
13 Production lines

In this chapter we will consider production lines, which consist of several work stations in
series, possibly with buffers in between. A work station is a group of (parallel) machines
or operators performing one or more operations on the jobs.

One of the issues in the design of production lines is the (minimal) capacity (i.e., number
of machines or operators) that is required to achieve a certain target throughput level TH.
Denote the number of machines by m, and let W be the total work content of a job. Then,
the maximum number of units work that can be processed per time unit is equal to m,
and the amount of work that should be done per time unit is TH ·W . Hence, to realize a
target throughput TH, we need

m ≥ TH ·W. (1)

Usually m should be greater than this minimum, due to line unbalance, variability in
processing times, failures, etc. Other issues in the design and operation of production lines
are, e.g., the degree of paralleling of work stations, location and size of buffers in between
workstations, choice of the material handling system, allocation of tasks to work stations,
and the assignment of operators to work stations.

Production lines may be divided into two groups: synchronous and asynchronous lines.
In synchronous lines the movement of jobs is coordinated; all jobs move to the next work
station simultanuously. So the number of jobs in the system remains constant, and there
is no need to put buffers in between stations. This type of production line may be further
split up between paced and unpaced lines. In a paced line the time allowed for an operator
or machine to work on the job is limited. Once the time is up the job can be no longer
worked on, and thus it is possible that the processing is not completed when the job moves
on. In an unpaced line there is no maximum limit imposed on the processing time available
to the operator or machine.

In asynchronous lines the movement of jobs is not coordinated. The operator or machine
starts to process the next job as soon as one becomes available. And on service completion
the job immediately moves to the next work station, as long as there is space for it. Thus
an operator or machine can become starved (no job available) or blocked (no room to put a
completed job in the downstream buffer). Asynchronous lines are almost always unpaced.
The number of jobs in the system may fluctuate (considerably) and buffers are needed to
prevent starvation and blocking (i.e., loss of capacity) as much as possible.

In the following sections we start to look at synchronous lines.

13.1 Unpaced synchronous lines

We consider an unpaced synchronous production line, with m machines in series, and we
want to investigate the impact of the variability in the processing times on the throughput
of the line. Let the random variable Bi, i = 1, 2, . . . ,m, denote the processing time at
machine i, with distribution function

FBi(t) = P (Bi ≤ t), t ≥ 0.
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Further, let C be the (random) cycle time, i.e., the time that elapses between two subse-
quent job transfers. Since the jobs are transfered to the next machine in the line, once all
machines have finished processing, it follows that

C = max{B1, B2, . . . , Bm}.

Thus

FC(t) = P (C ≤ t) = P (B1 ≤ t, B2 ≤ t, . . . , Bm ≤ t) = FB1(t)FB2(t) · · ·FBm(t)

(since the processing times at the machines are assumed to be independent), and

E(C) =
∫ ∞

t=0
(1− FC(t))dt =

∫ ∞
t=0

(1− FB1(t)FB2(t) · · ·FBm(t))dt.

The throughput TH follows from

TH =
1

E(C)
.

Example 13.1 If the processing times are all uniformly distributed on (0, 1), i.e.,

FBi(t) = t, 0 ≤ t ≤ 1,

then we have

E(C) =
∫ 1

t=0
(1− tm)dt = 1− 1

m+ 1
.

Hence the throughput is always greater than 1, and for large m nearly equal to 1.

Example 13.2 If the processing times are all exponentially distributed with mean 1/2,
then it follows from the memoryless property of exponentials that

E(C) = E(max(B1, B2, . . . , Bm)) =
1

2

(
1

m
+

1

m− 1
+ · · ·+ 1

2
+ 1

)
.

Hence, as m tends to infinity, then E(C) also grows to infinity (as log(m)/2), and thus the
throughput tends to 0.

13.2 Paced synchronuous lines

In paced lines we have a fixed cycle time c. An important performance measure is the
throughput, but also the quality of the jobs. Let Q(c) denote the probability that a job at
the end of the line has no defect, i.e., each machine in the line succeeded in completing the
processing of the job. Thus

Q(c) = FB1(c)FB2(c) · · ·FBm(c).
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m c
5 5.51

10 6.21
20 6.90

Table 1: Minimal cycle time c to meet Q = 0.98 when all processing times are exponential
with mean 1

In table 1 below we list the minimal cycle time c to meet Q = 0.98, where the number of
machines m ranges from 5 to 20; all processing times Bi are exponentially distributed with
mean 1.

The throughput of good jobs (i.e., jobs without defects) is

TH =
Q(c)

c
.

Clearly there is a trade-off between the throughput and the quality of the output Q(c). If
the cycle time is too small, the time available to perform the job is too small and hence
the quality will be low, whereas if the cycle time is too big, the throughput will be low.
The maximal throughput TH will be achieved when

d

dc

Q(c)

c
=
Q′(c)c−Q(c)

c2
= 0,

or

Q′(c) =
Q(c)

c
.

Denote the cycle time maximizing TH by c∗. When the cycle time c is increased beyond
c∗, then the quality will improve, and the throughput will decrease. But if the cycle time
is decreased below c∗, then both the quality and the throughput will decrease. Hence, the
cycle time c should never be set to be less than c∗; beyond c∗ a tradeoff has to be made
between quality and throughput. In table 2 we list c∗ and the corresponding quality and
throughput for lines of 5, 10 and 20 machines, when all processing times are exponential
with mean 1.

m c∗ Q(c∗) TH
5 2.55 0.66 0.26

10 3.60 0.76 0.21
20 4.50 0.80 0.18

Table 2: Cycle time c∗ for which TH is maximal, when all processing times are exponential
with mean 1
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13.3 Asynchronuous lines with exponential processing times

In this section we consider an asynchronuous production line with m machines in series; the
machines are numbered 1, 2, . . . ,m. The processing times at machine i are exponentially
distributed with parameter µi, and jobs arrive at the first machine according to a Poisson
stream with rate λ. Each machine has a buffer with infinite capacity (i.e., there is always
room for jobs). The system is depicted in figure 1. We now want to determine the mean
total number of jobs in the system and the mean production lead time.
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Figure 1: Production line with infinite buffers, exponential processing times and Poisson
arrivals

To guarantee that the line can handle the amount of work offered per time unit, we have
to require that λ < µi for each machine i. From the property that the output process of
an M/M/1 system is again Poisson, it follows that the inflow at each machine is a Poisson
stream with rate λ. Hence, each machine in the line can be modelled as an M/M/1 with
arrival rate λ and service rate µi. Thus denoting the number of jobs at machine i by Li,
we find

E(Li) =
ρi

1− ρi

, i = 1, 2, . . . ,m,

where ρi = λ/µi, and for L, the total number of jobs in the system,

E(L) =
m∑

i=1

E(Li) =
m∑

i=1

ρi

1− ρi

.

By Little’s law the mean production lead time E(S) is given by

E(S) =
E(L)

λ
=

m∑
i=1

1/µi

1− ρi

.

Example 13.3 Let us consider the following work load allocation problem. The mean
total work load for each job is W , and we have to allocate the work load among the m
machines. Let wi denote the mean work load allocated to machine i; we assume that the
work load allocated to machine i is exponentially distributed. The problem is to find a work
load allocation minimizing the mean total number of jobs in the system (or equivalently,
minimizing the mean production lead time). Of course, it should hold that m ≥ λ ·W ;
otherwise there is no feasible work load allocation (cf. (1)). Thus we have to solve

min
m∑

i=1

λwi

1− λwi
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subject to
m∑

i=1

wi = W,

0 ≤ λwi ≤ 1, i = 1, 2, . . . ,m.

It can be shown that the optimal solution is given by

wi =
W

m
, i = 1, 2, . . . ,m.

Hence, it is optimal to balance the line.

In the previous example we have seen that it is optimal to balance the line. But what is
the impact of unbalance on the mean total number of jobs in the system? This is illustrated
in the following example.

Example 13.4 We consider a line with 4 machines. The arrival rate at the first machine
is 1 job per time unit. The mean processing time at machine i is denoted by wi. Further,
ρi = λwi and ρ is the average work load per machine, defined as

ρ =
1

4
(ρ1 + ρ2 + ρ3 + ρ4).

In table 3 we list the mean total number of jobs, E(L), for various values of ρ and different
work load allocations. Clearly, in heavy load situations, slight unbalance may have a
strong impact on the mean total number of jobs in the system (and thus also on the mean
production lead time).

ρ w1 w2 w3 w4 E(L1) E(L2) E(L3) E(L4) E(L)
0.80 0.85 0.65 0.90 0.80 5.7 1.9 9.0 4.0 20.5
0.80 0.80 0.80 0.80 0.80 4.0 4.0 4.0 4.0 16.0
0.90 0.95 0.83 0.97 0.85 19.0 4.9 32.3 5.7 61.9
0.90 0.90 0.90 0.90 0.90 9.0 9.0 9.0 9.0 36.0
0.95 0.96 0.93 0.97 0.94 24.0 13.3 32.3 15.7 85.3
0.95 0.95 0.95 0.95 0.95 19.0 19.0 19.0 19.0 76.0

Table 3: Mean total number of jobs in the system for different work load allocations

Remark 13.5 In this section we considered the situation where at each production stage
there is exactly one machine available. The analysis is very similar in case production
stage i, i = 1, 2, . . . ,m, is performed by a group of ci parallel and identical machines. For
stability we then have to require that λ < ciµi for each i. Since the output process of an
M/M/c system is also Poisson, it follows that production stage i can be modelled as an
M/M/ci with arrival rate λ and service rate µi.
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13.4 Asynchronuous lines with general processing times

We now consider an asynchronuous production line with m machines in series and gener-
ally distributed processing times. The mean processing time at machine i is E(Bi) and
the squared coefficient of variation is c2Bi . Jobs arrive according to a stream with gener-
ally distributed independent interarrival times with mean 1/λ and squared coefficient of
variation c2A. For stability we have to assume that ρi = λE(Bi) < 1 for each machine i.

In the exponential case we could exactly model each production stage as an M/M/1
system. In the general case we will use an approximation by modelling each production
stage as a G/G/1 system. The arrival process at production stage i can be approximated
as follows. The arrival rate at stage i is λ (by conservation of flow), and since arrivals
at stage i are departures from stage i− 1, we may approximate the squared coefficient of
variation c2Ai of the interarrival times at stage i by

c2Ai = (1− ρ2
i−1)c

2
Ai−1

+ ρ2
i−1c

2
Bi−1

, i = 2, 3, . . . ,m.

Of course, at machine 1 we have c2A1
= c2A. Denoting the production lead time at stage i

by the random variable Si, we get as approximation

E(Si) =
ρi

1− ρi

· c
2
Ai

+ c2Bi
2

· E(Bi) + E(Bi), i = 1, 2, . . . ,m, (2)

and E(Li) may be obtained by application of Little’s law.
Let us suppose that the line is balanced, so E(B1) = · · · = E(Bm). But the variation

in the processing times may be different at the production stages. Let us also assume that
the production stages may be rearranged in any order. Then, what is the best order of the
production stages, i.e., which order minimizes the mean total production lead time? Based
on approximation (2) for the production lead time, it can be shown that the machines with
the best processing reliability should be placed at the beginning of the line (cf. [1]). More
formally, if (π1, π2, . . . , πm) is the order of the machines in the production line (so machine
π1 is the first one, machine π2 the second and so on), then the order minimizing the mean
total production lead time should satisfy

c2Bπ1
≤ c2Bπ2

≤ · · · ≤ c2Bπm .

In the following example we explore the impact of other machine orderings on the perfor-
mance of the production line.

Example 13.6 We consider a line with 3 machines, numbered 0, 1, 2. The inflow is Poisson
with a rate of λ jobs per time unit. The mean processing time at each machine is 1 (so the
line is balanced); the squared coefficient of variation of the processing time at machine i is
i. So machine 0 has the most reliable processing times (i.e., deterministic), and machine
2 has the least reliable one. In table 4 we demonstrate the difference in performance by
arranging the machines in increasing, respectively decreasing order of processing reliability.
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Machine order λ E(S)
2 1 0 0.80 12.8
0 1 2 0.80 10
2 1 0 0.90 30
0 1 2 0.90 22.3
2 1 0 0.95 64.8
0 1 2 0.95 47.2

Table 4: Mean total production lead time as a function of the machine order

Remark 13.7 The (approximative) analysis of production lines with general interarrival
times and general processing times, where each stage is performed by a group of parallel
and identical machines, proceeds along the same line: then each machine group is modelled
as a G/G/c.

13.5 Asynchronuous lines with finite buffers

We consider an asynchronuous production line with m+1 machines in series; the machines
are numbered 0, 1, 2, . . . ,m (see figure 2). The processing times at machine i are exponen-
tially distributed with parameter µi. In between machine i − 1 and machine i there is a
buffer of size Ni − 1, i = 1, 2, . . . ,m.
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Figure 2: Production line with finite buffers and exponential processing times

Because the buffers are finite, machines may become blocked. We will consider two types
of blocking:

• Production blocking: The machine will always process a job as long as there is one
available. But when the machine has completed a job, it may have to wait to transfer
the job until there is room in the downstream buffer.

• Communication blocking: The machine starts processing a job only if there is one
available and there is room in the downstream buffer.

The first type of blocking is more common in production environments, The first type of
blocking is more common in production environments, and it also referred to as Blocking
After Service; the second type is Blocking Before Service. The arrival process of jobs
is modelled differently from what we have seen for the infinite buffer system. In fact,
machine 0 acts as arrival source; we assume that there are always new jobs (i.e., raw
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material) available at machine 0, thus machine 0 will always process a job as long as it is
not blocked. Relevant performance characteristics are, e.g., mean buffer levels, machine
efficiency and the throughput of the line. In particular, to design production lines, it is
important to know how the buffer sizes affect the throughput.

When the machines act according to the communication blocking protocol (the analysis
of production blocking is similar), the system can be described by a Markov process with
states (n1, n2, . . . , nm) where nm is the number of jobs at machine i (waiting or being
processed); so 0 ≤ ni ≤ Ni. Hence the number of states of this Markov process is finite. The
equilibrium probabilities p(n1, n2, . . . , nm) can be solved (numerically) from the (finitely
many) equilibrium equations, and performance characteristics such as the mean number
of jobs at machine i and the throughput TH of the production line can be expressed in
terms of these probabilities, i.e.,

E(Li) =
∑

(n1,...,nm)

nip(n1, . . . , nm), TH =
∑

(n1,...,nm):nm>0

p(n1, . . . , nm)µm.

Note that, by conservation of flow, the throughput of each machine in the line is the same.
The number of states of the Markov process is equal to

Πm
i=1(Ni + 1).

Thus, although finite, the number of states may be very large for already small values of
the buffer sizes Ni, so numerical solution of the equilibrium equations will be unpractical.
Therefore we usually look for efficient approximations for estimating performance charac-
teristics such as, e.g., the throughput of the line. There is a rich literature available on
approximations for production lines with finite buffers; see, e.g., [3, 2, 4]. To illustrate
some of the ideas we briefly describe a simple method for approximating the throughput
of a three machine line.

Let us consider a production line with three machines, operating under the communica-
tion blocking protocol. To develop an approximation for the throughput we first decompose
the line into two submodels; see figure 3. In the first submodel we replace the downstream
machines 1 and 2 by a single aggregate machine; label this machine by d and let µd be its
processing rate. The rate µd should be determined such that machine d properly describes
the behavior of the machines 1 and 2. In the second submodel we aggregate the upstream
machines 0 and 1 into a single machine, labeled by u and with processing rate µu. The
throughput of each submodel may serve as an approximation for the throughput of the
three machine line. Since the submodels consist of only two machines, their throughput is
easy to determine (once the rates µu and µd are known).

It remains to determine the processing rates µd and µu. For these rates we have the
following equations:

1

µd

= P (B) · 1

µ2

+
1

µ1

, (3)

1

µu

= P (S) · 1

µ0

+
1

µ1

, (4)
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Figure 3: Decomposition of 3 machine line into two submodels, one with a downstream
machine and one with an upstream machine

where P (B) is the probability that machine 1 is blocked after job completion, and P (S) is
the probability that machine 1 is starved after job completion. The probability P (B) can
be estimated from the submodel with machine u.
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Figure 4: Flow diagram of the model with the upstream machine

Let pk denote the probability there are k jobs in this submodel. From the flow diagram in
figure 4 it is easily seen that

pk =

(
µu

µ2

)k

p0, k = 0, 1, . . . , N2.

Since P (B) is equal to the probability that machine u is blocked after completion of a job,
we get

P (B) =
pN2−1µu

p0µu + p1µu + · · ·+ pN2−1µu

=

(
µu

µ2

)N2−1
1− µu/µ2

1− (µu/µ2)N2
.
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Similarly, P (S) follows from the submodel with machine d, yielding

P (S) =
1− µ0/µd

1− (µ0/µd)N1
.

Hence, the equations (3)-(4) form two (nonlinear) equations for µd and µu. These equations
may be solved by successive substitutions starting with µd = µu = µ1. It can be shown
that for the solution of (3)-(4), the throughtputs of the two submodels are exactly the
same. Thus either throughput may be used as an approximation for the throughput of the
three machine line.

13.6 Production line with closed-loop material handling

In this section we consider a production line with m machines in series; see figure 5. The
machines are numbered 1, 2, . . . ,m. The processing times at machine i are exponential
with parameter µi and in front of each machine there is a buffer of size Ni − 1. Jobs
are circulating on pallets; they can keep jobs in a fixed orientation (required for high
precision operations) and make jobs easier to handle for transportation. As soon as a job
is finished at (the last) machine m, it is removed from the pallet and a new job (raw part)
is immediately placed on the pallet, after which it returns to machine 1. The number of
circulating pallets is n. Clearly, the number of circulating pallets affects the throughput
of the production line. If this number is small (large), we expect the throughput will be
low (high). Below we investigate, for a simple two machine line, whether increasing the
number of pallets indeed leads to higher throughput.
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Figure 5: Production line with closed loop material handling

Let us look at a system with two machines, operating under the communication blocking
protocol. Without loss of generality we assume that N1 ≥ N2. The system can be described
by a Markov process with states k, where k is the number of jobs at machine 1 (waiting
in the buffer or being processed). Let pk be the equilibrium probability of state k. To
determine these probabilities we distinguish between several cases. If n ≤ N2, then there
is no blocking at all; the flow diagram is shown in figure 6.
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Figure 6: Flowdiagram for the two machine closed loop system with n ≤ N2

It readily follows that

pk =

(
µ2

µ1

)k
1− µ2/µ1

1− (µ2/µ1)n+1
, k = 0, 1, . . . , n.

If N2 < n ≤ N1, then machine 1 may be blocked because the buffer of machine 2 is full.
The possible states are n−N2, n−N2 + 1, . . . , n and the probabilities satisfy

pk =

(
µ2

µ1

)k−(n+N2)
1− µ2/µ1

1− (µ2/µ1)N2+1
, k = n−N2, n−N2 + 1, . . . , n.

Finally, if N1 < n ≤ N1 +N2, then the possible states are n−N2, n−N2 + 1, . . . , N1 and
the probabilities are given by

pk =

(
µ2

µ1

)k−(n−N2)
1− µ2/µ1

1− (µ2/µ1)N1−(n−N2)+1
, k = n−N2, n−N2 + 1, . . . , N1.

From the equilibrium probabilities pk we can obtain the throughput of the line. Let TH(n)
denote the throughput for n circulating pallets. It then follows that

TH(n) =

{
(1− p0)µ1, n ≤ N2;
(1− pn−N2)µ1 n > N2.

Note that the throughput is symmetric: TH(n) = TH(N1 +N2 − n). In figure 7 we show
the throughput TH(n) as a function of n for a system µ1 = 1, µ2 = 1.1, N1 = 12 and
N2 = 8. Observe that the throughput increases as we increase the number of pallets up
until N2; then it remains constant as long as n is between N2 and N1 and beyond this
point the throughput decreases. Eventually, for n = N1 +N2 the throughput is 0; that is,
the system will come to a deadlock.
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