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Tuesday April 21

• 7 lectures (lecture of May 12 is canceled)

• Studyguide available (with notes, slides, assignments, references),
see http://www.win.tue.nl/∼iadan/4t400

• Examination consists of:

– Weekly (8) take home assignments

– Send in take home assignments individually

– Best 7 out of 8 take home assignments count (40%)

– Take home assignments of last week will be discussed in BZ

– Final assignment, done in groups of two (60%)

Organization

http://www.win.tue.nl/~iadan/4t400
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• Basic probability (refresher)

• Basic statistics for discrete-event simulation

• Modeling and analysis of manufacturing systems:

– Single-stage systems

– Multi-stage flow lines

– Job-shop systems

– CONWIP systems

Topics
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Some basic steps:

• Identify the issues to be addressed

• Learn about the system

• Choose a modeling approach

• Develop and test the model

• Verify and validate the model

• Experiment with the model

• Present the results

Modeling
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Various types of models:

• Physical models

• Simulation models

• Analytical models

But why modeling?

• Understanding

• Improvement

• Optimization

• Decision making

Modeling
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Some issues:

• Complexity versus Simplicity

• Flexibility

• Data requirements

• Transparency

Analytical and simulation capability: Effective modeling requires both!

Modeling
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Servers are equally fast, 10 circulating jobs

Question: Replace one server by a server that is twice as fast.
How does this affect average throughput time? Throughtput?

Question: Does your answer change in case of more jobs? Less jobs?

Some Improvements?
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4 machines, or one machine that is four times faster?

Question: What do you prefer, 4 machines or one fast machine?

Question: What do you prefer if process time variability is high?

Question: What do you prefer if the load is low?

Multiple Machines or a Single One?
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4 machines, or one machine that is four times faster?

The required information is captured in the following formula:

E(S) ≈
5W

1− ρ
E(R)

c
+ E(B)

Multiple Machines or a Single One?
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A robotic dairy barn

Running example
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How to design such a barn?

Milking robot
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Zone-Picking Systems
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Entrance station

Zone-Picking Systems
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Main conveyor

Zone-Picking Systems
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Segment 1

Segment 2Zone 2

Zone 1

Zone 3

Zone 4

Zone 6

Zone 5

Zone 7

Zone 8

Zone-Picking Systems
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Pick-by-voice Pick-by-light

Zone-Picking Systems
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Zone

Pick station

Buffer

Zone-Picking Systems
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Quality check

Zone-Picking Systems
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Sealing

Zone-Picking Systems



20/47

Tuesday April 21

Labeling

Zone-Picking Systems
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Loading

Zone-Picking Systems
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System
entrance/exit

Segment
entrance

Segment

Main conveyor

Segment conveyor

Zone-Picking Systems
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How to design such complex systems?

• What should be the layout of the network?

• Size of zones?

• Where to locate items?

• What number of pickers and zones?

• Required WIP level?

Zone-Picking Systems
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System
Entrance / Exit e0

Main
Conveyor c01

Zone z11

Segment
Conveyor c11

Segment
Conveyor c12

Segment
Conveyor c1m1+1

Zone z1m1

. . .

Segment 1

...

...
...

...

Segment
Entrance e1

...

Zone zK1

Segment
Conveyor cK1

Segment
Conveyor cK2

Segment
Conveyor cKmK+1

Zone zKmK

. . .

Segment K

...
...

...

Segment
Entrance eK

...

Main
Conveyor c02

...

Main
Conveyor c0K

...

Main
Conveyor c0K+1

...
. . .

To segment 2 To segment K − 1

Network model: implemented in Java Applet

Zone-Picking Systems
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• Sheldon M. Ross: Probability Models, Academic Press, 2003.

– Chapter 1: 1.1-1.5

– Chapter 2: 2.1-2.5

– Chapter 3: 3.1-3.5

• Henk Tijms: Understanding Probability, Cambridge Univ. Press, 2012.

– Chapter 7: 7.1, 7.2 (till 7.2.1), 7.3

– Chapter 8: 8.1, 8.2

– Chapter 9

– Chapter 10: 10.1, 10.2, 10.3, 10.4 (till 10.4.8), 10.5, 10.6

– Chapter 11: 11.1, 11.2, 11.3, 11.4.1, 11.5

– Chapter 13: 13.1, 13.2, 13.3 (till 13.3.1)

– Appendix:
Permutations, Combinations, Exponential function, Geometric series

Contents Basic Probability



26/47

Tuesday April 21

Ingredients of a probability model:

• Sample space S:
flipping a coin, rolling a die, process time, ...

• Events are (essentially) all subsets of S:
E = {H}, E = {1, 2}, E = (0, 1), ...

• Get new events by union, intersection, complement

Basic Probability
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For each event E there is a number P(E) such that:

• 0 ≤ P(E) ≤ 1

• P(S) = 1

• E1, E2, . . .mutually exclusive, then P(
⋃
∞

0 Ei) =
∑
∞

0 P(Ei)

Example: Tossing a coin, P({H}) = P({T }) = 1
2

Example: Rolling a die, P({1}) = 1
6, P({1, 2}) = P({1})+ P({2}) = 1

3

Intuition:

If an experiment is repeated over and over, then, with probability 1,
the long run portion of time that event E occurs is P(E)

Probabilities on Events



28/47

Tuesday April 21

Probability of event E given that event F occurs,

P(E |F) =
P(E ∩ F)

P(F)

Example: Rolling a die twice, P({i, j}) = 1
36

Given that i = 4 (event F ), what is probability that j = 2 (event E )?

P(E |F) =
1
36
1
6

=
1
6

Example: Darts on unit disk {(x, y)|x2
+ y2

≤ 1}

P(distance to 0 > 1
2|x > 0) =

1
2π −

1
8π

1
2π

=
3
4

Note: P(E ∩ F) = P(E |F)P(F) and we usually write P(E ∩ F) = P(E F)

Conditional probabilities
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Events E and F are independent if

P(E F) = P(E)P(F)

and events E1, . . . , En are independent is

P(E1E2 . . . En) = P(E1)P(E2) · · · P(En)

Example: Rolling a die twice

E = "i + j = 6" and F = "i = 4". Independent?

P(E) =
5
36
, P(F) =

1
6
, P(E F) =

1
36

Now E = "i + j = 7". Independent?

Independent experiments: S = S1 × S2 × · · · × Sn where

P(E1E2 . . . En) = P(E1)P(E2) · · · P(En)

Independent events
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Function of outcome: X

Example: Rolling a die twice

X is sum of outcomes, so X = i + j , P(X = 2) = 1
36

Example: Flipping a coin indefinitely, P(H) = p

N is number of flips until first H (independent flips)

P(N = n) = (1− p)n−1 p

Discrete random variable (rv): possible values are discrete

Continuous random variable: possible values are continuous

Random variable
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F(x) = P(X ≤ x), x ∈ R

Properties: F(x) ↑, limx→∞ F(x) = 1, limx→−∞ F(x) = 0

P(y < X ≤ x) = F(x)− F(y)

Discrete random variable X ∈ {x1, x2, . . .}

P(X = xi) = p(xi) > 0,
∞∑

i=1

p(xi) = 1

Example: Bernoulli rv P(X = 0) = 1− P(X = 1) = 1− p (1 is success)

Example: Binomial rv X = #successes in n trials, p is success probability

pi = P(X = i) =
(

n
i

)
pi(1− p)n−i , i = 0, 1, . . . n

Distribution function
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Example: Geometric rv X = #trials till first success

pn = P(X = n) = (1− p)n−1 p, n = 1, 2, 3, . . .

Example: Poisson rv X

pn = e−λ
λn

n!
, n = 0, 1, 2, . . .

Distribution function
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X has a density f (x)

P(X ∈ B) =
∫

B
f (x)dx, P(X ≤ b) =

∫ b

−∞

f (x)dx,

so ∫
∞

−∞

f (x)dx = 1, P(a ≤ X ≤ b) =
∫ b

a
f (x)dx

Interpretation: f (x)dx ≈ P(x < X ≤ x + dx)

F(x) =
∫ x

−∞

f (y)dy,
d

dx
F(x) = f (x), P(X = b) = 0

Example: Uniform rv X on [0, 1], or uniform rv X on [a, b],

f (x) = 1, 0 ≤ x ≤ 1

f (x) = 1/(b − a), a ≤ x ≤ b

Continuous rv
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Example: Normal rv X

f (x) =
1

√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x <∞

Example: Exponential rv X with rate λ

f (x) = λe−λx, F(x) = 1− e−λx, x ≥ 0

Memoryless property: X = lifetime of component

P(X > t + x |X > t) =
P(X > t + x)

P(X > t)
= e−λx

= P(X > x)

so used is as good as new!

Failure rate h(x)

h(x)dx = P(x < X < x + dx |X > x) = λdx

so constant failure rate

Continuous rv
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Expected value of discrete rv X

E(X) =
∑

i

P(X = xi)xi

Expected value of continuous rv X

E(X) =
∫
∞

−∞

x f (x)dx
(
=

∫
∞

−∞

xd F(x)
)

Examples:

Bernoulli E(X) = p
Binomial E(X) = np
Geometric E(X) = 1

p
Uniform[0, 1] E(X) = 1

2
Exponential E(X) = 1

λ
Normal E(X) = µ

Expectation of rv X
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E(g(X)) =
∫
∞

−∞

g(x) fX(x)dx

Example: X is exponential, g(X) = X2

E(g(X)) = E(X2) =

∫
∞

−∞

x2λe−λxdx =
2
λ2

Property: Independent trials X1, X2, . . ., then with probability 1

X1 + X2 + · · · + Xn

n
→ E(X)

This is the (intuitively appealing) Strong Law of Large Numbers

Property:

E(aX + b) = aE(X)+ b

Expectation of g(X)
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For rv’s X , Y the joint distribution is

F(a, b) = P(X ≤ a, Y ≤ b)

and for continuous distribution with density f (x, y)

F(a, b) =
∫ a

−∞

∫ b

−∞

f (x, y)dxdy

Marginal distribution of X

FX(a) = P(X ≤ a) =
∫ a

−∞

∫
∞

−∞

f (x, y)dydx =
∫ a

−∞

fX(x)dx

where

fX(x) =
∫
∞

−∞

f (x, y)dy

Joint distributions of rv’s
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Property: Linearity

E(aX + bY ) = aE(X)+ bE(Y )

Example: X i Bernoulli, X = X1 + · · · + Xn (Binomial)

E(X) = E(X1 + · · · + Xn) = E(X1)+ · · · + E(Xn) = np

Joint distributions of rv’s
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X and Y are independent if

P(X ≤ a, Y ≤ b) = P(X ≤ a)P(Y ≤ b)

or

F(a, b) = FX(a)FY (b)

or

f (a, b) = fX(a) fY (b)

Property: If X and Y are independent, then

E(XY ) =
∫
∞

−∞

∫
∞

−∞

xy fX(x) fY (y)dxdy = E(X)E(Y )

Independent rv’s
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Variance of X is (a measure of variability)

var(X) = E[(X − E(X))2] = E(X2)− (E(X))2

Property: X and Y are independent, then

var(X + Y ) = var(X)+ var(Y ), var(aX) = a2var(X)

Definition: X1, X2, . . . , Xn are independent, then X =
∑n

1 X i
n is sample mean

E(X) = E(X), var(X) =
var(X)

n

Example:

Bernouilli var(X) = p(1− p)
Binomial var(X) = np(1− p)
Exponential var(X) = 1

λ2

Variance
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Conditional probability

P(E |F) =
P(E F)
P(F)

X , Y discrete rv’s with
p(x, y) = P(X = x, Y = y), pX(x) = P(X = x), PY (y) = P(Y = y)

Then conditional probability distribution of X given Y = y

pX |Y (x |y) = P(X = x |Y = y) =
p(x, y)
pY (y)

Conditional expectation

E(X |Y = y) =
∑

x

xpX |Y (x |y)

Conditional expectation
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If X and Y are independent, then

pX |Y (x |y) = P(X = x) = pX(x), E(X |Y = y) = E(X)

Example: X1, X2 binomial with n1, p and n2, p, and independent

P(X1 = k|X1 + X2 = m) = · · · =

(n1
k

)( n2
m−k

)(n1+n2
m

)
which is the Hypergeometric distribution

Conditional expectation
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X , Y continuous rv’s with f (x, y), fX(x), fY (y)

Then conditional density of X given Y = y is

fX |Y (x |y) =
f (x, y)
fY (y)

Note

fX |Y (x |y)dx = P(x < X ≤ X + dx |y < Y ≤ y + dy) =
f (x, y)dxdy

fY (y)dy

Conditional expectation

E(X |Y = y) =
∫
∞

−∞

x fX |Y (x |y)dx

Conditional expectation
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Example:
f (x, y) = 1

2 ye−xy for 0 < x <∞, 0 < y < 2, and f (x, y) = 0 otherwise

What is E(e
X
2 |Y = 1)?

fY (y) =
∫
∞

0

1
2

ye−xydx =
1
2

fX |Y (x |y) =
1
2 ye−xy

1
2

= ye−yx

so

E(e
X
2 |Y = 1) =

∫
∞

0
e

x
2 e−xdx = 2

Conditional expectation
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Note: If X , Y are independent, then E(X |Y = y) = E(X)

Note: If E(X |Y = y) is known, then

E(X) =
∫
∞

−∞

E(X |Y = y) fY (y)dy

or if Y is discrete

E(X) =
∑

y

E(X |Y = y)p(Y = y)

Conditional expectation
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Example: Total injuries per year

Y =
N∑
1

X i

where N = #accidents per year, E(N ) = 4, X i = #workers injured, E(X i) = 2
and X i , N are all independent

Then

E(Y ) = E

( N∑
1

X i

)
=

∞∑
n=0

E

( N∑
1

X i |N = n

)
P(N = n)

=

∞∑
n=0

E

( n∑
1

X i |N = n

)
P(N = n) =

∞∑
n=0

E

( n∑
1

X i

)
P(N = n)

=

∞∑
n=0

nE(X)P(N = n) = E(X)E(N ) = 2E(N ) = 8

Conditional expectation
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Example: Getting a seat in a train

Y is distance to closest door, Y is Uniform[0, 2]

If distance is Y = y, the probability of getting a seat is 1−
√

1
2 y

What is probability of getting a seat?

(which is NOT equal to 1−
√

1
2 · E(Y ) = 1−

√
1
2 · 1 = 0.293)

Let X = 1 if success (get a seat), and X = 0 otherwise

P(X = 1) =
∫ 2

0
P(X = 1|Y = y)

1
2

dy =
∫ 2

0
(1−

√
1
2

y)
1
2

dy =
1
3

Conditional expectation


