1) = 1/µi, we successively find Λi(1) from (7.21), ELi(1) from (7.18),
then ESi(2) from (7.19), etc. Question: What is the computational complexity of the
MVA algorithm?

It should be noted that (1) the MVA algorithm determines the actual values of the
throughputs in a closed product-form network with K customers, K = 1, 2, . . . , while
(7.12) only gave their proportions; and (2) the MVA algorithm neither gives the normalizing
constant G(N,K) nor the distribution of the numbers of customers.
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