Stochastic Models of Manufacturing Systems

Ivo Adan

Technische Universiteit **Eindhoven** University of Technology

Organization

- 7 lectures (lecture of May 12 is canceled)
- Studyguide available (with notes, slides, assignments, references), see http://www.win.tue.nl/~iadan/4t400
- Examination consists of:
 - Weekly (8) take home assignments
 - Send in take home assignments individually
 - Best 7 out of 8 take home assignments count (40%)
 - Take home assignments of last week will be discussed in BZ
 - Final assignment, done in groups of two (60%)

Topics

- Basic probability (refresher)
- Basic statistics for discrete-event simulation
- Modeling and analysis of manufacturing systems:
 - Single-stage systems
 - Multi-stage flow lines
 - Job-shop systems
 - CONWIP systems

Modeling

Some basic steps:

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model
- Verify and validate the model
- Experiment with the model
- Present the results

Modeling

Various types of models:

- Physical models
- Simulation models
- Analytical models

But why modeling?

- Understanding
- Improvement
- Optimization
- Decision making

Modeling

Some issues:

- Complexity versus Simplicity
- Flexibility
- Data requirements
- Transparency

Analytical and simulation capability: Effective modeling requires both!

Servers are equally fast, 10 circulating jobs

Question: Replace one server by a server that is twice as fast. How does this affect average throughput time? Throughtput?

Question: Does your answer change in case of more jobs? Less jobs?

7/47

Multiple Machines or a Single One?

4 machines, or one machine that is four times faster?

Question: What do you prefer, 4 machines or one fast machine?

Question: What do you prefer if process time variability is high?

Question: What do you prefer if the load is low?

8/47

Multiple Machines or a Single One?

4 machines, or one machine that is four times faster?

The required information is captured in the following formula:

$$E(S) \approx \frac{\Pi_W}{1-\rho} \frac{E(R)}{c} + E(B)$$

9/47

Running example

10/47

A robotic dairy barn

Milking robot

How to design such a barn?

How to design such complex systems?

- What should be the layout of the network?
- Size of zones?
- Where to locate items?
- What number of pickers and zones?
- Required WIP level?

24/47

Network model: implemented in Java Applet

Contents Basic Probability

- Sheldon M. Ross: Probability Models, Academic Press, 2003.
 - Chapter 1: 1.1-1.5
 - Chapter 2: 2.1-2.5
 - Chapter 3: 3.1-3.5
- Henk Tijms: Understanding Probability, Cambridge Univ. Press, 2012.
 - Chapter 7: 7.1, 7.2 (till 7.2.1), 7.3
 - Chapter 8: 8.1, 8.2
 - Chapter 9
 - Chapter 10: 10.1, 10.2, 10.3, 10.4 (till 10.4.8), 10.5, 10.6
 - Chapter 11: 11.1, 11.2, 11.3, 11.4.1, 11.5
 - Chapter 13: 13.1, 13.2, 13.3 (till 13.3.1)
 - Appendix:

Permutations, Combinations, Exponential function, Geometric series

Basic Probability

Ingredients of a probability model:

- Sample space *S*: flipping a coin, rolling a die, process time, ...
- Events are (essentially) all subsets of *S*: $E = \{H\}, E = \{1, 2\}, E = (0, 1), ...$
- Get new events by union, intersection, complement

Probabilities on Events

For each event *E* there is a number P(E) such that:

- $0 \le P(E) \le 1$
- P(S) = 1
- E_1, E_2, \ldots mutually exclusive, then $P(\bigcup_0^\infty E_i) = \sum_0^\infty P(E_i)$

Example: Tossing a coin, $P({H}) = P({T}) = \frac{1}{2}$ Example: Rolling a die, $P({1}) = \frac{1}{6}$, $P({1, 2}) = P({1}) + P({2}) = \frac{1}{3}$

Intuition:

If an experiment is repeated over and over, then, with probability 1, the long run portion of time that event *E* occurs is P(E)

Conditional probabilities

Probability of event *E* given that event *F* occurs,

 $P(E|F) = \frac{P(E \cap F)}{P(F)}$

Example: Rolling a die twice, $P(\{i, j\}) = \frac{1}{36}$

Given that i = 4 (event *F*), what is probability that j = 2 (event *E*)?

28/47

$$P(E|F) = \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}$$

Example: Darts on unit disk $\{(x, y)|x^2 + y^2 \le 1\}$

$$P(\text{distance to } 0 > \frac{1}{2}|x > 0) = \frac{\frac{1}{2}\pi - \frac{1}{8}\pi}{\frac{1}{2}\pi} = \frac{3}{4}$$

Note: $P(E \cap F) = P(E|F)P(F)$ and we usually write $P(E \cap F) = P(EF)$

Independent events

Events *E* and *F* are independent if

P(EF) = P(E)P(F)

and events E_1, \ldots, E_n are independent is

 $P(E_1E_2\ldots E_n) = P(E_1)P(E_2)\cdots P(E_n)$

Example: Rolling a die twice

E = "i + j = 6" and F = "i = 4". Independent?

$$P(E) = \frac{5}{36}, \quad P(F) = \frac{1}{6}, \quad P(EF) = \frac{1}{36}$$

Now E = "i + j = 7". Independent?

Independent experiments: $S = S_1 \times S_2 \times \cdots \times S_n$ where

$$P(E_1E_2\ldots E_n) = P(E_1)P(E_2)\cdots P(E_n)$$

Random variable

Function of outcome: X

Example: Rolling a die twice

X is sum of outcomes, so X = i + j, $P(X = 2) = \frac{1}{36}$

Example: Flipping a coin indefinitely, P(H) = p

N is number of flips until first H (independent flips)

 $P(N = n) = (1 - p)^{n-1}p$

Discrete random variable (rv): possible values are discrete

Continuous random variable: possible values are continuous

Distribution function

 $F(x) = P(X < x), \quad x \in \mathbb{R}$

Properties: $F(x) \uparrow$, $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$

$$P(y < X \le x) = F(x) - F(y)$$

Discrete random variable $X \in \{x_1, x_2, \ldots\}$

$$P(X = x_i) = p(x_i) > 0, \quad \sum_{i=1}^{\infty} p(x_i) = 1$$

Example: Bernoulli rv P(X = 0) = 1 - P(X = 1) = 1 - p (1 is success)

Example: Binomial rv X =#successes in *n* trials, *p* is success probability

$$p_i = P(X = i) = \binom{n}{i} p^i (1 - p)^{n-i}, \quad i = 0, 1, \dots n$$

Tuesday April 21
$$\mathsf{TU/e}^{\mathsf{Technische Universiteit}}_{University of Technolog}$$

31/47

eit

Distribution function

Example: Geometric rv X =#trials till first success

$$p_n = P(X = n) = (1 - p)^{n-1}p, \quad n = 1, 2, 3, \dots$$

Example: Poisson rv *X*

$$p_n = e^{-\lambda} \frac{\lambda^n}{n!}, \quad n = 0, 1, 2, \dots$$

Continuous rv

X has a density f(x)

$$P(X \in B) = \int_{B} f(x)dx, \quad P(X \le b) = \int_{-\infty}^{b} f(x)dx,$$

SO

$$\int_{-\infty}^{\infty} f(x)dx = 1, \quad P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Interpretation: $f(x)dx \approx P(x < X \le x + dx)$

$$F(x) = \int_{-\infty}^{x} f(y)dy, \quad \frac{d}{dx}F(x) = f(x), \quad P(X=b) = 0$$

Example: Uniform rv X on [0, 1], or uniform rv X on [a, b],

$$f(x) = 1, \quad 0 \le x \le 1$$
$$f(x) = 1/(b-a), \quad a \le x \le b$$
Tuesday April 21

TU/e Technische Universiteit Eindhoven University of Technology

Continuous rv

Example: Normal rv X

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

Example: Exponential rv X with rate λ

$$f(x) = \lambda e^{-\lambda x}, \quad F(x) = 1 - e^{-\lambda x}, \quad x \ge 0$$

Memoryless property: *X* = lifetime of component

$$P(X > t + x | X > t) = \frac{P(X > t + x)}{P(X > t)} = e^{-\lambda x} = P(X > x)$$

so used is as good as new!

Failure rate h(x)

$$h(x)dx = P(x < X < x + dx | X > x) = \lambda dx$$

so constant failure rate Tuesday April 21

Expectation of rv *X*

Expected value of discrete rv X

$$E(X) = \sum_{i} P(X = x_i) x_i$$

Expected value of continuous rv X

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx \left(=\int_{-\infty}^{\infty} xdF(x)\right)$$

Examples:

Bernoulli	E(X) = p
Binomial	E(X) = np
Geometric	$E(X) = \frac{1}{p}$
Uniform [0, 1]	$E(X) = \frac{1}{2}$
Exponential	$E(X) = \frac{1}{\lambda}$
Normal	$E(X) = \hat{\mu}$

35/47

Expectation of g(X)

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Example: *X* is exponential, $g(X) = X^2$

$$E(g(X)) = E(X^2) = \int_{-\infty}^{\infty} x^2 \lambda e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

Property: Independent trials X_1, X_2, \ldots , then with probability 1

$$\frac{X_1 + X_2 + \dots + X_n}{n} \to E(X)$$

This is the (intuitively appealing) Strong Law of Large Numbers

Property:

$$E(aX+b) = aE(X) + b$$

Tuesday April 21

Joint distributions of rv's

For rv's *X*, *Y* the joint distribution is

 $F(a,b) = P(X \le a, Y \le b)$

and for continuous distribution with density f(x, y)

$$F(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dx dy$$

Marginal distribution of X

$$F_X(a) = P(X \le a) = \int_{-\infty}^a \int_{-\infty}^\infty f(x, y) dy dx = \int_{-\infty}^a f_X(x) dx$$

where

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

TU/e Technische Universiteit Eindhoven University of Technology

37/47

Joint distributions of rv's

Property: Linearity

E(aX + bY) = aE(X) + bE(Y)

Example: X_i Bernoulli, $X = X_1 + \cdots + X_n$ (Binomial)

 $E(X) = E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = np$

Independent rv's

X and Y are independent if

$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$

or

 $F(a, b) = F_X(a)F_Y(b)$

or

$$f(a,b) = f_X(a)f_Y(b)$$

Property: If *X* and *Y* are independent, then

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_X(x) f_Y(y) dx dy = E(X)E(Y)$$

Variance

40/47

Variance of X is (a measure of variability)

 $\operatorname{var}(X) = E[(X - E(X))^2] = E(X^2) - (E(X))^2$

Property: *X* and *Y* are independent, then

 $\operatorname{var}(X+Y) = \operatorname{var}(X) + \operatorname{var}(Y), \quad \operatorname{var}(aX) = a^2 \operatorname{var}(X)$

Definition: X_1, X_2, \ldots, X_n are independent, then $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ is sample mean

$$E(\overline{X}) = E(X), \quad \operatorname{var}(\overline{X}) = \frac{\operatorname{var}(X)}{n}$$

Example:

Bernouillivar(X) = p(1-p)Binomialvar(X) = np(1-p)Exponential $var(X) = \frac{1}{\lambda^2}$

TU/e Technische Universiteit Eindhoven University of Technology

Conditional probability

 $P(E|F) = \frac{P(EF)}{P(F)}$

X, *Y* discrete rv's with p(x, y) = P(X = x, Y = y), $p_X(x) = P(X = x)$, $P_Y(y) = P(Y = y)$

Then conditional probability distribution of X given Y = y

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p(x, y)}{p_Y(y)}$$

Conditional expectation

$$E(X|Y = y) = \sum_{x} x p_{X|Y}(x|y)$$

If X and Y are independent, then

$$p_{X|Y}(x|y) = P(X = x) = p_X(x), \quad E(X|Y = y) = E(X)$$

Example: X_1 , X_2 binomial with n_1 , p and n_2 , p, and independent

$$P(X_1 = k | X_1 + X_2 = m) = \dots = \frac{\binom{n_1}{k} \binom{n_2}{m-k}}{\binom{n_1+n_2}{m}}$$

which is the Hypergeometric distribution

X, *Y* continuous rv's with f(x, y), $f_X(x)$, $f_Y(y)$

Then conditional density of X given Y = y is

$$f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}$$

Note

$$f_{X|Y}(x|y)dx = P(x < X \le X + dx|y < Y \le y + dy) = \frac{f(x, y)dxdy}{f_Y(y)dy}$$

Conditional expectation

$$E(X|Y = y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

Example: $f(x, y) = \frac{1}{2}ye^{-xy}$ for $0 < x < \infty$, 0 < y < 2, and f(x, y) = 0 otherwise What is $E(e^{\frac{X}{2}}|Y = 1)$?

$$f_Y(y) = \int_0^\infty \frac{1}{2} y e^{-xy} dx = \frac{1}{2}$$
$$f_{X|Y}(x|y) = \frac{\frac{1}{2} y e^{-xy}}{\frac{1}{2}} = y e^{-yx}$$

SO

$$E(e^{\frac{X}{2}}|Y=1) = \int_0^\infty e^{\frac{x}{2}}e^{-x}dx = 2$$

44/47

Note: If *X*, *Y* are independent, then E(X|Y = y) = E(X)

Note: If E(X|Y = y) is known, then

$$E(X) = \int_{-\infty}^{\infty} E(X|Y = y) f_Y(y) dy$$

or if *Y* is discrete

$$E(X) = \sum_{y} E(X|Y = y)p(Y = y)$$

Example: Total injuries per year

$$Y = \sum_{1}^{N} X_i$$

where N = #accidents per year, E(N) = 4, $X_i = \text{#workers injured}$, $E(X_i) = 2$ and X_i , N are all independent

46/47

Then

$$E(Y) = E\left(\sum_{1}^{N} X_{i}\right) = \sum_{n=0}^{\infty} E\left(\sum_{1}^{N} X_{i}|N=n\right) P(N=n)$$

$$= \sum_{n=0}^{\infty} E\left(\sum_{1}^{n} X_{i}|N=n\right) P(N=n) = \sum_{n=0}^{\infty} E\left(\sum_{1}^{n} X_{i}\right) P(N=n)$$

$$= \sum_{n=0}^{\infty} nE(X)P(N=n) = E(X)E(N) = 2E(N) = 8$$

Example: Getting a seat in a train

Y is distance to closest door, *Y* is Uniform[0, 2]

If distance is Y = y, the probability of getting a seat is $1 - \sqrt{\frac{1}{2}y}$

What is probability of getting a seat? (which is NOT equal to $1 - \sqrt{\frac{1}{2} \cdot E(Y)} = 1 - \sqrt{\frac{1}{2} \cdot 1} = 0.293$)

Let X = 1 if success (get a seat), and X = 0 otherwise

$$P(X=1) = \int_0^2 P(X=1|Y=y)\frac{1}{2}dy = \int_0^2 (1-\sqrt{\frac{1}{2}y})\frac{1}{2}dy = \frac{1}{3}$$

