Stochastic Models of Manufacturing Systems

Ivo Adan

Organization

- 7 lectures (lecture of May 12 is canceled)
- Studyguide available (with notes, slides, assignments, references), see http://www.win.tue.nl/~iadan/4t400
- Examination consists of:
- Weekly (8) take home assignments
- Send in take home assignments individually
- Best 7 out of 8 take home assignments count (40\%)
- Take home assignments of last week will be discussed in BZ
- Final assignment, done in groups of two (60\%)
- Basic probability (refresher)
- Basic statistics for discrete-event simulation
- Modeling and analysis of manufacturing systems:
- Single-stage systems
- Multi-stage flow lines
- Job-shop systems
- CONWIP systems

Modeling

Some basic steps:

- Identify the issues to be addressed
- Learn about the system
- Choose a modeling approach
- Develop and test the model
- Verify and validate the model
- Experiment with the model
- Present the results

Modeling

Various types of models:

- Physical models
- Simulation models
- Analytical models

But why modeling?

- Understanding
- Improvement
- Optimization
- Decision making

Some issues:

- Complexity versus Simplicity
- Flexibility
- Data requirements
- Transparency

Analytical and simulation capability: Effective modeling requires both!

Some Improvements?

Servers are equally fast, 10 circulating jobs

Question: Replace one server by a server that is twice as fast. How does this affect average throughput time? Throughtput?

Question: Does your answer change in case of more jobs? Less jobs?

Multiple Machines or a Single One?

4 machines, or one machine that is four times faster?

Question: What do you prefer, 4 machines or one fast machine?

Question: What do you prefer if process time variability is high?

Question: What do you prefer if the load is low?

Multiple Machines or a Single One?

4 machines, or one machine that is four times faster?

The required information is captured in the following formula:

$$
E(S) \approx \frac{\Pi_{W}}{1-\rho} \frac{E(R)}{c}+E(B)
$$

Running example

A robotic dairy barn

Milking robot

How to design such a barn?

Zone-Picking Systems

Zone-Picking Systems

Zone-Picking Systems

Zone-Picking Systems

Segment 1

Zone-Picking Systems

Zone-Picking Systems

Tuesday April 21

Zone-Picking Systems

Zone-Picking Systems

How to design such complex systems?

- What should be the layout of the network?
- Size of zones?
- Where to locate items?
-What number of pickers and zones?
- Required WIP level?

Zone-Picking Systems

Network model: implemented in Java Applet

Contents Basic Probability

- Sheldon M. Ross: Probability Models, Academic Press, 2003.
- Chapter 1: 1.1-1.5
- Chapter 2: 2.1-2.5
- Chapter 3: 3.1-3.5
- Henk Tijms: Understanding Probability, Cambridge Univ. Press, 2012.
- Chapter 7: 7.1, 7.2 (till 7.2.1), 7.3
- Chapter 8: 8.1, 8.2
- Chapter 9
- Chapter 10: 10.1, 10.2, 10.3, 10.4 (till 10.4.8), 10.5, 10.6
- Chapter 11: 11.1, 11.2, 11.3, 11.4.1, 11.5
- Chapter 13: 13.1, 13.2, 13.3 (till 13.3.1)
- Appendix:

Permutations, Combinations, Exponential function, Geometric series

Ingredients of a probability model:

- Sample space S :
flipping a coin, rolling a die, process time, ...
- Events are (essentially) all subsets of S :
$E=\{H\}, E=\{1,2\}, E=(0,1), \ldots$
- Get new events by union, intersection, complement

Probabilities on Events

For each event E there is a number $P(E)$ such that:

- $0 \leq P(E) \leq 1$
- $P(S)=1$
- E_{1}, E_{2}, \ldots mutually exclusive, then $P\left(\bigcup_{0}^{\infty} E_{i}\right)=\sum_{0}^{\infty} P\left(E_{i}\right)$

Example: Tossing a coin, $P(\{H\})=P(\{T\})=\frac{1}{2}$
Example: Rolling a die, $P(\{1\})=\frac{1}{6}, P(\{1,2\})=P(\{1\})+P(\{2\})=\frac{1}{3}$

Intuition:
If an experiment is repeated over and over, then, with probability 1 , the long run portion of time that event E occurs is $P(E)$

Conditional probabilities

Probability of event E given that event F occurs,

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

Example: Rolling a die twice, $P(\{i, j\})=\frac{1}{36}$
Given that $i=4$ (event F), what is probability that $j=2$ (event E)?

$$
P(E \mid F)=\frac{\frac{1}{36}}{\frac{1}{6}}=\frac{1}{6}
$$

Example: Darts on unit disk $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$

$$
P\left(\text { distance to } \left.0>\frac{1}{2} \right\rvert\, x>0\right)=\frac{\frac{1}{2} \pi-\frac{1}{8} \pi}{\frac{1}{2} \pi}=\frac{3}{4}
$$

Note: $P(E \cap F)=P(E \mid F) P(F)$ and we usually write $P(E \cap F)=P(E F)$

Independent events

Events E and F are independent if

$$
P(E F)=P(E) P(F)
$$

and events E_{1}, \ldots, E_{n} are independent is

$$
P\left(E_{1} E_{2} \ldots E_{n}\right)=P\left(E_{1}\right) P\left(E_{2}\right) \cdots P\left(E_{n}\right)
$$

Example: Rolling a die twice
$E=" i+j=6 "$ and $F=" i=4 "$. Independent?

$$
P(E)=\frac{5}{36}, \quad P(F)=\frac{1}{6}, \quad P(E F)=\frac{1}{36}
$$

Now $E=" i+j=7 "$. Independent?
Independent experiments: $S=S_{1} \times S_{2} \times \cdots \times S_{n}$ where

$$
P\left(E_{1} E_{2} \ldots E_{n}\right)=P\left(E_{1}\right) P\left(E_{2}\right) \cdots P\left(E_{n}\right)
$$

Random variable

Function of outcome: X
Example: Rolling a die twice
X is sum of outcomes, so $X=i+j, P(X=2)=\frac{1}{36}$
Example: Flipping a coin indefinitely, $P(H)=p$
N is number of flips until first H (independent flips)

$$
P(N=n)=(1-p)^{n-1} p
$$

Discrete random variable (rv): possible values are discrete
Continuous random variable: possible values are continuous

Distribution function

$$
F(x)=P(X \leq x), \quad x \in \mathbb{R}
$$

Properties: $F(x) \uparrow, \lim _{x \rightarrow \infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0$

$$
P(y<X \leq x)=F(x)-F(y)
$$

Discrete random variable $X \in\left\{x_{1}, x_{2}, \ldots\right\}$

$$
P\left(X=x_{i}\right)=p\left(x_{i}\right)>0, \quad \sum_{i=1}^{\infty} p\left(x_{i}\right)=1
$$

Example: Bernoulli rv $P(X=0)=1-P(X=1)=1-p$ (1 is success)
Example: Binomial rv $X=$ \#successes in n trials, p is success probability

$$
\underset{\text { Tuesday April } 21}{ } p_{i}=P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i}, \quad i=0,1, \ldots n
$$

Distribution function

Example: Geometric rv $X=$ \#trials till first success

$$
p_{n}=P(X=n)=(1-p)^{n-1} p, \quad n=1,2,3, \ldots
$$

Example: Poisson rv X

$$
p_{n}=e^{-\lambda} \frac{\lambda^{n}}{n!}, \quad n=0,1,2, \ldots
$$

Continuous rv

X has a density $f(x)$

$$
P(X \in B)=\int_{B} f(x) d x, \quad P(X \leq b)=\int_{-\infty}^{b} f(x) d x
$$

so

$$
\int_{-\infty}^{\infty} f(x) d x=1, \quad P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Interpretation: $f(x) d x \approx P(x<X \leq x+d x)$

$$
F(x)=\int_{-\infty}^{x} f(y) d y, \quad \frac{d}{d x} F(x)=f(x), \quad P(X=b)=0
$$

Example: Uniform rv X on $[0,1]$, or uniform $\mathrm{rv} X$ on $[a, b]$,

$$
\begin{aligned}
& f(x)=1, \quad 0 \leq x \leq 1 \\
& f(x)=1 /(b-a), \quad a \leq x \leq b \\
& \text { Tuestay April21 }
\end{aligned}
$$

Continuous rv

Example: Normal rv X

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty
$$

Example: Exponential rv X with rate λ

$$
f(x)=\lambda e^{-\lambda x}, \quad F(x)=1-e^{-\lambda x}, \quad x \geq 0
$$

Memoryless property: $X=$ lifetime of component

$$
P(X>t+x \mid X>t)=\frac{P(X>t+x)}{P(X>t)}=e^{-\lambda x}=P(X>x)
$$

so used is as good as new!
Failure rate $h(x)$

$$
h(x) d x=P(x<X<x+d x \mid X>x)=\lambda d x
$$

Expectation of rv X

Expected value of discrete rv X

$$
E(X)=\sum_{i} P\left(X=x_{i}\right) x_{i}
$$

Expected value of continuous rv X

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x\left(=\int_{-\infty}^{\infty} x d F(x)\right)
$$

Examples:

Bernoulli	$E(X)=p$
Binomial	$E(X)=n p$
Geometric	$E(X)=\frac{1}{p}$
Uniform[0, 1]	$E(X)=\frac{1}{2}$
Exponential	$E(X)=\frac{1}{\lambda}$
Normal	$E(X)=\mu$

Expectation of $g(X)$

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Example: X is exponential, $g(X)=X^{2}$

$$
E(g(X))=E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} \lambda e^{-\lambda x} d x=\frac{2}{\lambda^{2}}
$$

Property: Independent trials X_{1}, X_{2}, \ldots, then with probability 1

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} \rightarrow E(X)
$$

This is the (intuitively appealing) Strong Law of Large Numbers
Property:

$$
E(a X+b)=a E(X)+b
$$

Joint distributions of rv's

For rv's X, Y the joint distribution is

$$
F(a, b)=P(X \leq a, Y \leq b)
$$

and for continuous distribution with density $f(x, y)$

$$
F(a, b)=\int_{-\infty}^{a} \int_{-\infty}^{b} f(x, y) d x d y
$$

Marginal distribution of X

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} \int_{-\infty}^{\infty} f(x, y) d y d x=\int_{-\infty}^{a} f_{X}(x) d x
$$

where

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

Joint distributions of rv's

Property: Linearity

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

Example: X_{i} Bernoulli, $X=X_{1}+\cdots+X_{n}$ (Binomial)

$$
E(X)=E\left(X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=n p
$$

Independent rv’s

X and Y are independent if

$$
P(X \leq a, Y \leq b)=P(X \leq a) P(Y \leq b)
$$

or

$$
F(a, b)=F_{X}(a) F_{Y}(b)
$$

or

$$
f(a, b)=f_{X}(a) f_{Y}(b)
$$

Property: If X and Y are independent, then

$$
E(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y=E(X) E(Y)
$$

Variance

Variance of X is (a measure of variability)

$$
\operatorname{var}(X)=E\left[(X-E(X))^{2}\right]=E\left(X^{2}\right)-(E(X))^{2}
$$

Property: X and Y are independent, then

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y), \quad \operatorname{var}(a X)=a^{2} \operatorname{var}(X)
$$

Definition: $X_{1}, X_{2}, \ldots, X_{n}$ are independent, then $\bar{X}=\frac{\sum_{1}^{n} X_{i}}{n}$ is sample mean

$$
E(\bar{X})=E(X), \quad \operatorname{var}(\bar{X})=\frac{\operatorname{var}(X)}{n}
$$

Example:

Bernouilli	$\operatorname{var}(X)=p(1-p)$
Binomial	$\operatorname{var}(X)=n p(1-p)$
Exponential	$\operatorname{var}(X)=\frac{1}{\lambda^{2}}$

Conditional expectation

Conditional probability

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

X, Y discrete rv's with
$p(x, y)=P(X=x, Y=y), p_{X}(x)=P(X=x), P_{Y}(y)=P(Y=y)$
Then conditional probability distribution of X given $Y=y$

$$
p_{X \mid Y}(x \mid y)=P(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)}
$$

Conditional expectation

$$
E(X \mid Y=y)=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

Conditional expectation

If X and Y are independent, then

$$
p_{X \mid Y}(x \mid y)=P(X=x)=p_{X}(x), \quad E(X \mid Y=y)=E(X)
$$

Example: X_{1}, X_{2} binomial with n_{1}, p and n_{2}, p, and independent

$$
P\left(X_{1}=k \mid X_{1}+X_{2}=m\right)=\cdots=\frac{\binom{n_{1}}{k}\binom{n_{2}}{m-k}}{\binom{n_{1}+n_{2}}{m}}
$$

which is the Hypergeometric distribution

Conditional expectation

X, Y continuous rv's with $f(x, y), f_{X}(x), f_{Y}(y)$
Then conditional density of X given $Y=y$ is

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

Note

$$
f_{X \mid Y}(x \mid y) d x=P(x<X \leq X+d x \mid y<Y \leq y+d y)=\frac{f(x, y) d x d y}{f_{Y}(y) d y}
$$

Conditional expectation

$$
E(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
$$

Conditional expectation

Example:
$f(x, y)=\frac{1}{2} y e^{-x y}$ for $0<x<\infty, 0<y<2$, and $f(x, y)=0$ otherwise What is $E\left(\left.e^{\frac{X}{2}} \right\rvert\, Y=1\right)$?

$$
\begin{aligned}
& f_{Y}(y)=\int_{0}^{\infty} \frac{1}{2} y e^{-x y} d x=\frac{1}{2} \\
& f_{X \mid Y}(x \mid y)=\frac{\frac{1}{2} y e^{-x y}}{\frac{1}{2}}=y e^{-y x}
\end{aligned}
$$

SO

$$
E\left(\left.e^{\frac{X}{2}} \right\rvert\, Y=1\right)=\int_{0}^{\infty} e^{\frac{x}{2}} e^{-x} d x=2
$$

Conditional expectation

Note: If X, Y are independent, then $E(X \mid Y=y)=E(X)$
Note: If $E(X \mid Y=y)$ is known, then

$$
E(X)=\int_{-\infty}^{\infty} E(X \mid Y=y) f_{Y}(y) d y
$$

or if Y is discrete

$$
E(X)=\sum_{y} E(X \mid Y=y) p(Y=y)
$$

Conditional expectation

Example: Total injuries per year

$$
Y=\sum_{1}^{N} X_{i}
$$

where $N=$ \#accidents per year, $E(N)=4, X_{i}=$ \#workers injured, $E\left(X_{i}\right)=2$ and X_{i}, N are all independent

Then

$$
\begin{aligned}
E(Y) & =E\left(\sum_{1}^{N} X_{i}\right)=\sum_{n=0}^{\infty} E\left(\sum_{1}^{N} X_{i} \mid N=n\right) P(N=n) \\
& =\sum_{n=0}^{\infty} E\left(\sum_{1}^{n} X_{i} \mid N=n\right) P(N=n)=\sum_{n=0}^{\infty} E\left(\sum_{1}^{n} X_{i}\right) P(N=n) \\
& =\sum_{n=0}^{\infty} n E(X) P(N=n)=E(X) E(N)=2 E(N)=8
\end{aligned}
$$

Conditional expectation

Example: Getting a seat in a train

Y is distance to closest door, Y is Uniform[0, 2]
If distance is $Y=y$, the probability of getting a seat is $1-\sqrt{\frac{1}{2} y}$
What is probability of getting a seat?
(which is NOT equal to $1-\sqrt{\frac{1}{2} \cdot E(Y)}=1-\sqrt{\frac{1}{2} \cdot 1}=0.293$)
Let $X=1$ if success (get a seat), and $X=0$ otherwise

$$
P(X=1)=\int_{0}^{2} P(X=1 \mid Y=y) \frac{1}{2} d y=\int_{0}^{2}\left(1-\sqrt{\left.\frac{1}{2} y\right)} \frac{1}{2} d y=\frac{1}{3}\right.
$$

