
Chi 3 tutorial

I.J.B.F. Adan, A.T. Hofkamp, and J.E. Rooda

October 8, 2012

ii

Contents

1 Introduction 1
1.1 Chi 3 in a nutshell . 3
1.2 Exercises . 4

2 Data types 7
2.1 Elementary types . 8
2.2 Tuple types . 12
2.3 Container types . 13
2.4 Custom types . 22
2.5 Exercises . 23

3 Statements 25
3.1 The assignment statement 25
3.2 The if statement . 26
3.3 The while statement . 28
3.4 The for statement . 30
3.5 Notes . 30
3.6 Exercises . 31

4 Functions 33
4.1 Sorted lists . 35

5 Input and output 39
5.1 read functions . 39

iii

iv CONTENTS

5.2 write statements . 40

6 Modeling stochastic behavior 45
6.1 Distributions . 46
6.2 Simulating stochastic behavior 49
6.3 Exercises . 50

7 Processes 53
7.1 A single process . 54
7.2 A process in a process . 56
7.3 Many processes . 57

8 Channels 59
8.1 A channel . 59
8.2 Two channels . 62
8.3 More senders or receivers 64
8.4 Notes . 65
8.5 Exercises . 66

9 Buffers 69
9.1 A one-place buffer . 71
9.2 A single process buffer . 72
9.3 A token buffer . 76
9.4 A priority buffer . 77
9.5 Exercises . 78

10 Servers with time 81
10.1 The clock . 82
10.2 Servers with time . 83
10.3 Two servers . 87
10.4 Assembly . 92
10.5 Exercises . 95

CONTENTS v

11 Conveyors 97
11.1 Timers . 97
11.2 A conveyor . 98
11.3 A priority conveyor . 100
11.4 Exercises . 101

vi CONTENTS

Chapter 1

Introduction

This text is about the modeling of the operation of systems, e.g. semicon-
ductor factories, assembly and packaging lines, car manufacturing plants,
steel foundries, metal processing shops, beer breweries, health care systems,
warehouses, order-picking systems. For a proper functioning of these sys-
tems, these systems are controlled by operators and electronic devices, e.g.
computers.

During the design process, engineers make use of (analytical) mathe-
matical models, e.g. algebra and probability theory, to get answers about
the operation of the system. For complex systems, (numerical) mathemat-
ical models are used, and computers perform ‘simulation’ experiments, to
analyze the operation of the system. Simulation studies give answers to
questions like: What is the throughput of the system?; What is the effect
of set-up time in a machine?; How will the batch size of an order influence
the flow time of the product-items?; What is the effect of more surgeons in
a hospital?

The operation of a system can be described, e.g. in terms of concurrent
or parallel operating processes. An example of a system with parallel op-
erating processes is a manufacturing line, with a number of manufacturing
machines, where product-items go from machine to machine. A surgery
room in a hospital is a system where patients are treated by teams using

1

2 CHAPTER 1. INTRODUCTION

medical equipment and sterile materials. A biological system can be de-
scribed by a number of parallel processes, where, e.g. processes transform
sugars into water and carbon-dioxide producing energy. In all these ex-
amples, processes operate in parallel to complete a task, and to achieve a
goal. Concurrency is the dominant aspect in these type of systems, and as
a consequence this holds too for their models.

The operating behavior of parallel processes can be described by differ-
ent formalisms, e.g. automata, Petri-nets or parallel processes. This text
uses the programming language Chi 3, based on an algebra of concurrent
processes defined in terms of structural operational semantics (SOS).

A system is abstracted into a model, with cooperating processes, where
processes are connected to each other via channels. The channels are used
for exchanging material and information. Models of the above mentioned
examples consist of a number of concurrent processes connected by chan-
nels, denoting the flow of products, patients or personnel.

In Chi 3, communication takes place in a synchronous manner. This
means that communication between a sending process, and a receiving pro-
cess takes place only when both processes are able to communicate. Pro-
cesses and channels can dynamically be altered. To model times, e.g. inter
arrival times and server processing times, the language has a notation of
time.

The rationale behind the language is that models for the analysis of a
system should be formal (exactly one interpretation, every reader attaches
the same meaning to the model), easily writable (write the essence of the
system in a compact way), easily readable (non-experts should be able to
understand the model), and easily extendible (adding more details in one
part should not affect other parts). Verification of the models to investigate
the properties of the model should be effortless. (A model has to preserve
some properties of the real system otherwise results from the simulation
study have no relation with the system being modeled. The language must
allow this verification to take place in a simple manner.) Experiments
should be performed in an straightforward manner. (Minimizing the effort
in doing simulation studies, in particular for large systems, makes the lan-
guage useful.) Finally, the used models should be usable for the supervisory

1.1. CHI 3 IN A NUTSHELL 3

(logic) control of the systems (simulation studies often provide answers on
how to control a system in a better way, these answers should also work for
the modeled system).

1.1 Chi 3 in a nutshell

During the past decades, Chi 3 and his ancestors have been used with
success, for the analysis of a variety of (industrial) systems. Based on this
experience, the language Chi 3 has been completely redesigned, keeping the
strong points of the previous versions, while making it more powerful for
advanced users, and easier to access for non-experts.

Its features are:

• A system (and its control) is modeled as a collection of parallel run-
ning processes, communicating with each other using channels.

• Processes do not share data with other processes and channels are
synchronous (sending and receiving is always done together at the
same time), making reasoning about process behaviour easier.

• Processes and channels are dynamic, new processes can be created as
needed, and communication channels can be created or rerouted.

• Variables can have elementary values such as boolean, integer or real
numbers, to high level structured collections of data like lists, sets and
dictionaries to model the data of the system. If desired, processes and
channels can also be part of that data.

• A small generic set of statements to describe algorithms, assignment,
if, while, and for statements. This set is relatively easy to explain to
non-experts, allowing them to understand the model, and participate
in the discussions.

• Tutorials and manuals demonstrate use of the language for effective
modeling of system processes. More detailed modeling of the pro-

4 CHAPTER 1. INTRODUCTION

cesses, or custom tailoring them to the real situation, has no inherent
limits.

• Time and (quasi-) random number generation distributions are avail-
able for modeling behavior of the system in time.

• Likewise, measurements to derive performance indicators of the mod-
eled system are integrated in the model. Tutorials and manuals show
basic use. The integration allows for custom solutions to obtain the
needed data in the wanted form.

• Input and output facilities from and to the file system exists to sup-
port large simulation experiments.

1.2 Exercises

1. Install the Chi 3 programming environment. Follow the instructions
given at http://chi.se.wtb.tue.nl/.

2. Test your first program.

(a) Copy the following program in the workspace of your computer:

model M():
writeln("It works!")

end

(b) Compile, and simulate the model as explained in the tool man-
ual.

(c) Try to explain the result.

(a) Copy the following program in the same manner:

model M(string s):
write("%s\n")

end

1.2. EXERCISES 5

(b) Simulate the model, where you have to set the Model instance
text to M("OOPS").

(c) Try to explain the result.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Data types

The language is a statically typed language, which means that all variables
and values in a model have a single fixed type. All variables must be
declared in the program. The declaration of a variable consists of the type,
and the name, of the variable. The following fragment shows the declaration
of two elementary data types, integer variable i and real variable r:

...
int i;
real r;
...

The ellipsis (...) denotes that non-relevant information is left out from
the fragment. The syntax for the declaration of variables is similar to the
language C. All declared variables are initialized, variables i and r are both
initialized to zero.

An expression, consisting of operators, e.g. plus (+), times (*), and
operands, e.g. i and r, is used to calculate a new value. The new value can
be assigned to a variable by using an assignment statement. An example
with four variables, two expressions and assignment statements is:

...
int i = 2, j;

7

8 CHAPTER 2. DATA TYPES

real r = 1.50, s;

j = 2 * i + 1;
s = r / 2;
...

The value of variable j becomes 5, and the value of s becomes 0.75. State-
ments are described in Chapter 3.

Data types are categorized in five different groups: elementary types,
tuple types, container types, custom types, and distribution types. Elemen-
tary types are types such as Boolean, integer, real or string. Tuple types
contain at least one element, where each element can be of different type.
In other languages tuple types are called records (Pascal) or structures (C).
Variables with a container type (a list, set, or dictionary) contain many el-
ements, where each element is of the same type. Custom types are created
by the user to enhance the readability of the model. Distributions types
are types used for the generation of distributions from (pseudo-) random
numbers. They are covered in Chapter 6.

2.1 Elementary types

The elementary data types are Booleans, numbers and strings. The lan-
guage provides the elementary data types:

• bool for booleans, with values false and true.

• int for integers, e.g. -7, 20, 0.

• real for reals, e.g. 3.14, 7.0e9.

• string for text strings, e.g. "Hello", "world".

Booleans

A boolean value has two possible values, the truth values. These truth
values are false and true. The value false means that a property is not

2.1. ELEMENTARY TYPES 9

fulfilled. A value true means the presence of a property. Boolean variables
are initialized with the value false.

In mathematics, various symbols are used for unary and binary boolean
operators. These operators are also present in Chi 3. The most commonly
used boolean operators are not, and, and or. The names of the operators,
the symbols in mathematics and the symbols in the language are presented
in Table 2.1.

Operator Math Chi 3
boolean not ¬ not
boolean and ∧ and
boolean or ∨ or

Table 2.1: Table with boolean symbols.

Examples of boolean expressions are the following. If z equals true,
then the value of (not z) equals false. If s equals false, and t equals
true, then the value of the expression (s or t) becomes true.

The result of the unary not, the binary and and or operators, for two
variables p and q is given in Table 2.2.

p q not p p and q p or q
false false true false false
false true false true
true false false false true
true true true true

Table 2.2: Truth table for not, and and or operators.

If p = true and q = false, we find for p or q the value true (third
line in Table 2.2).

10 CHAPTER 2. DATA TYPES

Numbers

In the language, two types of numbers are available: integer numbers and
real numbers. Integer numbers are whole numbers, denoted by type int
e.g. 3, -10, 0. Real numbers are used to present numbers with a fraction,
denoted by type real. E.g. 3.14, 2.7e6 (the scientific notation for 2.7
million). Note that real numbers must either have a fraction or use the
scientific notation, to let the computer know you mean a real number (in-
stead of an integer number). Integer variables are initialized with 0. Real
variables are initialized with 0.0.

For numbers, the normal arithmetic operators are defined. Expressions
can be constructed with these operators. The arithmetic operators are in
Table 2.3.

Operator name Notation Comment
unary plus + x
unary minus - x
raising to the power x ^ y always a real result
multiplication x * y
real division x / y always a real result
division x div y for int only
modulo x mod y for int only
addition x + y
subtraction x - y

Table 2.3: The arithmetic operators

The priority of the operators is given from high to low. The unary
operators have the strongest binding, and the + and - the weakest binding.
So, -3^2 is read as (-3)^2 and not -(3^2), because the priority rules
say that the unary operator binds stronger than the raising to the power
operator. Binding in expressions can be changed by the use of parentheses.

The integer division, denoted by div, gives the biggest integral number
smaller or equal to x / y. The integer remainder, denoted by mod, gives

2.1. ELEMENTARY TYPES 11

the remainder after division x - y * (x div y). So, 7 div 3 gives 2 and
-7 div 3 gives -3, 7 mod 3 gives 1 and -7 mod 3 gives 2.

The rule for the result of an operation is as follows. The real division
and raising to the power operations always produce a value of type real.
Otherwise, if both operands (thus x and y) are of type int, the result of
the operation is of type int. If one of the operands is of type real, the
result of the operation is of type real.

Conversion functions exist to convert a real into an integer. The func-
tion ceil converts a real to the smallest integer value not less than the real,
the function floor gives the biggest integer value smaller than or equal to
the real, and the function round rounds the real to the nearest integer value
(or up, if it ends on .5). Between two numbers a relational operation can
be defined. If e.g. variable x is smaller than variable y, the expression x
< y equals true. The relational operators, with well known semantics, are
listed in Table 2.4.

Name Operator
less than x < y
at most x <= y
equals x == y
differs from x != y
at least x >= y
greater than x > y

Table 2.4: The relational operators

Strings

Variables of type string contains a sequence of characters. A string is
enclosed by double quotes. An example is "Manufacturing networks".
Strings can be composed from different strings. The concatenation operator
(+) adds one string to another, e.g. "Systems" + " " + "engineering"
gives "Systems engineering". Moreover the relational operators (<, <=,

12 CHAPTER 2. DATA TYPES

==, != >=, and >) can be used to compare strings alphabetically, e.g. "a" <
"aa" < "ab" < "b". String variables are initialized with the empty string
"".

2.2 Tuple types

Tuple types are used for keeping several (related) kinds of data together
in one variable, e.g. the name and the age of a person. A tuple variable
consists of a number of fields inside the tuple, where the types of these
fields may be different. The number of fields is fixed. One operator, the
projection operator denoted by a dot (.), is defined for tuples. It selects a
field in the tuple for reading or assigning.

Notation

A type person is a tuple with two fields, a ‘name’ field of type string, and
an ‘age’ field of type int, is denoted by:

type person = tuple(string name; int age)

Operator

A projection operator fetches a field from a tuple. We define two persons:

person eva = ("eva" , 29),
adam = ("adam", 27);

And we can speak of eva.name and adam.age, denoting the name of eva
("eva") and the age of adam (27). We can assign a field in a tuple to
another variable:

ae = eva.age;
eva.age = eva.age + 1;

This means that the age of eva is assigned tot variable ae, and the new
age of eva becomes eva.age + 1.

2.3. CONTAINER TYPES 13

By using a multi assignment statement all values of a tuple can be
copied into separate variables:

string name;
int age;

name, age = eva

This assignment copies the name of eva into variable name of type string
and her age into age of type int.

2.3 Container types

Lists, sets and dictionaries are container types. A variable of this type
contains zero or more identical elements. Elements can be added or removed
in variables of these types. Variables of a container type are initialized with
zero elements.

Sets are unordered collections of elements. Each element value either
exists in a set, or it does not exist in a set. Each element value is unique,
duplicate elements are silently discarded. A list is an ordered collection of
elements, i.e. there is a first and a last element (in a non-empty list). A
list also allows duplicate element values. Dictionaries are unordered and
have no duplicate value, just like sets, but you can associate a value (of a
different type) with each element value.

Lists are denoted by a pair of (square) brackets. For example, [7, 8,
3] is a list with three integer elements. Since a list is ordered, [8, 7, 3]
is a different list. With empty lists, the computer has to know the type
of the elements, e.g. <int>[] is an empty list with integer elements. The
prefix <int> is required in this case.

Sets are denoted by a pair of (curly) braces, e.g. {7, 8, 3} is a set
with three integer elements. As with lists, for an empty set a prefix is
required, for example <string>{} is an empty set with strings. A set is
an unordered collection of elements. The set {7, 8, 3} is a set with three
integer numbers. Since order of the elements does not matter, the same

14 CHAPTER 2. DATA TYPES

set can also be written as {8, 3, 7} (or in one of the four other orders).
In addition, each element in a set is unique, e.g. {8, 7, 8, 3} is equal
to {7, 8, 3}. For readability, elements in a set are normally written in
increasing order, i.e. as {3, 7, 8}.

Dictionaries are denoted by a pair of (curly) braces, whereby an element
value consists of two parts, a ‘key’ and a ‘value’ part. The two parts
separated by a colon (:). For example {"jim" : 32, "john" : 34} is a
dictionary with two elements. The first element has "jim" as key part and
32 as value part, the second element has "john" as key part and 34 as value
part. The key parts of the elements work like a set, they are unordered and
duplicates are silently discarded. A value part is associated with its key
part. In this example, the key part is the name of a person, while the value
part keeps the age of that person. Empty dictionaries are written with a
type prefix just like lists and sets, e.g. <string:int>{}.

Container types have some built-in functions (Functions are described
in Chapter 4) in common:

• The function size gives the number of elements in a variable. E.g.
size([7, 8, 3]) yields 3; size({7, 8}) results in 2; size({"jim":32})
gives 1 (an element consists of two parts).

• The function empty yields true if there are no elements in variable.
E.g. empty(<string>{}) with an empty set of type string is true.
(Here the type string is needed to determine the type of the elements
of the empty set.)

• The function pop extracts a value from the provided collection and
returns a tuple with that value, and the collection minus the value.

For lists the first element of the list becomes the first field of the
tuple. The second field of the tuple becomes the list minus the first
list element. E.g.

pop([7, 8, 3]) -> (7, [8, 3])

2.3. CONTAINER TYPES 15

The ‘->’ above denotes ‘yields’. The value of the list is split into a
‘head’ (the first element) and a ‘tail’ (the remaining elements).

For sets the first field of the tuple becomes the value of an arbitrary
element from the set. The second field of the tuple becomes the
original set minus the arbitrary element. For example, a pop on the
set {8, 7, 3} thus has three possible answers:

pop({8, 7, 3}) -> (7, {3, 8}) or
pop({8, 7, 3}) -> (3, {7, 8}) or
pop({8, 7, 3}) -> (8, {3, 7})

Performing a pop on a dictionary follows the same pattern as above,
except ‘a value from the collection’ are actually a key item and a value
item. In this case, the pop function gives a three-tuple as result. The
first field of the tuple becomes the key of the extracted element, the
second field of the tuple becomes the value of the element, and the
third field of the tuple contains the dictionary except for the extracted
element.

pop({"a" : 32, "b" : 34}) -> ("a", 32, {"b" : 34}) or
pop({"a" : 32, "b" : 34}) -> ("b", 34, {"a" : 32})

Lists

A list is an ordered collection of elements of the same type. They are useful
to model anything where duplicate values may occur or where order of the
values is significant. E.g. waiting customers in a shop, process steps in a
recipe, or products stored in a warehouse. Various operations are defined
for lists.

An element can be fetched by indexing. This indexing operation does
not change the content of the variable. The first element of a list has index
0. The last element of a list has index size(xs) - 1. A negative index,
say m, starts from the back of the list, or equivalently, at offset size(xs) +
m from the front. You cannot index non-existing elements. Some examples,
with xs = [7, 8, 3, 5, 9] are:

16 CHAPTER 2. DATA TYPES

xs[0] -> 7
xs[3] -> 5
xs[5] -> ERROR (there is no element at position 5)
xs[-1] -> xs[5 - 1] -> xs[4] -> 9
xs[-2] -> xs[5 - 2] -> xs[3] -> 5

In Figure 2.1 the list with indices is visualized.

7 8 3 5 9

xs[0]

xs[3]

xs[-1]

xs[-2]

Figure 2.1: A list with indices.

A part of a list can be fetched by slicing. The slicing operation does
not change the content of the list, it copies a contiguous sequence of a list.
The result of a slice operation is again a list, even if the slice contains just
one element.

Slicing is denoted by xs[i:j]. The slice of xs[i:j] is defined as the
sequence of elements with index k such that i <= k < j. Note the upper
bound j is noninclusive. If i is omitted use 0. If j is omitted use size(xs).
If i is greater than or equal to j, the slice is empty. If i or j is negative,
the index is relative to the end of the list: size(xs) + i or size(xs) + j
is substituted. Some examples with xs = [7, 8, 3, 5, 9]:

xs[1:3] -> [8, 3]
xs[:2] -> [7, 8]
xs[1:] -> [8, 3, 5, 9]

2.3. CONTAINER TYPES 17

xs[:-1] -> [7, 8, 3, 5]
xs[:-3] -> [7, 8]

A common name for the first element of a list (i.e., x[0]) is the head
of a list. The list of all but the first elements (xs[1:]) is often called tail.
Similarly, the last element of a list (xs[-1]) is also known as head right,

and xs[:-1] is also known as tail right. In Figure 2.2 the slicing operator
is visualized.

7 8 3 5 9

xs[0] xs[1:]

xs[-1]xs[:-1]

Figure 2.2: A list with indices and slices.

Two lists can be ‘glued’ into a new list. The glueing or concatenation
of a list with elements 7, 8, 3 and a list with elements 5, and 9 is denoted
by:

[7, 8, 3] + [5, 9] -> [7, 8, 3, 5, 9]

An element can be added to a list at the rear or at the front. The action
is performed by transforming the element into a list and then concatenate
these two lists. In the next example the value 5 is added to the rear,
respectively the front, of a list:

[7, 8, 3] + [5] -> [7, 8, 3, 5]
[5] + [7, 8, 3] -> [5, 7, 8, 3]

18 CHAPTER 2. DATA TYPES

Elements also can be removed from a list. The del function removes
by position, e.g. del(xs, 2) returns the list xs without its third element
(since positions start at index 0). Removing a value by value can be per-
formed by the subtraction operator -. For instance, consider the following
subtractions:

[1, 4, 2, 4, 5] - [2] -> [1, 4, 4, 5]
[1, 4, 2, 4, 5] - [4] -> [1, 2, 4, 5]
[1, 4, 2, 4, 5] - [8] -> [1, 4, 2, 4, 5]

Every element in the list at the right is searched in the list at the left, and
if found, the first occurrence is removed. In the first example, element 2
is removed. In the second example, only the first value 4 is removed and
the second value (at position 3) is kept. In the third example, nothing is
removed, since value 8 is not in the list at the left.

When the list at the right is longer than one element, the operation
is repeated. For example, consider xs - ys, whereby xs = [1, 2, 3, 4,
5] and ys = [6, 4, 2, 3]. The result is computed as follows.

[1, 2, 3, 4, 5] - [6, 4, 2, 3]
-> ([1, 2, 3, 4, 5] - [6]) - [4, 2, 3]
-> [1, 2, 3, 4, 5] - [4, 2, 3]
-> ([1, 2, 3, 4, 5] - [4]) - [2, 3]
-> [1, 2, 3, 5] - [2, 3]
-> ([1, 2, 3, 5] - [2]) - [3]
-> [1, 3, 5] - [3]
-> [1,5]

Lists have two relational operators, the equal operator and the not-equal
operator. The equal operator (==) compares two lists. If the lists have the
same number of elements and all the elements are pair-wise the same, the
result of the operation is true, otherwise false. The not-equal operator
(!=) does the same check, but with an opposite result. Some examples,
with xs = [7, 8, 3]:

xs == [7, 8, 3] -> true
xs == [7, 7, 7] -> false

2.3. CONTAINER TYPES 19

The membership operator (in) checks if an element is in a list. Some
examples, with xs = [7, 8, 3]:

6 in xs -> false
7 in xs -> true
8 in xs -> true

Initialization

A list variable is initialized with a list with zero elements. E.g.

list int xs

The initial value of xs equals <int>[].
A list can be initialized with a number, denoting the number of elements

in the list:

list(2) int ys

This declaration creates a list with 2 elements, whereby each element of
type int is initialized. The initial value of ys equals [0, 0]. Another
example with a list of lists:

list(4) list(2) int zm

This declaration initializes variable zm with the value [[0, 0], [0, 0],
[0, 0], [0, 0]].

Sets

Set operators for union, intersection and difference are present. Table 2.5
gives the name, the mathematical notation and the notation in the lan-
guage.

The union of two sets merges the values of both sets into one, that
is, the result is the collection of values that appear in at least one of the
arguments of the union operation. Some examples:

{3, 7, 8} + {5, 9} -> {3, 5, 7, 8, 9}

20 CHAPTER 2. DATA TYPES

Operator Math Chi 3
set union ∪ +
set intersection ∩ *
set difference \ -

Table 2.5: Table with set operations.

All permutations with the elements 3, 5, 7, 8 and 9 are correct (sets have no
order, all permutations are equivalent). To keep sets readable the elements
are sorted in increasing order in this tutorial.

Values that occur in both arguments, appear only one time in the result
(sets silently discard duplicate elements).

{3, 7, 8} + {7, 9} -> {3, 7, 8, 9}

The intersection of two sets gives a set with the common elements, that
is, all values that occur in both arguments. Some examples:

{3, 7, 8} * {5, 9} -> <int>{} # no common element
{3, 7, 8} * {7, 9} -> {7} # only 7 in common

Set difference works much like subtraction on lists, except elements
occur at most one time (and have no order). The operation computes
‘remaining elements’. The result is a new set containing all values from the
first set which are not in the second set. Some examples:

{3, 7, 8} - {5, 9} -> {3, 7, 8}
{3, 7, 8} - {7, 9} -> {3, 9}

The membership operator in works on sets too:

3 in {3, 7, 8} -> true
9 in {3, 7, 8} -> false

2.3. CONTAINER TYPES 21

Dictionaries

Elements of dictionaries are stored according to a key, while lists elements
are ordered by a (relative) position, and set elements are not ordered at
all. A dictionary can grow and shrink by adding or removing elements
respectively, like a list or a set. An element of a dictionary is accessed by
the key of the element.

The dictionary variable d of type dict(string : int) is given by:

dict (string : int) d =
{"jim" : 32,
"john" : 34,
"adam" : 25}

Retrieving values of the dictionary by using the key:

d["john"] -> 34
d["adam"] -> 25

Using a non-existing key to retrieve a value results in a error message.
A new value can be assigned to the variable by selecting the key of the

element:

d["john"] = 35

This assignment changes the value of the "john" item to 35. The assign-
ment can also be used to add new items:

d["lisa"] = 19

Membership testing of keys in dictionaries can be done with the in
operator:

"jim" in d -> true
"peter" in d -> false

Merging two dictionaries is done by adding them together. The value
of the second dictionary is used when a key exists in both dictionaries:

22 CHAPTER 2. DATA TYPES

{1 : 1, 2 : 2} + {1 : 5, 3 : 3} -> {1 : 5, 2 : 2, 3 : 3}

The left dictionary is copied, and updated with each item of the right
dictionary.

Removing elements can be done with subtraction, based on key values.
Lists and sets can also be used to denote which keys should be removed. A
few examples for p is {1 : 1, 2 : 2}:

p - {1 : 3, 5 : 5} -> {2 : 2}
p - {1, 7} -> {2 : 2}
p - [2, 8] -> {1 : 1}

Subtracting keys that do not exist in the left dictionary is allowed and has
no effect.

2.4 Custom types

To structure data the language allows the creation of new types. Types
can be used as alias for elementary data types to increase readability, e.g.
a variable of type item:

type item = real;

Variables of type item are, e.g.:

item box, product;
box = 4.0; product = 120.5;

This definition creates the possibility to speak about an item.
Types also can be used to make combinations of other data types, e.g.

a recipe:

type step = tuple(string name; real process_time),
recipe = tuple(int id; list step steps);

2.5. EXERCISES 23

A type step is defined by a tuple with two fields, a field with name of type
string, denoting the name of the step, and a field with process_time
of type real, denoting the duration of the (processing) step. The step
definition is used in the type recipe. Type recipe is defined by a tuple
with two fields, an id of type int, denoting the identification number, and
a field steps of type list step, denoting a list of single steps. Variables
of type recipe are, e.g.:

recipe plate, bread;
plate = (34, [("s", 10.8), ("w", 13.7), ("s", 25.6)]);
bread = (90, [("flour", 16.3), ("yeast", 6.9)]);

2.5 Exercises

1. Exercises for integer numbers.

(a) What is the result of the following expressions:

-5 ^ 3
-5 * 3
-5 mod 3

2. Exercises for tuples. Given are tuple type box and variable x of type
box:

type box = tuple(string name; weight: real);
box x = ("White", 12.5);

(a) What is the result of the following expressions:

x.name
x.real
x

3. Exercises for lists. Given is the list xs = [0,1,2,3,4,5,6]. Deter-
mine the outcome of:

24 CHAPTER 2. DATA TYPES

xs[0]
xs[1:]
size(xs)
xs + [3]
[4,5] + xs
xs - [2,2,3]
xs - xs[2:]
xs[0] + (xs[1:])[0]

Chapter 3

Statements

There are several kinds of statements, such as assignment statements, choice
statements (select and if statements), and loop statements (while and for
statements).

Semicolons are required after statements, except at the end of a sequence
(that is, just before an end keyword and after the last statement) or after
the keyword end. In this text semicolons are omitted before end.

3.1 The assignment statement

An assignment statement is used to assign values to variables. An example:

y = x + 10

This assignment consists of a name of the variable (y), an assignment sym-
bol (=), and an expression (x + 10) yielding a value. For example, when x
is 2, the value of the expression is 12. Execution of this statement copies
the value to the y variable, immediately after executing the assignment, the
value of the y variable is 10 larger than the value of the x variable at this
point of the program. The value of the y variable will not change until the
next assignment to y, for example, performing the assignment x = 7 has
no effect on the value of the y variable.

25

26 CHAPTER 3. STATEMENTS

An example with two assignment statements:

i = 2;
j = j + 1

The values of i becomes 2, and the value of j is incremented. Independent
assignments can also be combined in a multi-assignment, e.g.

i, j = 2, j + 1

The result is the same as the above described example, the first value goes
into the first variable, the second value into the second variable, etc.

In an assignment statement, first all expression values are computed
before any assignment is actually done. In the following example the values
of x and y are swapped:

x, y = y, x;

3.2 The if statement

The if statement is used to express decisions. An example:

if x < 0:
y = -x

end

If the value of x is negative, assign its negated value to y. Otherwise, do
nothing (skip the y = -x assignment statement).

To perform a different statement when the decision fails, an if-statement
with an else alternative can be used. It has the following form. An exam-
ple:

if a > 0:
c = a

else:
c = b

end

3.2. THE IF STATEMENT 27

If a is positive, variable c gets the value of a, otherwise it gets the value of
b.

In some cases more alternatives must be tested. One way of writing
it is by nesting an if-statement in the else alternative of the previous
if-statement.

if i < 0:
writeln("i < 0")

else:
if i == 0:

writeln("i = 0")
else:

if i > 0 and i < 10:
writeln("0 < i < 10")

else:
i must be greater or equal 10
writeln("i >= 10")

end
end

end

This tests i < 0. If it fails, the else is chosen, which contains a second if-
statement with the i == 0 test. If that test also fails, the third condition
i > 0 and i < 10 is tested, and one of the writeln statements is chosen.

The above can be written more compactly by combining an else-part
and the if-statement that follows, into an elif part. Each elif part
consists of a boolean expression, and a statement list. Using elif parts
results in:

if i < 0:
writeln("i < 0")

elif i == 0:
writeln("i = 0")

elif i > 0 and i < 10:
writeln("0 < i < 10")

28 CHAPTER 3. STATEMENTS

else:
i must be greater or equal 10
writeln("i >= 10")

end

Each alternative starts at the same column, instead of having increasing
indentation. The execution of this combined statement is still the same, an
alternative is only tested when the conditions of all previous alternatives
fail.

Note that the line ‘# i must be greater or equal 10’ is a comment
to clarify when the alternative is chosen. It is not executed by the simulator.
You can write comments either at a line by itself like above, or behind
program code. It is often useful to clarify the meaning of variables, give a
more detailed explanation of parameters, or add a line of text describing
what the purpose of a block of code is from a birds-eye view.

3.3 The while statement

The while statement is used for repetitive execution of the same statements,
a so-called loop. A fragment that calculates the sum of 10 integers, 10, 9,
8, ..., 3, 2, 1, is:

int i = 10, sum;
while i > 0:

sum = sum + i; i = i - 1
end

Each iteration of a while statement starts with evaluating its condition (i
> 0 above). When it holds, the statements inside the while (the sum = sum
+ i; i = i - 1 assignments) are executed (which adds i to the sum and
decrements i). At the end of the statements, the while is executed again
by evaluating the condition again. If it still holds, the next iteration of the
loop starts by executing the assignment statements again, etc. When the
condition fails (i is equal to 0), the while statement ends, and execution
continues with the statement following end.

3.3. THE WHILE STATEMENT 29

A fragment with an infinite loop is:

while true:
i = i + 1;
...

end

The condition in this fragments always holds, resulting in i getting incre-
mented ‘forever’. Such loops are very useful to model things you switch on
but never off, e.g. processes in a factory.

A fragment to calculate z = xy, where z and x are of type real, and y
is of type integer with a non-negative value, showing the use of two while
loops, is:

real x; int y; real z = 1;
while y > 0:

while y mod 2 == 0:
y = y div 2; x = x * x

end;
y = y - 1; z = x * z

end

A fragment to calculate the greatest common divisor (GCD) of two
integer numbers j and k, showing the use of if and while statements, is:

while j != k:
if j > k:

j = j - k
else:

k = k - j
end

end

The symbol != stands for ‘differs from’ (‘not equal’).

30 CHAPTER 3. STATEMENTS

3.4 The for statement

The while statement is useful for looping until a condition fails. The for
statement is used for iterating over a collection of values. A fragment with
the calculation of the sum of 10 integers:

int sum;
for i in range(1,11):

sum = sum + i
end

The result of the expression range(1, 11) is a list whose items are con-
secutive integers from 1 (included) up to 11 (excluded): [1, 2, 3, ...,
9, 10].

The following example illustrates the use of the for statement in relation
with container-type variables. Another way of calculating the sum of a list
of integer numbers:

list int xs = [1,2,3,5,7,11,13];
int sum;
for x in xs:

sum = sum + x
end

This statement iterates over the elements of list xs. This is particularly
useful when the value of xs may change before the for statement.

3.5 Notes

In this chapter the most used statements are described. The language offers
the following extensions:

1. Inside loop statements break and continue statements are allowed.
The break statements allows ‘breaking out of a loop’, that is, abort a
while or a for statement. The continue statement aborts execution of
the statements in a loop. It ‘jumps’ to the start of the next iteration.

3.6. EXERCISES 31

2. A rarely used statement is the pass statement. It’s like an x = x
assignment statement, but more clearly expresses ‘nothing is done
here’.

3.6 Exercises

1. Study the Chi 3 specification below and explain why, though it works,
it is not an elegant way of modelling the selection. Make a suggestion
for a shorter, more elegant version.

model M():
int i = 3;

if (i < 0) == true:
write("%d is a negative number\n");

elif (i <= 0) == false:
write("%d is a positive number\n");

end
end

2. Construct a list with the squares of the first 10 integers

(a) using a for statement, and

(b) using a while statement.

3. Write a program that

(a) makes a list with the first 50 prime numbers.

(b) Extend the program with computing the sum of the first 7 prime
numbers.

(c) Extend the program with computing the sum of the last 11 prime
numbers.

32 CHAPTER 3. STATEMENTS

Chapter 4

Functions

In a model, computations must be performed to process the information
that is sent around. Short and simple calculations are written as assign-
ments between the other statements, but for longer computations or compu-
tations that are needed at several places in the model, a more encapsulated
environment is useful, a function. In addition, the language comes with a
number of built-in functions, such as size or empty on container types. An
example:

func real mean(list int xs):
int sum;
for x in xs:

sum = sum + x
end;
return sum / size(xs)

end

The func keyword indicates it is a function. The name of the function
is just before the opening parenthesis, in this example ‘mean’. Between
the parentheses, the input values (the formal parameters) are listed. In
this example, there is one input value, namely list int which is a list of
integers. Parameter name xs is used to refer to the input value in the body
of the function. Between func and the name of the function is the type

33

34 CHAPTER 4. FUNCTIONS

of the computation result, in this case, a real value. In other words, this
mean function takes a list of integers as input, and produces a real value
as result.

The colon at the end of the first line indicates the start of the computa-
tion. Below it are new variable declarations (int sum), and statements to
compute the value, the function algorithm. The return statement denotes
the end of the function algorithm. The value of the expression behind it is
the result of the calculation. This example computes and returns the mean
value of the integers of the list.

Use of a function (application of a function) is done by using its name,
followed by the values to be used as input (the actual parameters). The
above function can be used like

m = mean([1, 3, 5, 7, 9])

The actual parameter of this function application is [1, 3, 5, 7, 9]. The
function result is (1 + 3 + 5 + 7 + 9)/5 (which is 5.0), and variable m
becomes 5.0.

A function is a mathematical function: the result of a function is the
same for the same values of input parameters. A function has no side-
effect, and it cannot access variables outside the body. For example, it
cannot access time (explained in Chapter 10) directly, it has to be passed
in through the parameter list.

A function that calculates the sign of a real number, is:

func int sign(real r):
if r < 0:

return -1
elif r = 0:

return 0
end;
return 1

end

The sign function returns: if r is smaller than zero, the value minus one; if
r equals zero, the value zero; and if r is greater than zero, the value one.

4.1. SORTED LISTS 35

The computation in a function ends when it encounters a return state-
ment. The return 1 at the end is therefore only executed when both if
conditions are false.

4.1 Sorted lists

The language allows recursive functions as well as higher-order functions.
Explaining them in detail is beyond the scope of this tutorial, but these
functions are useful for making and maintaining sorted lists. Such a sorted
list is useful for easily getting the smallest (or largest) item from a collection,
for example the order with the nearest deadline.

To sort a list, the first notion that has to be defined is the desired order,
by making a function of the following form:

func bool decreasing(int x, y):
return x >= y

end

The function is called predicate function. It takes two values from the
list (two integers in this case), and produces a boolean value, indicating
whether the parameters are in the right order. In this case, the function
returns true when the first parameter is larger or equal than the second
parameter, that is, larger values must be before smaller values (for equal
values, the order does not matter). This results in a list with decreasing
values.

The requirements on any predicate function f are:

1. If x 6= y, either f(x, y) must hold, or f(y, x) must hold, but not
both. (Unequal values must have a unique order.)

2. If x = y, both f(x, y) and f(y, x) must hold. (Equal values can
be placed in arbitrary order.)

3. For values x, y, and z, if f(x, y) holds and f(y, z) holds (that is
x ≥ y and y ≥ z), then f(x, z) must also hold (that is, x ≥ z should

36 CHAPTER 4. FUNCTIONS

also be true). The order between x and z must be stable, even when
you compare with an intermediate value y between x and z.

These requirements hold for functions that test on <= or >= like above.

Sort

The first use of such a predicate function is for sorting a list. For exam-
ple list [3, 8, 7] is sorted decreasingly (larger numbers before smaller
numbers).

ys = sort([3, 8, 7], decreasing)

Sorting is done with the sort function, it takes two parameters, the list to
sort, and the predicate function. (There are no parentheses ‘()’ behind
decreasing!) The value of list ys becomes [8, 7, 3].

Another sorting example is a list of type tuple(int number, real
slack), where field number denotes the number of an item, and field slack
denotes the slack time of the item. The list should be sorted in ascending
order of the slack time. The type of the item is:

type item = tuple(int number, real slack);

The predicate function spred is defined by:

func bool spred(item x, y):
return x.slack <= y.slack

end

Function spred delivers true if the two elements are in increasing order
in the list, otherwise false. Note, the parameters of the function are of
type item. Given a variable ps equal to [(7, 21.6), (5, 10.3), (3,
35.8)]. The statement denoting the sorting is:

qs = sort(ps, spred)

variable qs becomes [(5, 10.3), (7, 21.6), (3, 35.8)].

4.1. SORTED LISTS 37

Insert

Adding a new value to a sorted list is the second use of higher-order func-
tions. The simplest approach would be to add the new value to the head
or rear of the list, and sort the list again, but sorting an almost sorted list
is very expensive. It is much faster to find the right position in the already
sorted list, and insert the new value at that point. This function also exists,
and is named insert. An example is (assume xs initially contains [3,8]):

xs = insert(xs, 7, increasing)

where increasing is

func bool increasing(int x, y): return x <= y end

assign the result [3,7,8] as new value to xs, 7 is inserted in the list.

38 CHAPTER 4. FUNCTIONS

Chapter 5

Input and output

A model communicates with the outside world, e.g. screen and files, by the
use of read statements for input of data, and write statements for output
of data.

5.1 read functions

Data can be read from the command line or from a file by read functions.
A read function requires a type value for each parameter to be read. An
example:

int i; string s;
i = read(int); s = read(string);

Two values, an integer value and a string value are read from the command
line. On the command line the two values are typed:

1 "This is a string"

Variable i becomes 1, and string s becomes "This is a string". The
double quotes are required! Parameter values are separated by a space or
a tabular stop. Putting each value on a separate line also works.

Data also can be read from files. An example fragment:

39

40 CHAPTER 5. INPUT AND OUTPUT

file f;
int i; real r;
f = open("data_file", "r");
i = read(f, int); r = read(f, real);
close(f)

Before a file can be used, the file has to be declared, and the file has to be
opened by statement open. Statement open has two parameters, the first
parameter denotes the file name (as a string), and the second parameter
describes the way the file is used. In this case, the file is opened in a read-
only mode, denoted by string ”r”. If the file is no longer needed, the file
is closed by the statement close, with one parameter, the variable of the
file. If a file is still open after an experiment, the file is closed automatically
before the program quits.

5.2 write statements

The write statement is used for for output of data to the screen of the
computer. Data can also be written to a file. An example:

int i = 5;
write("i = %s", i)

In this example the text i = 5 is written to the screen by the write state-
ment. The "i = %s" string is called the format string. It defines what
output is written. All ‘normal’ characters are copied as-is. The %s is not
copied, it acts as a place holder for a value. In this case, it gets replaced
by the value of i, the first parameter after the format string.

The s in the format string is a format specifier. It means ‘print as
string’. This works nicely in general, but for numeric values a little more
control over the output is often useful. To this end, there are also format
specifiers d (for integer numbers, and f for real numbers. An example:

int i = 5; real r = 3.14;
write("%4d/%f8.2", i, r)

5.2. WRITE STATEMENTS 41

This fragment has the effect that the values of i and r are written to the
screen as follows:

5/ 3.14

The value of i is written in d format, as int value, and the value of r
is written in f format, as real value. The symbols d and f originate
respectively from ‘decimal’, and ‘floating point’ numbers. The numbers 4
respectively 8.2 denote that the integer value is written 4 positions wide
(that is, 3 spaces and a ‘5’ character), and that the real value is written 8
positions wide, with 2 characters after the decimal point (that is, 4 spaces
and the text ‘3.14’).

A list of format specifiers is given in Table 5.1. The ‘%s’ is a general

%b boolean value (outputs false or true)
%d integer
%10d integer, at least 10 characters wide
%f real
%10f real, at least 10 characters wide
%.4f real, 4 characters after the decimal point
%10.4f real, at least 10 wide and 4 characters after the decimal point
%s character string s, can also write other types of data
%% the character %

Table 5.1: Format specifiers.

purpose specifier, you can write almost every type of data with it. For
example

list dict(int:real) xs = [{1 : 5.3}];
write("%s", xs)

will output the contents of xs.
Finally, there are also a few special character sequences called escape

sequence which allow to write characters like horizontal tab (which means

42 CHAPTER 5. INPUT AND OUTPUT

‘jump to next tab position in the output’), or newline (which means ‘go
to the next line in the output’) in a format string. An escape sequence
consists of two characters. First a backslash character \, followed by a
second character. The escape sequence are presented in Table 5.2. An

\n new line
\t horizontal tab
\" the character "
\\ the character \

Table 5.2: Escape sequences.

example is:

int i = 5, j = 10; real r = 3.14;
write("%6d\t%d\n\t%.2f\n", i, j, r)

The result looks like

5 10
3.14

The value of j is written at the tab position, the output goes to the next
line again at the first tab position, and outputs the value of r.

Data can be written to a file, analog to the read function. A file has
to be defined first, and opened for writing before the file can be used. An
example:

file f;
int i;
f = open("output_file", "w");
write(f, "%s", i); write(f, "%8.2f", r);
close(f)

A file, in this case "output_file" is used in write-only mode, denoted by
the character "w". Opening a file for writing destroys its old contents (if

5.2. WRITE STATEMENTS 43

the file already exists). In the write statement, the first parameter must
be the file, and the second parameter must be the format string. After all
data has been written, the file is closed by statement close. If the file is
still open after execution of the program, the file is closed automatically.

44 CHAPTER 5. INPUT AND OUTPUT

Chapter 6

Modeling stochastic
behavior

Many processes in the world vary a little bit each time they are performed.
Setup of machines goes a bit faster or slower, patients taking their medicine
takes longer this morning, more products are delivered today, or the quality
of the manufactured product degrades due to a tired operator. Modeling
such variations is often done with stochastic distributions. A distribution
has a mean value and a known shape of variation. By matching the means
and the variation shape with data from the system being modeled, an
accurate model of the system can be obtained. The language has many
stochastic distributions available, this chapter explains how to use them
to model a system, and lists a few commonly used distributions. More
information can be found in the reference manual.

The following fragment illustrates the use of the random distribution to
model a dice. Each value of the six-sided dice is equally likely to appear.
Every value having the same probability of appearing is a property of the
integer uniform distribution, in this case using interval [1, 7) (inclusive
on the left side, exclusive on the right side). The model is:

dist int dice = uniform(1,7);
int x, y;

45

46 CHAPTER 6. MODELING STOCHASTIC BEHAVIOR

x = sample dice;
y = sample dice;
writeln("x=%d, y=%d", x, y);

The variable dice is an integer distribution, meaning that values drawn
from the distribution are integer numbers. It is assigned an uniform dis-
tribution. A throw of a dice is simulated with the operator sample. Each
time sample is used, a new sample value is obtained from the distribution.
In the fragment the dice is thrown twice, and the values are assigned to the
variables x, and y.

6.1 Distributions

The language provides constant, discrete and continuous distributions. A
discrete distribution is a distribution where only specific values can be
drawn, for example throwing a dice gives an integer number. A contin-
uous distribution is a distribution where a value from a continuous range
can be drawn, for example assembling a product takes a positive amount of
time. The constant distributions are discrete distributions that always re-
turn the same value. They are useful during the development of the model
(see below).

Constant distributions

When developing a model with stochastic behavior, it is hard to verify
whether the model behaves correctly, since the stochastic results make it
difficult to predict the outcome of experiments. As a result, errors in the
model may not be noticed, they hide in the noise of the stochastic results.
One solution is to first write a model without stochastic behavior, verify
that model, and then extend the model with stochastic sampling. Extend-
ing the model with stochastic behavior is however an invasive change that
may introduce new errors. These errors are again hard to find due to the
difficulties to predict the outcome of an experiment. The constant distribu-
tions aim to narrow the gap by reducing the amount of changes that need

6.1. DISTRIBUTIONS 47

to be done after verification.
With constant distributions, a stochastic model with sampling of distri-

butions is developed, but the stochastic behavior is eliminated by temporar-
ily using constant distributions. The model performs stochastic sampling
of values, but with predictable outcome, and thus with predictable exper-
imental results, making verification easier. After verifying the model, the
constant distributions are replaced with the distributions that fit the mean
value and variation pattern of the modeled system, giving a model with
stochastic behavior. Changing the used distributions is however much less
invasive, making it less likely to introduce new errors at this stage in the
development of the model.

Constant distributions produce the same value v with every call of
sample. There is one constant distribution for each type of sample value:

• constant(bool v), a bool distribution.

• constant(int v), an int distribution.

• constant(real v), a real distribution.

An example with a constant distribution is

dist int u = constant(7);

This distribution returns the integer value 7 with each sample u operation.

Discrete distributions

Discrete distributions return values from a finite fixed set of possible values
as answer. In Chi 3, there is one distribution that returns a boolean when
sampled, and there are several discrete distributions that return an integer
number.

48 CHAPTER 6. MODELING STOCHASTIC BEHAVIOR

Bernoulli

0

0.2

0.4

0.6

0.8

1

false true

be
rn

ou
lli

(r
ea

l p
)

x

bernoulli(0.69)

Discrete distribution that has two pos-
sible outcomes: false and true.

Function
dist bool bernoulli(real p)

Parameters
p: Chance on sampling true

mean p
variance p(1− p)

Discrete uniform

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6

un
ifo

rm
(in

t a
, b

)

x

uniform(1, 6)

Discrete distribution that has several
equally likely outcomes, the numbers
{a, a + 1, a + 2, . . . , b − 2, b − 1}. Note
that b is not included.

Function
dist int uniform(int a, b)

Parameters
a: Lower bound
b: Upper bound (exclusive!)
mean (a + b− 1)/2
variance ((b− a)2 − 1)/12

Continuous distributions

Continuous distributions return a value from a continuous range.

6.2. SIMULATING STOCHASTIC BEHAVIOR 49

Continuous uniform

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6

un
ifo

rm
(r

ea
l a

, b
)

x

uniform(1.0, 6.0)

Continuous distribution with equal
chance of sampling each value in the
range [a, b). Note that b is not in-
cluded.

Function
dist real uniform(real a, b)

Parameters
a: Lower bound
b: Upper bound (exclusive!)
mean (a + b)/2
variance (b− a)2/12

Gamma

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20

ga
m

m
a(

re
al

 a
, b

)

x

gamma(1.0, 2.0)

gamma(3.0, 2.0)

gamma(6.0, 2.0)

gamma(6.0, 0.5)

Distribution which has either a de-
creasing probability function, or a
peak.

Function
dist real gamma(real a, b)

Parameters
a: Shape parameter
b: Scale parameter
mean ab
variance ab2

6.2 Simulating stochastic behavior

In this chapter, the mathematical notion of stochastic distribution is used
to describe how to model stochastic behavior. Simulating a model with
stochastic behavior at a computer is however not stochastic at all. Com-
puter systems are deterministic machines, and have no notion of varying
results.

A (pseudo-)random number generator is used to create stochastic results
instead. It starts with an initial seed, an integer number (you can give one

50 CHAPTER 6. MODELING STOCHASTIC BEHAVIOR

at the start of the simulation). From this seed, a function creates a stream
of ‘random’ values. When looking at the values there does not seem to
be any pattern. It is not truly random however. Using the same seed
again gives exactly the same stream of numbers. This is the reason to call
the function a pseudo-random number generator (a true random number
generator would never produce the exact same stream of numbers). A
sample of a distribution uses one or more numbers from the stream to
compute its value. The value of the initial seed thus decides the value of
all samples drawn in the simulation.

While doing a simulation study, performing several experiments with
the same initial seed invalidates the results, as it is equivalent to copying
the outcome of a single experiment a number of times. On the other hand,
when looking for the cause of a bug in the model, performing the exact same
experiment is useful as outcomes of previous experiments should match
exactly.

6.3 Exercises

1. According to the Chi 3 reference manual, for a gamma distribution
with parameters (a, b), the mean equals ab.

(a) Use a Chi 3 specification to verify whether this is true for at
least 3 different pairs of a and b.

(b) How many samples from the distribution are approximately re-
quired to determine the mean up to three decimals accurate?

2. Estimate the mean µ and variance σ2 of a triangular distribution
triangle(1, 2, 5) by simulating 1000 samples. (Recall that the variance
σ2 of n samples xi can be calculated by: σ2 = 1

n−1

∑n
i=1(xi − x)2.)

3. We would like to build a small game, called Higher or Lower. The
computer picks a random integer number between 1 and 14. The
player then has to predict whether the next number will be higher or
lower. The computer picks the next random number and compares

6.3. EXERCISES 51

the new number with the previous one. If the player guesses right his
score is doubled. If the player guesses wrong, he looses all and the
game is over. Try the following specification.

model HoL():
dist int u = uniform(1, 15);
int sc = 1;
bool c = true;
int new, oldval;
string s;

new = sample u;
write("Your score is %d\n", sc);
write("The computer drew %d\n", new);

while c:
writeln("(h)igher or (l)ower:\n");
s = read(string);
oldval = new;
new = sample u;
write("The computer drew %d\n", new);
if new == oldval:

c = false;
else:

c = (new > oldval) == (s == "h");
end;

if c:
sc = 2 * sc;

else:
sc = 0;

end;

write("Your score is %d\n", sc)

52 CHAPTER 6. MODELING STOCHASTIC BEHAVIOR

end;
write("GAME OVER...\n")

end

(a) What is the begin score?

(b) What is the maximum end score?

(c) What happens, when the drawn sample is equal to the previous
drawn sample?

(d) Extend this game specification with the possibility to stop.

Chapter 7

Processes

The language has been designed for modeling and analyzing systems with
many components, all working together to obtain the total system behav-
ior. Each component exhibits behavior over time. Sometimes they are busy
making internal decisions, sometimes they interact with other components.
The language uses a process to model the behavior of a component (the
primary interest are the actions of the component rather than its physi-
cal representation). This leads to models with many processes working in
parallel (also known as concurrent processes), interacting with each other.

Another characteristic of these systems is that the parallelism happens
at different scales at the same time, and each scale can be considered to
be a collection of co-operating parallel working processes. For example, a
factory can be seen as a single component, it accepts supplies and delivers
products. However, within a factory, you can have several parallel operating
production lines, and a line consists of several parallel operating machines.
A machine again consists of parallel operating parts. In the other direction,
a factory is a small element in a supply chain. Each supply chain is an
element in a (distribution) network. Depending on the area that needs
to be analyzed, and the level of detail, some scales are precisely modeled,
while others either fall outside the scope of the system or are modeled in

53

54 CHAPTER 7. PROCESSES

an abstract way.
In all these systems, the interaction between processes is not random,

they understand each other and exchange information. In other words,
they communicate with each other. The Chi 3 language uses channels
to model the communication. A channel connects a sending process to a
receiving process, allowing the sender to pass messages to the receiver. This
chapter discusses parallel operating processes only, communication between
processes using channels is discussed in Chapter 8.

As discussed above, a process can be seen as a single component with
behavior over time, or as a wrapper around many processes that work at
a smaller scale. The Chi 3 language supports both kinds of processes. The
former is modeled with the statements explained in previous chapters and
communication that will be explained in the next chapter. The latter (a
process as a wrapper around many smaller-scale processes) is supported
with the run statement.

7.1 A single process

The simplest form of processes is a model with one process:

proc P():
write("Hello. I am a process.")

end

model M():
run P()

end

Similar to a model, a process definition is denoted by the keyword proc
(proc means process and does not mean procedure!), followed by the name
of the process, here P, followed by an empty pair of parentheses ‘()’, mean-
ing that the process has no parameters. Process P contains one statement,
a write statement to output text to the screen. Model M contains one

7.1. A SINGLE PROCESS 55

statement, a run statement to run a process. When simulating this model,
the output is:

Hello. I am a process.

A run statement constructs a process from the process definition (it
instantiates a process definition) for each of its arguments, and they start
running. This means that the statements inside each process are executed.
The run statement waits until the statements in its created processes are
finished, before it ends itself.

To demonstrate, below is an example of a model with two processes:

proc P(int i):
write("I am process. %d.\n", i)

end

model M():
run P(1), P(2)

end

This model instantiates and runs two processes, P(1) and P(2). The pro-
cesses are running at the same time. Both processes can perform a write
statement. One of them goes first, but there is no way to decide before-
hand which one. (It may always be the same choice, it may be different on
Wednesday, etc, you just don’t know.) The output of the model is therefore
either

I am process 1.
I am process 2.

or

I am process 2.
I am process 1.

After the two processes have finished their activities, the run statement in
the model finishes, and the simulation ends.

56 CHAPTER 7. PROCESSES

An important property of statements is that they are executed atomi-
cally. It means that execution of the statement of one process cannot be
interrupted by the execution of a statement of another process.

7.2 A process in a process

The view of a process being a wrapper around many other processes is
supported by allowing to use the run statement inside a process as well.
An example:

proc P():
while true:

write("Hello. I am a process.\n")
end

end

proc DoubleP():
run

P(), P()
end

model M():
run

DoubleP()
end

The model instantiates and runs one process DoubleP. Process DoubleP in-
stantiates and runs two processes P. The relevance becomes clear in models
with a lot of processes. The concept of ‘a process in a process’ is very useful
in keeping the model structured.

7.3. MANY PROCESSES 57

7.3 Many processes

Some models consist of many identical processes at a single level. The
language has an unwind statement to reduce the amount of program text.
A model with e.g. ten identical processes, and a different parameter value,
is:

model MRun():
run

P(0), P(1), P(2), P(3), P(4),
P(5), P(6), P(7), P(8), P(9)

end

An easier way to write this model is by applying the unwind statement
inside run with the same effect:

model MP():
run

unwind j in range(10):
P(j)

end
end

58 CHAPTER 7. PROCESSES

Chapter 8

Channels

In Chapter 7 processes have been introduced. This chapter describes chan-
nels, denoted by the type chan. A channel connects two processes and is
used for the transfer of data or just signals. One process is the sending
process, the other process is the receiving process. Communication be-
tween the processes takes place instantly when both processes are willing
to communicate, this is called synchronous communication.

8.1 A channel

The following example shows the sending of an integer value between two
processes via a channel. Figure 8.1 shows the two processes P and C, con-
nected by channel variable a. Processes are denoted by circles, and channels

P C
a

Figure 8.1: A producer and a consumer.

are denoted by directed arrows in the figure. The arrow denotes the direc-
tion of communication. Process P is the sender or producer, process C is

59

60 CHAPTER 8. CHANNELS

the receiver or consumer.
In this case, the producer sends a finite stream of integer values (5

numbers) to the consumer. The consumer receives these values and writes
the values to the screen. The model is:

proc P(chan! int a):
for i in range(5):

a!i
end

end

proc C(chan? int b):
int x;
while true:

b?x;
write("%d\n",x)

end
end

model M():
chan int a;
run

P(a), C(a)
end

The model instantiates processes P and C. The two processes are connected
to each other via channel variable a which is given as actual parameter in
the run statement. This value is copied into the local formal parameter a
in process P and in formal parameter b inside process C.

Process P can send a value of type int via the actual channel parameter
a to process C. In this case P first tries to send the value 0. Process C tries
to receive a value of type int via the actual channel parameter a. Both
processes can communicate, so the communication occurs and the value 0
is sent to process C. The received value is assigned in process C to variable

8.1. A CHANNEL 61

x. The value of x is printed and the cycle starts again. This model writes
the sequence 0, 1, 2, 3, 4 to the screen.

Above, process P constructs the numbers and sends them to process
C. However, since it is known that the number sequence starts at 0 and
increments by one each time, there is no actual need to transfer a number.
Process C could also construct the number by itself after getting a signal (a
‘go ahead’) from process P. Such signals are called synchronization signals.
They do not carry any data, they just synchronize actions between different
processes.

The following example shows the use of synchronization signals between
processes P and C. The connecting channel ‘transfers’ values of type void.
The type void means that ‘non-values’ are sent and received; the type void
is only allowed in combination with channels. The iconic model is given in
the previous figure, Figure 8.1. The model is:

proc P(chan! void a):
for i in range(5):

a! # No data is being sent
end

end

proc C(chan? void b):
int i;
while true:

b?; # Nothing is being received
write("%d\n", i);
i = i + 1

end
end

model M():
chan void a;
run

P(a), C(a)

62 CHAPTER 8. CHANNELS

end

Process P sends a signal (and no value is sent), and process C receives a
signal (without a value). The signal is used by process C to write the value
of i and to increment variable i. The effect of the model is identical to the
previous example: the numbers 0, 1, 2, 3, 4 appear on the screen.

8.2 Two channels

A process can have more than one channel, allowing interaction with several
other processes.

The next example shows two channel variables, a and b, and three
processes, generator G, server S and exit E. The iconic model is given in
Figure 8.2. Process G is connected via channel variable a to process S and

G S E
a b

Figure 8.2: A generator, a server and an exit.

process S is connected via channel variable b to process E. The model is:

proc G(chan! int a):
for x in range(5):

a!x
end

end

proc S(chan? int a; chan! int b):
int x;
while true:

a?x; x = 2 * x; b!x
end

end

8.2. TWO CHANNELS 63

proc E(chan int a):
int x;
while true:

a?x;
write("E %f\n", x)

end
end

model M():
chan int a,b;
run

G(a), S(a,b), E(b)
end

The model contains two channel variables a and b. The processes are
connected to each other in model M. The processes are instantiated and run
where the formal parameters are replaced by the actual parameters. Process
G sends a stream of integer values 0, 1, 2, 3, 4 to another process via
channel a. Process S receives a value via channel a, assigns this value to
variable x, doubles the value of the variable, and sends the value of the
variable via b to another process. Process E receives a value via channel b,
assigns this value to the variable x, and prints this value. The result of the
model is given by:

E 0
E 2
E 4
E 6
E 8

After printing this five lines, process G stops, process S is blocked, as well
as process E, the model gets blocked, and the model ends.

64 CHAPTER 8. CHANNELS

8.3 More senders or receivers

Channels send a message (or a signal in case of synchronization channels)
from one sender to one receiver. It is however allowed to give the same
channel to several sender or receiver processes. The channel selects a sender
and a receiver before each communication.

The following example gives an illustration, see Figure 8.3. Suppose

G

S0

S1

E

a

a

b

b

Figure 8.3: A generator, two servers and an exit.

that only G and S0 want to communicate. The channel can select a sender
(namely G) and a receiver (process S0), and let both processes communi-
cate with each other. When sender G, and both receivers (S0 and S1), want
to communicate, the channel selects a sender (G as it is the only sender
available to the channel), and a receiver (either process S0 or process S1),
and it lets the selected processes communicate with each other. This se-
lection process is non-deterministic; a choice is made, but it is unknown
how the selection takes place and it cannot be influenced. Note that a non-
deterministic choice is different from a random choice. In the latter case,
there are known probabilities of selecting a process.

Sharing a channel in this way allows to send data to receiving processes
where the receiving party is not relevant (either server process will do). This
way of communication is different from broadcasting, where both servers
receive the same data value. Broadcasting is not supported by the Chi 3
language.

In case of two senders, S0 and S1, and one receiver E the selection

8.4. NOTES 65

process is the same. If one of the two servers S can communicate with exit
E, communication between that server and the exit takes place. If both
servers can communicate, a non-deterministic choice is made.

Having several senders and several receivers for a single channel is also
handled in the same manner. A non-deterministic choice is made for the
sending process and a non-deterministic choice is made for the receiving
process before each communication.

To communicate with several other processes but without non-determinism,
unique channels must be used.

8.4 Notes

• The direction in channels, denoted by ? or !, may be omitted. By
leaving it out, the semantics of the parameters becomes less clear (the
direction of communication has to be derived from the process code).

• There are a several ways to name channels:

1. Start naming formal channel parameters in each new process
with a, b, etc. The actual names follow from the figure. This
convention is followed in this chapter. For small models this
convention is easy and works well, for complicated models this
convention can be error-prone.

2. Use the actual names of the channel parameters in the figures
as formal names in the processes. Start naming in figures with
a, b, etc. This convention works well, if both figure and code
are at hand during the design process. If many processes have
sub-processes, this convention does not really work.

3. Use unique names for the channel parameters for the whole
model, and for all sub-systems, for example a channel between
processes A and B is named a2b (the lower-case name of the
sending process, followed by 2, denoting ‘to’, and the lower-case
name of the receiving process).

66 CHAPTER 8. CHANNELS

In this case the formal and actual parameters can be in most
cases the same. If many identical processes are used, this con-
vention does not really work.

In the text all three conventions are used, depending on the structure
of the model.

8.5 Exercises

1. Given is the specification of process P and model PP.

proc P(chan int a, b):
int x;

while true:
a?x;
x = x + 1;
write("%d\n", x);
b!x

end
end

model PP():
chan int a, b;

run P(a,b), P(b,a)
end

(a) Study this specification.

(b) Why does the model terminate immediately?

2. Six children have been given the assignment to perform a series of
calculations on the numbers 0, 1, 2, 3, . . . , 9, namely add 2, multiply
by 3, multiply by 2, and add 6 subsequently. They decide to split up

8.5. EXERCISES 67

the calculations and to operate in parallel. They sit down at a table
next to each other. The first child, the reader R, reads the numbers
0, 1, 2, 3, . . . , 9 one by one to the first calculating child C1. Child C1

adds 2 and tells the result to its right neighbour, child C2. After
telling the result to child C2, child C1 is able to start calculating on
the next number the reader R tells him. Children C2, C3, and C4 are
analogous to child C1; they each perform a different calculation on a
number they hear and tell the result to their right neighbour. At the
end of the table the writer W writes every result he hears down on
paper. Figure 8.4 shows a schematic drawing of the children at the
table.

C
3

C
2

C
1

R WC
4

8

8

+2

10

x 3

30 60 66

x 2 +6

66

Figure 8.4: Six children working in parallel

(a) Finish the specification for the reading child R, that reads the
numbers 0 till 9 one by one.

proc R(...):
int i;

while i < 10:
...;
...

end
end

(b) Specify the parameterized process Cadd that represents the chil-
dren C1 and C4, who perform an addition.

68 CHAPTER 8. CHANNELS

(c) Specify the parameterized process Cmul that represents the chil-
dren C2 and C3, who perform a multiplication.

(d) Specify the process W representing the writing child. Write each
result to the screen separated by a new line.

(e) Make a graphical representation of the model SixChildren that
is composed of the six children.

(f) Specify the model SixChildren. Simulate the model.

Chapter 9

Buffers

In the previous chapter, a production system was discussed that passes
values from one process to the next using channels, in a synchronous man-
ner. (Sender and receiver perform the communication at exactly the same
moment in time, and the communication is instantaneous.) In many sys-
tems however, processes do not use synchronous communication, they use
asynchronous communication instead. Values (products, packets, messages,
simple tokens, and so on) are sent, temporarily stored in a buffer, and then
received.

In fact, the decoupling of sending and receiving is very important, it
allows compensating temporarily differences between the number of items
that are sent and received. (Under the assumption that the receiver is fast
enough to keep up with the sender in general, otherwise the buffer will grow
forever or overflow.)

For example, consider the exchange of items from a producer process P
to a consumer process C as shown in Figure 9.1. In the unbuffered situation,
both processes communicate at the same time. This means that when one
process is (temporarily) faster than the other, it has to wait for the other
process before communication can take place. With a buffer in-between,
the producer can give its item to the buffer, and continue with its work.
Likewise, the consumer can pick up a new item from the buffer at any later

69

70 CHAPTER 9. BUFFERS

P C
a

Figure 9.1: A producer and a consumer.

time (if the buffer has items).
In Chi 3, buffers are not modeled as channels, they are modeled as ad-

ditional processes instead. The result is shown in Figure 9.2. The producer

P B C
a b

Figure 9.2: A producer and a consumer, with an additional buffer process.

sends its items synchronously (using channel a) to the buffer process. The
buffer process keeps the item until it is needed. The consumer gets an item
synchronously (using channel b) from the buffer when it needs a new item
(and one is available).

In manufacturing networks, buffers, in combination with servers, play
a prominent role, for buffering items in the network. Various buffer types
exist in these networks: buffers can have a finite or infinite capacity, they
have a input/output discipline, for example a first-out queuing discipline
or a priority-based discipline. Buffers can store different kinds of items,
for example, product-items, information-items, or a combination of both.
Buffers may also have sorting facilities, etc.

In this chapter some buffer types are described, and with the presented
concepts numerous types of buffer can be designed by the engineer. First
a simple buffer process with one buffer position is presented, followed by
more advanced buffer models. The producer and consumer processes are
not discussed in this chapter.

9.1. A ONE-PLACE BUFFER 71

9.1 A one-place buffer

A buffer usually has a receiving channel and a sending channel, for receiving
and sending items. A buffer, buffer B1, is presented in Figure 9.3.

B1
a b

Figure 9.3: A 1-place buffer.

The simplest buffer is a one-place buffer, for buffering precisely one
item. A one-place buffer can be defined by:

proc B1(chan? item a; chan! item b):
item x;
while true:

a?x; b!x
end

end

where a and b are the receiving and sending channels. Item x is buffered
in the process. A buffer receives an item, stores the item, and sends the
item to the next process, if the next process is willing to receive the item.
The buffer is not willing to receive a second item, as long as the first item
is still in the buffer.

A two-place buffer can be created, by using the one-place buffer process
twice. A two-place buffer is depicted in Figure 9.4: A two-place buffer is

B1 B1
a c b

Figure 9.4: A 2-place buffer.

defined by:

72 CHAPTER 9. BUFFERS

proc B2(chan? item a; chan! item b):
chan item c;
run

B1(a, c), B1(c, b)
end

where two processes B1 buffer maximal two items. If each process B1 con-
tains an item, a third item has to wait in front of process B2. This procedure
can be extended to create even larger buffers. Another, more preferable
manner however, is to describe a buffer in a single process by using a select
statement and a list for storage of the items. Such a buffer is discussed in
the next section.

9.2 A single process buffer

An informal description of the process of a buffer, with an arbitrary number
of stored items, is the following:

• If the buffer has space for an item, and can receive an item from
another process via channel a, the buffer process receives that item,
and stores the item in the buffer.

• If the buffer contains at least one item, and the buffer can send that
item to another process via channel b, the buffer process sends that
item, and removes that item from the buffer.

• If the buffer can both send and receive a value, the buffer process
selects one of the two possibilities (in a non-deterministic manner).

• If the buffer can not receive an item, and can not send an item, the
buffer process waits.

Next to the sending and receiving of items (to and from the buffer process)
is the question of how to order the stored items. A common form is the
first-in first-out (fifo) queuing discipline. Items that enter the buffer first

9.2. A SINGLE PROCESS BUFFER 73

(first-in) also leave first (first-out), the order of items is preserved by the
buffer process.

In the model of the buffer, an (ordered) list of type item is used for
storing the received items. New item x is added at the rear of list xs by
the statement:

xs = xs + [x]

The first item of the list is sent, and then deleted with:

xs = xs[1:]

An alternative solution is to swap the function of the rear and the front,
which can be useful some times.

The statement to monitor several channels at the same time is the
select statement. The syntax of the select statement, with two alterna-
tives, is:

select
boolean_expression_1, communication statement_1:

statement_list_1
alt

boolean_expression_2, communication statement_2:
statement_list_2

...
end

There has to be at least one alternative in a select statement. The statement
waits, until for one of the alternatives the boolean_expression holds and
communication using the communication statement is possible. (When
there are several such alternatives, one of them is non-deterministically
chosen.) For the selected alternative, the communication statement is exe-
cuted, followed by the statements in the statement_list of the alternative.

The above syntax is the most generic form, the boolean_expression
may be omitted when it always holds, or the communication statement
may be omitted when there is no need to communicate. The ‘,’ also disap-
pears then. (Omitting both the boolean expression and the communication

74 CHAPTER 9. BUFFERS

statement is not allowed.) Similarly, when the statement_list is empty
or just pass, it may be omitted (together with the ‘:’ in front of it).

The description (in words) of the core of the buffer, from page 72, is
translated in code, by using a select statement:

select
size(xs) < N, a?x:

xs = xs + [x]
alt

size(xs) > 0, b!xs[0]:
xs = xs[1:]

end

In the first alternative, it is stated that, if the buffer is not full, and the
buffer can receive an item, an item is received, and that item is added to
the rear of the list. In the second alternative, it is stated that, if the buffer
contains at least one item, and the buffer can send an item, the first item in
the list is sent, and the list is updated. Please keep in mind that both the
condition must hold and the communication must be possible at the same
moment.

The complete description of the buffer is:

proc B(chan? item a; chan! item b):
list item xs; item x;
while true:

select
size(xs) < N, a?x:

xs = xs + [x]
alt

size(xs) > 0, b!xs[0]:
xs = xs[1:]

end
end

end

9.2. A SINGLE PROCESS BUFFER 75

Instead of boolean expression size(xs) > 0, expression not empty(xs)
can be used, where empty is a function yielding true if the list is empty,
otherwise false. In case the capacity of the buffer is infinite, expression
size(xs) < N can be replaced by true, or even omitted (including the
comma). A buffer with infinite capacity can be written as:

proc B(chan? item a; chan! item b):
list item xs; item x;
while true:

select
a?x:

xs = xs + [x]
alt

not empty(xs), b!xs[0]:
xs = xs[1:]

end
end

end

A first-in first-out buffer is also called a queue, while a first-in last-out
buffer (lifo buffer), is called a stack. A description of a lifo buffer is:

proc B(chan? item a; chan! item b):
list item xs; item x;
while true:

select
a?x:

xs = [x] + xs
alt

not empty(xs), b!xs[0]:
xs = xs[1:]

end
end

end

76 CHAPTER 9. BUFFERS

The buffer puts the last received item at the head of the list, and gets the
first item from the list. An alternative is to put the last item at the rear of
the list, and to get the last item from the list.

9.3 A token buffer

In the next example, signals are buffered instead of items. The buffer
receives and sends ‘empty’ items or tokens. Counter variable w of type int
denotes the difference of the number of tokens received and the number of
tokens sent. If the buffer receives a token, counter w is incremented; if the
buffer sends a token, counter w is decremented. If the number of tokens
sent is less than the number of tokens received, there are tokens in the
buffer, and w > 0. A receiving channel variable a of type void is defined
for receiving tokens. A sending channel variable b of type void is defined
for sending tokens. The buffer becomes:

proc B(chan? void a; chan! void b):
int w;
while true:

select
a?:

w = w + 1
alt

w > 0, b!:
w = w - 1

end
end

end

Note: Variables of type void do not exist. Type void only can be used in
combination with channels.

9.4. A PRIORITY BUFFER 77

9.4 A priority buffer

A buffer for items with different priority is described in this section. An
item has a high priority or a normal priority. Items with a high priority
should leave the buffer first.

An item is a tuple with a field prio, denoting the priority, 0 for high
priority, and 1 for normal priority:

type item = tuple(...; int prio);

For the storage of items, two lists are used: a list for high priority items
and a list for normal priority items. The two lists are described by a list
with size two:

list(2) list item xs;

Variable xs[0] contains the high priority items, xs[1] the normal priority
items. The first item in the high priority list is denoted by xs[0][0], etc.

In the model the received items are, on the basis of the value of the
prio-field in the item, stored in one of the two lists: one list for ‘high’
items and one list for ‘normal’ items. The discipline of the buffer is that
items with a high priority leave the buffer first. The model is:

proc BPrio(chan? item a; chan! item b):
list(2) list item xs; item x;
while true:

select
a?x:

xs[x.prio] = xs[x.prio] + [x]
alt

not empty(xs[0]), b!xs[0][0]:
xs[0] = xs[0][1:]

alt
empty(xs[0]) and not empty(xs[1]), b!xs[1][0]:

xs[1] = xs[1][1:]
end

78 CHAPTER 9. BUFFERS

end
end

The buffer has two lists xs[0] and xs[1]. Received items x are stored in
xs[x.prio] by the statement xs[x.prio] = xs[x.prio] + [x].

If the list high priority items (xs[0]) is not empty, items with high
priority are sent. The first element in list xs[0] is element xs[0][0]. If
there are no high priority items (list xs[0] is empty), and there are normal
priority items (list xs[1] is not empty), the first element of list xs[1],
element xs[1][0], is sent.

Note that the order of the alternatives in the select statement does not
matter, every alternative is treated in the same way.

9.5 Exercises

1. To study product flow to and from a factory, a setup as shown in
Figure 9.5 is created. F is the factory being studied, generator G

G F E

C

gf fe

sg se

Figure 9.5: A controlled factory.

sends products into the factory, and exit process E retrieves finished
products. The factory is tightly controlled by controller C that sends
a signal to G or E before a product may be moved. The model is as
follows:

proc G(chan! int a; chan? void sg):
for i in range(10):

9.5. EXERCISES 79

sg?;
a!i;

end
end

proc F(chan? int a; chan! int b):
...

end

proc E(chan? int a; chan? void se):
int x;
while true:

se?;
a?x;
write("E received %d\n", x);

end
end

proc C(chan! void sg, se; int low, high):
int count;
while true:

while count < high:
sg!;
count = count + 1;

end
while count > low:

se!;
count = count - 1;

end
end

end

model M():
chan void sg, se;

80 CHAPTER 9. BUFFERS

chan int gf, fe;
run

C(sg, se, 0, 1),
G(gf, sg), F(gf, fe), E(fe, se);

end

The number of products inserted by the generator has been limited
to allow for manual inspection of results.

(a) As a model of the factory, use a FIFO buffer process. Run the
simulation, and check whether all products are received by the
exit process.

(b) Change the control policy to low = 1 and high = 4. Predict
the outcome, and verify with simulation.

(c) The employees of the factory propose to stack the products in
the factory to reduce the amount of space needed for buffering.
Replace the factory process with a LIFO buffer process, run the
experiments again, first with low = 0 and high = 1 and then
with low = 1 and high = 4.

(d) You will notice that some products stay in the factory forever.
Why does that happen? How should the policy be changed to
ensure all products eventually leave the factory?

Chapter 10

Servers with time

A manufacturing line contains machines and/or persons that perform a
sequence of tasks, where each machine or person is responsible for a single
task. The term server is used for a machine or a person that performs a
task. Usually the execution of a task takes time, e.g. a drilling process, a
welding process, the set-up of a machine. In this chapter we introduce the
concept of time, together with the delay statement.

Note that here ‘time’ means the simulated time inside the model. For
example, assume there are two tasks that have to be performed in sequence
in the modeled system. The first task takes three hours to complete, the
second task takes five hours to complete. These amounts of time are spec-
ified in the model (using the delay statement, as will be explained below).
A simulation of the system should report ‘It takes eight hours from start
of the first task to finish of the second task’. However, it generally does
not take eight hours to compute that result, a computer can calculate the
answer much faster. When an engineer says “I had to run the system for
a year to reach steady-state”, he means that time inside the model has
progressed a year.

81

82 CHAPTER 10. SERVERS WITH TIME

10.1 The clock

The variable time denotes the current time in a model. It is a global
variable, it can be used in every model and proc. The time is a variable of
type real. Its initial value is 0.0. The variable is updated automatically
by the model, it cannot be changed by the user. The unit of the time is
however determined by the user, that is, you define how long 1 time unit
of simulated time is in the model.

The value of variable time can be retrieved by reading from the time
variable:

t = time

The meaning of this statement is that the current time is copied to variable
t of type real.

A process delays itself to simulate the processing time of an operation
with a delay statement. The process postpones or suspends its own actions
until the delay ends.

For example, suppose a system has to perform three actions, each action
takes 45 seconds. The unit of time in the model is one minute (that is,
progress of the modeled time by one time unit means a minute of simulated
time has passed). The model looks like

proc P():
for i in range(3):

write("i = %d, time = %f\n", i, time);
delay 0.75

end
end

model M():
run P()

end

An action takes 45 seconds, which is 0.75 time units. The delay 0.75
statement represents performing the action, the process is suspended until
0.75 units of time has passed.

10.2. SERVERS WITH TIME 83

The simulation reports:

i = 0, time = 0.000000
i = 1, time = 0.750000
i = 2, time = 1.500000
All processes finished at time 2.25

The three actions are done in 2.25 time units (2.25 minutes).

10.2 Servers with time

Adding time to the model allows answering questions about time, often
performance questions (‘how many products can I make in this situation?’).
Two things are needed:

• Servers must model use of time to perform their task.

• The model must perform measurements of how much time passes.

By extending models of the servers with time, time passes while tasks are
being performed. Time measurements then give non-zero numbers (servers
that can perform actions instantly result in all tasks being done in one
moment of time, that is 0 time units have passed between start and finish).
Careful analysis of the measurements should yields answers to questions
about time.

In this chapter, adding of passing time in a server and how to embed
time measurements in the model is explained. The first case is a small
production line with a deterministic server (its task takes a fixed amount of
time), while the second case uses stochastic arrivals (the moment of arrival
of new items varies), and a stochastic server instead (the duration of the
task varies each time). In both cases, the question is what the flow time
of an item is (the amount of time that a single item is in the system),
and what the throughput of the entire system is (the number of items the
production line can manufacture per time unit).

84 CHAPTER 10. SERVERS WITH TIME

A deterministic system

The model of a deterministic system consists of a deterministic generator, a
deterministic server, and an exit process. The line is depicted in Figure 10.1.
Generator process G sends items, with constant inter-arrival time ta, via

G S E
a b

Figure 10.1: Generator G, server S, and exit E.

channel a, to server process S. The server processes items with constant
processing time ts, and sends items, via channel b, to exit process E.

An item contains a real value, denoting the creation time of the item, for
calculating the throughput of the system and flow time (or sojourn time)
of an item in the system. The generator process creates an item (and sets
its creation time), the exit process E writes the measurements (the moment
in time when the item arrives in the exit process, and its creation time) to
the output. From these measurements, throughput and flow time can be
calculated.

Model M describes the system:

type item = real;

model M(real ta, ts; int N):
chan item a, b;
run

G(a, ta),
S(a, b, ts),
E(b, N)

end

The item is a real number for storing the creation time. Parameter ta
denotes the inter-arrival time, and is used in generator G. Parameter ts

10.2. SERVERS WITH TIME 85

denotes the server processing time, and is used in server S. Parameter N
denotes the number of items that must flow through the system to get a
good measurement.

Generator G has two parameters, channel a, and inter-arrival time ta.
The description of process G is given by:

proc G(chan! item a; real ta):
while true:

a!time; delay ta
end

end

Process G sends an item, with the current time, and delays for ta, before
sending the next item to server process S.

Server S has three parameters, receiving channel a, sending channel b,
and server processing time ts:

proc S(chan? item a; chan! item b; real ts):
item x;
while true:

a?x; delay ts; b!x
end

end

The process receives an item from process G, processes the item during ts
time units, and sends the item to exit process E.

Exit E has two parameters, receiving channel a and the length of the
experiment N:

proc E(chan item a; int N):
item x;
for i in range(N):

a?x; write("%f, %f\n", time, time - x)
end

end

86 CHAPTER 10. SERVERS WITH TIME

The process writes current time time and item flow time time - x to the
screen for each received item. Analysis of the measurements will show that
the system throughput equals 1/ta, and that the item flow time equals ts
(if ta ≥ ts).

A stochastic system

In the next model, the generator produces items with an exponential inter-
arrival time, and the server processes items with an exponential server
processing time. To compensate for the variations in time of the generator
and the server, a buffer process has been added. The model is depicted in
Figure 10.2.

G B S E
a b c

Figure 10.2: Generator G, buffer B, server S, and exit E.

Type item is the same as in the previous situation. The model runs the
additional buffer process:

model M(real ta, ts; int N):
chan item a, b, c;
run

G(a, ta),
B(a, b),
S(b, c, ts),
E(c, N)

end

Generator G has two parameters, channel variable a, and variable ta,
denoting the mean inter-arrival time. An exponential distribution is used
for deciding the inter-arrival time of new items.

10.3. TWO SERVERS 87

proc G(chan item a; real ta):
dist real u = exponential(ta);
while true:

a!time; delay sample u
end

end

The process sends a new item to the buffer, and delays sample u time
units. Buffer process B is a fifo buffer with infinite capacity, as described
on Page 75. Server S has three parameters, channel variables a and b, for
receiving and sending items, and a variable for the average processing time
ts.

proc S(chan item a, b; real ts):
dist real u = exponential(ts);
item x;
while true:

a?x; delay sample u; b!x
end

end

An exponential distribution is used for deciding the processing time. The
process receives an item from process G, processes the item during sample
u time units, and sends the item to exit process E.

Exit process E is the same as in the previous case (see Page 85). In
this case the throughput of the system also equals 1/ta, and the mean
flow can be obtained by doing an experiment and analysis of the resulting
measurements (for ta > ts).

10.3 Two servers

In this section two different types of systems are shown: a serial and a par-
allel system. In a serial system the servers are positioned after each other,
in a parallel system the servers are operating in parallel. Both systems use
a stochastic generator, and stochastic servers.

88 CHAPTER 10. SERVERS WITH TIME

Serial system

The next model describes a serial system, where an item is processed by
one server, followed by another server. The generator and the servers are
decoupled by buffers. The model is depicted in Figure 10.3.

G B S B S E
a b c d e

Figure 10.3: A generator, two buffers, two servers, and an exit.

The model can be described by:

model M(real ta, ts; int N):
chan item a, b, c, d, e;
run

G(a, ta),
B(a, b), S(b, c, ts),
B(c, d), S(d, e, ts),
E(e, N)

end

The various processes are equal to those described in the previous section,
Section 10.2.

Parallel systems

In a parallel system the servers are operating in parallel. Having several
servers in parallel is useful for enlarging the processing capacity of the
task being done, or for reducing the effect of break downs of servers (when
a server breaks down, the other server continues with the task for other
items). Figure 10.4 depicts the system. Generator process G sends items
via a to buffer process B, and process B sends the items in a first-in first-out
manner to the servers S. Both servers send the processed items to the exit
process E via channel c. The inter-arrival time and the two process times

10.3. TWO SERVERS 89

G B

S

S

E
a

b

b

c

c

Figure 10.4: A model with two parallel servers.

are assumed to be stochastic, and exponentially distributed. Items can pass
each other, due to differences in processing time between the two servers.

If a server is free, and the buffer is not empty, an item is sent to a server.
If both servers are free, one server will get the item, but which one cannot
be determined beforehand. (How long a server has been idle is not taken
into account.) The model is described by:

model M(real ta, ts; int N):
chan item a, b, c;
run

G(a, ta),
B(a, b),
S(b, c, ts), S(b, c, ts),
E(c, N)

end

To control which server gets the next item, each server must have its
own channel from the buffer. In addition, the buffer has to know when the
server can receive a new item. The latter is done with a ‘request’ channel,
denoting that a server is free and needs a new item. The server sends its
own identity as request, the requests are administrated in the buffer. The
model is depicted in Figure 10.5. In this model, the servers ‘pull’ an item
through the line. The model is:

model M(real ta, ts; int N):

90 CHAPTER 10. SERVERS WITH TIME

G B

S

S

E
a b[0]

b[1]

r

r

c

c

Figure 10.5: A model with two parallel requesting servers.

chan item a; list(2) chan item b; chan item c;
chan int r;
run

G(a, ta),
B(a, b, r),
unwind j in range(2):

S(b[j], c, r, ts, j)
end,
E(c, N)

end

In this model, an unwind statement is used for the initialization and running
of the two servers. Via channel r an integer value, 0 or 1, is sent to the
buffer.

The items received from generator G are stored in list xs, the requests
received from the servers are stored in list ys. The items and requests are
removed form their respective lists in a first-in first-out manner. Process B
is defined by:

proc B(chan? item a; list chan! item b; chan? int r):
list item xs; item x;
list int ys; int y;
while true:

select

10.3. TWO SERVERS 91

a?x:
xs = xs + [x]

alt
r?y:

ys = ys + [y]
alt

not empty(xs) and not empty(ys),
b[ys[0]]!xs[0]:
xs = xs[1:]; ys = ys[1:]

end
end

end

If, there is an item present, and there is a server demanding for an item,
the process sends the first item to the longest waiting server. The longest
waiting server is denoted by variable ys[0]. The head of the item list is
denoted by xs[0]. Assume the value of ys[0] equals 1, then the expression
b[ys[0]]!xs[0], equals b[1]!xs[0], indicates that the first item of list
xs, equals xs[0], is sent to server 1.

The server first sends a request via channel r to the buffer, and waits
for an item. The item is processed, and sent to exit process E.

proc S(chan? item b; chan! item c;
chan! int r; real ts; int k):

dist real u = exponential(ts);
item x;
while true:

r!k;
b?x;
delay sample u;
c!x

end
end

92 CHAPTER 10. SERVERS WITH TIME

10.4 Assembly

In assembly systems, components are assembled into bigger components.
These bigger components are assembled into even bigger components. In
this way, products are built, e.g. tables, chairs, computers, or cars. In
this section some simple assembly processes are described. These systems
illustrate how assembling can be performed: in industry these assembly
processes are often more complicated.

An assembly work station for two components is shown in Figure 10.6.
The assembly process server S is preceded by buffers. The server receives

B

B

S

a[0]

a[1]

c[0]

c[1]

b

Figure 10.6: Assembly for two components.

an item from each buffer B, before starting assembly. The received items
are assembled into one new item, a list of its (sub-)items. The description
of the assembly server is:

proc S(list chan? item c, chan! list item b):
list(2) item v;
while true:

select
c[0]?v[0]: c[1]?v[1]

alt
c[1]?v[1]: c[0]?v[0]

end
b!v

end

10.4. ASSEMBLY 93

end

The process takes a list of channels c to receive items from the preceding
buffers. The output channel b is used to send the assembled component
away to the next process.

First, the assembly process receives an item from both buffers. All
buffers are queried at the same time, since it is unknown which buffer has
components available. If the first buffer reacts first, and sends an item, it is
received with channel c[0] and stored in v[0] in the first alternative. The
next step is then to receive the second component from the second buffer,
and store it (c[1]?v[1]). The second alternative does the same, but with
the channels and stored items swapped.

When both components have been received, the assembled product is
sent away.

A generalized assembly work station for n components is depicted in
Figure 10.7.

B

...

B

S

a[0]

a[i]

a[m]

c[0]

c[i]

c[m]

b

Figure 10.7: Assembly for n components, with m = n - 1.

The entire work station (the combined buffer processes and the assembly
server process) is described by:

proc W(list chan? item a; chan! list item b):
list(size(a)) chan item c;
run

94 CHAPTER 10. SERVERS WITH TIME

unwind i in range(size(a)):
B(a[i], c[i])

end,
S(c,b)

end

The size of the list of channels a is determined during initialization of the
workstation. This size is used for the generation of the process buffers, and
the accompanying channels.

The assembly server process works in the same way as before, except
for a generic n components, it is impossible to write a select statement
explicitly. Instead, an unwind is used to unfold the alternatives:

proc S(list chan? item c, chan! list item b):
list(size(c)) item v;
list int rec;
while true:

rec = range(size(c));
while not empty(rec):

select
unwind i in rec

c[i]?v[i]: rec = rec - [i]
end

end
end;
delay ...;
b!v

end
end

The received components are again in v. Item v[i] is received from chan-
nel c[i]. The indices of the channels that have not provided an item
are in the list rec. Initially, it contains all channels 0. . . size(c), that
is, range(size(c)). While rec still has a channel index to monitor, the
unwind i in rec unfolds all alternatives that are in the list. For exam-

10.5. EXERCISES 95

ple, if rec contains [0, 1, 5], the select unwind i in rec ... end
is equivalent to

select
c[0]?v[0]: rec = rec - [0]

alt
c[1]?v[1]: rec = rec - [1]

alt
c[5]?v[5]: rec = rec - [5]

end

After receiving an item, the index of the channel is removed from rec to
prevent receiving a second item from the same channel. When all items
have been received, the assembly process starts (modeled with a delay,
followed by sending the assembled component away with b!v.

In practical situations these assembly processes are performed in a more
cascading manner: two or three components are ‘glued’ together in one
assemble process, followed in the next process by another assembly process.

10.5 Exercises

1. To understand how time and time units relate to each other, change
the time unit of the model of Section 10.1.

(a) Change the model to using time units of one second (that is, one
time unit means one second of simulated time).

(b) Change the model to using time units of twelve seconds (that is,
one time unit means twelve seconds of simulated time).

2. Predict the resulting throughput and flow time for a deterministic case
like in Section 10.2, with ta = 4 and ts = 5. Verify the prediction
with an experiment, and explain the result.

3. Extend the model of Exercise 1 in Section 9.5 with a single determin-
istic server taking 4.0 time units to model the production capacity

96 CHAPTER 10. SERVERS WITH TIME

of the factory. Increase the number of products inserted by the gen-
erator, and measure the average flow time for

(a) A FIFO buffer with control policy low = 0 and high = 1.

(b) A FIFO buffer with control policy low = 1 and high = 4.

(c) A LIFO buffer with control policy low = 1 and high = 4.

Chapter 11

Conveyors

A conveyor is a long belt on which items are placed at the starting point of
the conveyor. The items leave the conveyor at the end point, after traveling
a certain period of time on the conveyor. The number of items traveling on
the conveyor varies, while each item stays the same amount of time on the
conveyor. It works like a buffer that provides output based on item arrival
time instead of based on demand from the next process.

11.1 Timers

To model a conveyor, you have to wait until a particular point in time. The
Chi 3 language has timers to signal such a time-out. The timer is started by
assigning it a value. From that moment, it automatically decrements when
time progresses in the model, until it reaches zero. The function ready
gives the boolean value true if the timer is ready. The amount of time
left can be obtained by reading from the variable. An example:

proc P():
timer t;
delay 10.0;
t = timer(5.0); # Get a time-out at time = 15.0
for i in range(7):

97

98 CHAPTER 11. CONVEYORS

write("%f %f %b\n, time, real(t), ready(t));
delay 1.0

end
end

model M():
run

P()
end

Initially, time equals 0.0. The first action of process P is to delay the time
for 10.0 time units. Now the value of time equals 10.0. Nothing happens
to timer t as it was already zero. At time 10 timer t is started with the
value 5.0. The output of the program is:

10.0 5.0 false
11.0 4.0 false
12.0 3.0 false
13.0 2.0 false
14.0 1.0 false
15.0 0.0 true
16.0 0.0 true

Timer t decrements as time progresses, and it is ready at 10.0 + 5.0
units. A process can have more timers active at the same moment.

11.2 A conveyor

A conveyor is schematically depicted in Figure 11.1. Three items are placed
on the conveyor. For simplicity, assume the conveyor is 60.0 meter long and
has a speed of 1 meter per second. An item thus stays on the conveyor for
60.0 seconds.

Item 0 has been placed on the conveyor 50.0 seconds ago, and will leave
the conveyor 10.0 second from now. In the same way, item 1 will leave 30.0
seconds from now, and 2 leaves after 45.0 seconds. Each item has a yellow

11.2. A CONVEYOR 99

012

10.0

30.0

45.0

Figure 11.1: A conveyor with three items.

sticker with the time that the item leaves the conveyor. Based on this idea,
tuple type conv_item has been defined, consisting of a field item, denoting
the received item, and a timer field t, with the remaining time until the
item leaves the conveyor:

type conv_item = tuple(item x; timer t);

proc T(chan? item a; chan! item b; real convey_time):
list conv_item xst; item x;
while true:

select
a?x:

xst = xst + [(x, timer(convey_time))]
alt

not empty(xst) and ready(xst[0].t), b!xst[0].item:
xst = xst[1:]

end
end

end

The conveyor always accepts new items from channel a, and adds the item
with the yellow sticker to the list. If the conveyor is not empty, and the
timer has expired for the first item in the list, it is sent (without sticker)

100 CHAPTER 11. CONVEYORS

to the next process. The conveyor sends items to a process that is always
willing to a receive an item, this implies that the conveyor is never blocked.
Blocking implies that the items nevertheless are transported to the end of
the conveyor.

11.3 A priority conveyor

In this example, items are placed on a conveyor, where the time of an
item on the conveyor varies between items. Items arriving at the conveyor
process, get inserted in the list with waiting items, in ascending order of
their remaining time on the conveyor. The field tt in the item denotes the
traveling time of the item on the conveyor:

type item = tuple(...; real tt; ...),
conv_item = tuple(item x; timer t);

The predicate function pred is defined by:

func bool pred(conv_item x, y):
return real(x.t) < real(y.t)

end

proc T(chan? item a; chan! item b):
list conv_item xst; item x;
while true:

select
a?x:

xst = insert(xst, (x, timer(x.tt)), pred)
alt

not empty(xst) and ready(xst[0].t), b!xst[0].item:
xst = xst[1:]

end
end

end

11.4. EXERCISES 101

The conveyor process works like before, except the new item is inserted in
the list according to its remaining time, instead of at the rear of the list.

11.4 Exercises

1. Model the system as shown in Figure 11.2 where T is a conveyor
process with a capacity of at most three products and exponentially
distributed conveying times with an average of 4.0.

G B T E
gb bt te

Figure 11.2: A conveyor system.

(a) Compute the average flow time of products in the system.

2. Model the system as shown in Figure 11.3 with exponentially dis-
tributed server processing times with an average of 4.0.

G B

S

S

S

E
g

b

b

b

e

e

e

Figure 11.3: A system with three parallel servers.

102 CHAPTER 11. CONVEYORS

(a) Compute the average flow time of products in the system.

(b) Are there differences in behavior between both systems? Why
(not)?

Index

atomic, 56

bool, 8
buffer, 69

channel, 59
direction, 65
naming, 65

clock, 82, 97
concurrent, 1
conveyor, 97

priority, 100
custom type, 22

delay, 82
dictionary, 14, 21

empty, 14
notation, 14
pop, 15
size, 14

distribution, 45
constant, 46
continuous, 48
discrete, 47

function, 33
ceil, 11

del, 18
empty, 14
floor, 11
insert, 37
pop, 14
range, 30
size, 14
sort, 36
ready, 97
higher-order, 35
recursive, 35

list, 13, 15
concatenation, 17
delete, 18
empty, 14
head, 17
head right, 17
notation, 13
pop, 15
size, 14
subtraction, 18
tail, 17
tail right, 17

numbers, 10

103

104 INDEX

operator
arithmetic, 10
logical, 9
relational, 11

parallel, 1
parameter

naming of channels, 65
process, 53

concurrent, 53
parallel, 53

server, 81
set, 13, 19

empty, 14
notation, 13
pop, 15
size, 14

side-effect, 34
statement

break, 30
continue, 30
delay, 82
for, 30
if, 26
pass, 31
return, 34
run, 55
time, 82
while, 28
write, 40
assignment, 25

system
parallel, 87

serial, 87

time, 82
in a function, 34

timer, 97
ready, 97

tuple, 12
field, 12
projection, 12

type, 7
bool, 8
dict, 21
dist, 45
int, 10
list, 15
real, 10
set, 19
string, 11
timer, 97
tuple, 12

