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Tuesday April 28

Test your feeling for probabilities:

• Birthday problem

• Coin-flipping

• Scratch-and-win lottery

• Coincidence problem

• Boarding pass problem

• Monty Hall dilemma

Probabilistic problems
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Consider a group of N randomly chosen persons.
What is the probability that at least 2 persons have the same birthday?

Almost birthday problem

What is the probability that at least 2 persons have their birthday within r
days of each other?

Birthday problem
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Two players A and B flip a fair coin N times.
If Head, then A gets 1 point; otherwise B.

• What happens to the difference in points as N increases?

• What is the probability that one of the players is leading between 50% and
55% of the time? Or more than 95% of the time?

• In case of 20 trials, say, what is the probability of 5 Heads in a row?

Coin flipping



5/72

Tuesday April 28

Each week a very popular lottery in Andorra prints 104 tickets. Each tickets
has two 4-digit numbers on it, one visible and the other covered. The num-
bers are randomly distributed over the tickets. If someone, after uncovering
the hidden number, finds two identical numbers, he wins a large amount of
money.

• What is the average number of winners per week?

• What is the probability of at least one winner?

The same lottery prints 107 tickets in Spain.
What about the answers to the questions above?

Scratch-and-win lottery
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Two people, strangers to one another, both living in Eindhoven, meet each
other. Each has approximately 200 acquaintances in Eindhoven.

What is the probability of the two people having an acquaintance in common?

Coincidence problem
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100 people line up to board an airplane with 100 seats. Each passenger
gets on one at a time to select his assigned seat. The first one has lost his
boarding pass and takes a random seat. Each subsequent passenger takes
his own seat if available, and otherwise takes a random unoccupied seat.

You are the last passenger.
What is the probability that you can get your own seat?

Boarding pass problem
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It is the climax of a game-show: You have to choose one door out of three,
behind one of them is the car of your dreams and behind the others a can of
dog food.

You choose a door without opening it. The host (knowing what is behind the
doors) then opens one of the remaining doors, showing a can of dog food.

Now you are given the opportunity to switch doors: Are you going to do this?

Monty Hall dilemma
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Flipping a fair coin: Fraction of Heads should be 1
2 in the long run.

Relative frequency of event H (Head) in n repetitions of throwing a coin is

fn(H) =
n(H)

n

where n(H) is number of times Head occurred in the n repetitions. Then,

fn(H)→
1
2

as n→∞.

More generally:

The relative frequency of event E approaches a limiting value as the number
of repetitions tends to infinity.

Intuitively we would define the probability of event E as this limiting value.

Empirical law of large numbers
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Flipping a coin an unlimited number of times, then an outcome is an infinite
sequence of Heads and Tails, for example

s = (H, T, T, H, H, H, T, . . .).

Let Kn(s) denote the number if Heads in the first n flips of outcome s.
Then according the theoretical (strong) law of large numbers,

lim
n→∞

Kn(s)
n
=

1
2

with probability 1.

More generally:

If an experiment is repeated an unlimited number of times, and if the exper-
iments are independent of each other, then the fraction of times event E
occurs converges with probability 1 to P(E).

The method of computer simulation is based on this law!

Theoretical law of large numbers
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Function that assigns a numerical value to each outcome of an experiment: X

Examples:

• Rolling a die twice, X is sum of outcomes, so X = i + j

• Repeatedly flipping a coin, N is number of flips until first H

Discrete random variable X can only take discrete values, x1, x2, . . ., and the
function p j = P(X = x j) is the probability mass function of X .

Examples:

• Rolling a die twice, P(X = 2) = 1
36, P(X = 3) = 2

36, P(X = 5) = 4
36

• Number of coin flips until first H , with P(H) = 1− P(T ) = p,

P(N = n) = (1− p)n−1 p, n = 1, 2, . . .

Random variable
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For a random variable X with probability mass function p j = P(X = x j),

E(X) =
∞∑
j=1

x j p j

is its expected value or expectation or mean value.

Example:

• Rolling a die, X is the number of points,

E(X) = 1×
1
6
+ 2×

1
6
+ · · · + 6×

1
6
= 3.5

Remarks:

• Expected value is the weighted average of the possible values of X

• Expected value is not the same as “most probable value”

• Expected value is not restricted to possible values of X

Expected value
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Example:

• By repeatedly rolling a die, the average value of the points obtained in the
rolls gets closer and closer to 3.5 as the number of rolls increases.

• This is the empirical law of large numbers for expected value.

More generally, let Xk be the outcome of the kth repetition of the experiment:

The average 1
n(X1 + · · · + Xn) over the first n repetitions converges with

probability 1 to E(X).

Remarks:

• This is the theoretical law of large numbers for expected value.

• The expected value E(X) can thus be interpreted as the long run average.

Expected value
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Start with non-negative integer number z0 (seed).
For n = 1, 2, . . .

zn = f (zn−1)

f is the pseudo-random generator

In practice, the following function f is often used:

zn = azn−1(modulo m)

with a = 630360016, m = 231
− 1.

Then un = zn/m is “random” on the interval (0, 1).

Generating random numbers
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Let U be uniform on (0, 1). Then simulating from:

• Interval (a, b):

a + (b − a)U

• Integers 1, . . . ,M:

1+ bMUc

• Discrete probability distribution: p j = P(X = x j) = p j , j = 1, . . . ,M

if U ∈ [
j−1∑
i=1

pi ,

j∑
i=1

pi), then X = x j

Simulating from other distributions
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Suppose p j = k j/100, j = 1, . . . ,M,
where k j s are integers with 0 ≤ k j ≤ 100

Construct list (array) a[i], i = 1, . . . , 100, as follows:

• set a[i] = x1 for i = 1, . . . , k1

• set a[i] = x2 for i = k1 + 1, . . . , k1 + k2, and so on.

Then, first, sample random index I from 1, . . . , 100:

I = 1+ b100Uc and set X = a[I ]

Array method
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Algorithm for generating random permutation of 1, . . . , n:

1. Initialize t = N and a[i] = i for i = 1, . . . , N ;

2. Generate a random number u between 0 and 1;

3. Set k = 1+ btuc; swap values of a[k] and a[t];

4. Set t = t − 1;
If t > 1, then return to step 2;
otherwise stop and a[1], . . . , a[N ] yields a permutation.

Remark:

• Idea of algorithm: randomly choose a number from 1, . . . , N and place
that at position N , then randomly choose a number from the remaining
N − 1 positions and place that at position N − 1, and so on.

• The number of operations is of order N .

Random permutation
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model coin():
int n = 0, N = 10000, points_A = 0, points_B = 0;
dist real u = uniform (0.0, 1.0);
file f = open("data.txt", "w");

while n < N:
if sample u < 0.5:

points_A = points_A + 1
else:

points_B = points_B + 1
end;
n = n + 1;
write(f, "%d ", points_A - points_B);

end
close(f)

end

Simulation of coin flipping
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Simulation of coin flipping
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P(α, β) is the probability that one of the players is leading between 100α%
and 100β% of the time.

To determine P(α, β) do many times the experiment:

Toss a coin N times.

An experiment is successful if one of the players is leading between 100α%
and 100β% of the time.

Then by the law of large numbers:

P(α, β) ≈
number of successful experiments

total number of experiments

Simulation of coin flipping
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xper X():
int n, success, M = 1000, N = 10000, time_A, time_B;
real a = 0.5, b = 0.6;

while n < M:
time_A = coin(N);
time_B = N - time_A;
if (a < time_A / N) and (time_A / N < b):

success = success + 1;
end;
if (a < time_B / N) and (time_B / N < b):

success = success + 1;
end;
n = n + 1

end

writeln("P(a,b) = %g", success / M);
end

Simulation of coin flipping
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model int coin(int N):
int n, points_A, points_B, time_A;
dist real u = uniform (0.0, 1.0);

while n < N:
if sample u < 0.5:

points_A = points_A + 1
else:

points_B = points_B + 1
end;
if points_A >= points_B:

time_A = time_A + 1;
end;
n = n + 1;

end
exit time_A;

end

Simulation of coin flipping
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Results for M = 103 and N = 104

(α, β) P(α, β)
(0.50,0.55) 0.06
(0.50,0.60) 0.13
(0.90,1.00) 0.42
(0.95,1.00) 0.26
(0.98,1.00) 0.16

Simulation of coin flipping
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P(k) is the probability of at least k successive Heads in case of 20 trials

To determine P(k) do many time the experiment:

Flip a coin 20 times.

An experiment is successful if at least k Heads in a row appear

Then by the law of large numbers:

P(k) ≈
number of successful experiments

total number of experiments

Successive heads
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xper X():
int n, success, M = 1000, N = 20, k = 5;

while n < M:
if coin(k, N):

success = success + 1
end;
n = n + 1

end

writeln("P(%d) = %g", k, success / M);
end

Successive heads



26/72

Tuesday April 28

model bool coin(int k, N):
bool k_row;
int n, nr_Heads;
dist real u = uniform (0.0, 1.0);

while n < N and not k_row:
if sample u < 0.5:

nr_Heads = nr_Heads + 1
else:

nr_Heads = 0
end;
if nr_Heads >= k:

k_row = true;
end;
n = n + 1;

end
exit k_row;

end

Successive heads
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Results for M = 103

k P(k)
1 1.00
2 0.98
3 0.80
4 0.46
5 0.25
6 0.13
7 0.05

Successive heads
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P(N ) is the probability that at least two persons have the same birthday in a
group of size N

To determine P(N ) do many times the experiment:

Take a group of N randomly chosen persons and compare their birthdays.

An experiment is successful is at least two persons have the same birthday.

Then by the law of large numbers:

P(N ) ≈
number of successful experiments

total number of experiments

Birthday problem
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xper X():
int n, success, M = 1000, N = 25;

while n < M:
if birthday(N):

success = success + 1;
end;
n = n + 1

end

writeln("P(%d) = %g", N, success / M);
end

Birthday problem
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model bool birthday(int N):
bool same;
int n, new;
list(365) bool day;
dist int u = uniform (0, 365);

while n < N and not same:
new = sample u;
if day[new]:

same = true
else:

day[new] = true
end;
n = n + 1;

end
exit same;

end

Generating a random group
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Results for M = 103

N P(N )
10 0.13
15 0.25
20 0.40
25 0.56
30 0.72
40 0.90
50 0.97

Birthday problem
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Probability of all having a different birthday is

365× 364× · · · × (365− N + 1)
365N

so the probability of at least two people having the same birthday is

1−
365× 364× · · · × (365− N + 1)

365N

Question:

What is the probability of exactly two people having the same birthday?

Birthday problem
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model bool birthday(int N, r):
bool almost;
int n, new;
list(365) bool day;
dist int u = uniform (0, 365);

while n < N and not almost:
new = sample u;
for i in range(new-r, new+r+1):

if day[i mod 365]:
almost = true

end;
end;
day[new] = true;
n = n + 1;

end
exit almost;

end

Almost birthday problem
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Results for M = 103

N r P(N )
10 0 0.11

1 0.32
2 0.52
7 0.87

20 0 0.40
1 0.80

30 0 0.70
1 0.98

Almost birthday problem
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Machine 1 produces material and puts it into the buffer.
Machine 2 takes the material out the buffer.
The material is a fluid flowing in and out the buffer.

Machine 1
Buffer

Machine 2

Fluid flow model

Two-machine production line
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The production rate of machine i is ri (i = 1, 2).
We assume that r1 > r2 (otherwise no buffer needed).
Machine 2 is perfect (never fails), but machine 1 is subject to breakdowns;
the mean up time is E(U ) and the mean down time is E(D).
The size of the buffer is K .
When the buffer is full, the production rate of machine 1 slows down to r2.

Questions:

• What is the throughput (average production rate) T H?

• How does the throughput depend on the buffer size K ?

Two-machine production line
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Buffer content

Time

K

Time path realization of the buffer content

Two-machine production line
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• Heineken...

• Chemical processes
Machine 1 produces a standard substance that is used by machine 2 for
the production of a range of products. When machine 2 changes from
one product to another it needs to be cleaned. Switching off machine 1 is
costly, so the buffer allows machine 1 to continu production.
How large should the buffer be?

Of course, in this application, machine 1 instead of 2 is perfect.

Applications
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• Data communication
In communication networks standard packages called cells are sent from
one switch to another. In a switch incoming packages are ‘multiplexed’
on one outgoing line. If temporarily the number of incoming cells exceeds
the capacity of the outgoing line, the excess inflow is buffered. Once the
buffer is full, an incoming cell will be lost.
How large should the buffer be such that the loss probability is sufficiently
small?

• Production of discrete items
Items are produced on two consecutive workstations. The first one is a
robot, the second one is manned and somewhat slower. Unfortunately the
robot is not fully reliable. Occasionally it breaks down. A buffer enables
the manned station to continu while the robot is being repaired.
What is a good size of the buffer?

Applications
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Fraction of time machine 1 is working is equal to

E(U )
E(U )+ E(D)

Hence

T H = r2 ·
E(U )

E(U )+ E(D)

Zero buffer
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Average production rate of machine 1 is equal to

r1 ·
E(U )

E(U )+ E(D)

Hence

T H = min
{

r1 ·
E(U )

E(U )+ E(D)
, r2

}

Infinite buffer
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Assume exponential up and down times.
Let 1/λ = E(U ) and 1/µ = E(D).

The system can be described by a continuous-time Markov process with states
(i, x) where i is the state of the first machine (i = 1 means that machine 1 is
up, i = 0 means that it is down) and x is the buffer content (0 ≤ x ≤ K ).

Define F(i, x) as the (steady state) probability that machine 1 is in state i and
that the buffer content is less or equal to x . Then

T H = r2 · (1− F(0, 0))

Finite buffer
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µF(0, x) = λF(1, x)+ r2F ′(0, x)

λF(1, x)+ (r1 − r2)F ′(1, x) = µF(0, x)

or in vector-matrix notation

F ′(x) = AF(x)

where

F(x) =
(

F(0, x)
F(1, x)

)

A =
(

µ/r2 −λ/r2
µ/(r1 − r2) λ/(r1 − r2)

)

Balance equations
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The solution is given by

F(x) = C1v1eσ1x
+ C2v2eσ2x

where σ1 and σ2 are the eigenvalues of A, and v1 and v2 are the corresponding
eigenvectors. Here

σ1 = 0, σ2 =
µ

r2
−

λ

r1 − r2

v1 =

(
λ

µ

)
, v2 =

(
r1 − r2

r2

)

Balance equations



45/72

Tuesday April 28

The coefficients C1 and C2 follow from the boundary conditions

F(1, 0) = 0, F(0, K ) =
λ

λ+ µ

yielding

C1 = r2 ·
λ

λ+ µ
·

(
λr2 − µ(r1 − r2)eσ2K

)−1

C2 = −µ ·
λ

λ+ µ
·

(
λr2 − µ(r1 − r2)eσ2K

)−1

Hence

T H = r2 ·
µ

λ+ µ
·
λr1 − (λ+ µ)(r1 − r2)eσ2K

λr2 − µ(r1 − r2)eσ2K

where

σ2 =
µ

r2
−

λ

r1 − r2

Balance equations
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λ = 1/9, µ = 1, r1 = 5 and r2 = 4

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

4

0 5 10 15 20

The throughput as a function of the buffer size

Two-machine production line



47/72

Tuesday April 28

We assumed exponentially distributed up and down times.
What about other (general) distributions?

You may use phase-type distributions.
Then a Markov process description is still feasible, but the analysis becomes
(much) more complicated.

Let us develop a simulation model!

Two-machine production line
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System behavior only significantly changes when machine 1 breaks down
or when it has been repaired. In the simulation we jump from one event to
another, and calculate the buffer content at these moments (in between the
behavior of the buffer content is known). Based on the information obtained
we can estimate the throughput.

This is called discrete-event simulation.

Simulation model
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model fluid():
real t, b, u, d, K, r1, r2, emp, runlength;

r1 = 5.0; r2 = 4.0; K = 5.0; runlength = 1000.0;

while t < runlength:
u = sample exponential(9.0);
t = t + u;
b = min(b + u * (r1 - r2), K);
d = sample exponential(1.0);
t = t + d;
if b - d * r2 < 0.0:

emp = emp + d - b / r2;
end;
b = max(b - d * r2, 0.0)

end;
writeln("TH = %g", r2 * (1.0 - emp / t));

end

Simulation model
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Questions:

• How do we obtain appropriate input for the simulation model?

• How accurate is the outcome of a simulation experiment?

• What is a good choice for the run length of a simulation experiment?

• What is the effect of the initial conditions on the outcome of a simulation
experiment?

Simulation model
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Specifying distributions of random variables (e.g., inter arrival times, process-
ing times) and assigning parameter values can be based on:

• Historical numerical data

• Expert opinion

In practice, there is sometimes real data available, but often the only informa-
tion of random variables that is available is their mean and standard devia-
tion.

Input of a simulation
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Empirical data can be used to:

• Construct empirical distribution functions and generate samples from
them during the simulation.

• Fit theoretical distributions and then generate samples from the fitted dis-
tributions.

Input of a simulation
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Methods to determine the parameters of a distribution:

• Maximum likelihood estimation

• Moment fitting

Fitting a distribution
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Let f (x; θ) denote the probability density function with unknown parameter
(vector) θ .
Let X = (X1, . . . , Xn) denote a vector of i.i.d. observations from f .
Then

L(θ, X) =
n∏

i=1

f (X i , θ)

is the likelihood function and θ̂ satisfying

L(θ̂ , X) = sup
θ

L(θ, X)

is the maximum likelihood estimator of θ .

Maximum likelihood estimation
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• Exponential distribution

f (x, µ) = µe−µx

Then

1
µ̂
=

1
n

n∑
i=1

X i

• Uniform (a, b)

f (x, a, b) =
1

b − a

Then

â = min X i , b̂ = max X i .

But for many distributions θ̂ has to be calculated numerically.

Maximum likelihood estimation
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Obtain an approximating distribution by fitting a phase-type distribution on
the mean, E(X), and the coefficient of variation,

cX =
σX

E(X)
,

of a given positive random variable X , by using the following simple approach.

Moment fitting
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Coefficient of variation less than 1:

If 0 < cX < 1, then fit an Ek−1,k distribution as follows. If

1
k
≤ c2

X ≤
1

k − 1
,

for certain k = 2, 3, . . ., then the approximating distribution is with probability
p (resp. 1 − p) the sum of k − 1 (resp. k) independent exponentials with
common mean 1/µ. By choosing

p =
1

1+ c2
X
[kc2

X − {k(1+ c2
X)− k2c2

X}
1/2
], µ =

k − p
E(X)

,

the Ek−1,k distribution matches E(X) and cX .

Note that the density of Ek(µ) distribution is given by

fk(t) = µe−µt (µt)n−1

(n − 1)!
, t > 0.

Moment fitting
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Coefficient of variation greater than 1:

In case cX ≥ 1, fit a H2(p1, p2;µ1, µ2) distribution.

Phase diagram for the Hk(p1, . . . , pk;µ1, . . . , µk) distribution:

1

k

µ1

µk

p 1

pk

Moment fitting
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But the H2 distribution is not uniquely determined by its first two moments.
In applications, the H2 distribution with balanced means is often used. This
means that the normalization

p1

µ1
=

p2

µ2

is used. The parameters of the H2 distribution with balanced means and fit-
ting E(X) and cX (≥ 1) are given by

p1 =
1
2

(
1+

√
c2

X − 1

c2
X + 1

)
, p2 = 1− p1,

µ1 =
2p1

E(X)
, µ1 =

2p2

E(X)
.

Moment fitting
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Fit a Gamma distribution on the mean, E(X), and the coefficient of variation,
cX , with density

f (t) =
µk

0(k)
tk−1e−µt , t ≥ 0,

where shape parameter k and scale parameter µ are set to

k =
1

c2
X
, µ =

k
E(X)

Moment fitting



61/72

Tuesday April 28

Let X be a random variable on the non-negative integers with mean E X and
coefficient of variation cX . Then it is possible to fit a discrete distribution on
E(X) and cX using the following families of distributions:

• Mixtures of Binomial distributions

• Poisson distribution

• Mixtures of Negative-Binomial distributions

• Mixtures of geometric distributions

This fitting procedure is described in Adan, van Eenige and Resing (see Prob-
ability in the Engineering and Informational Sciences, 9, 1995, pp 623-632).

Fitting discrete distributions
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• Graphical comparison of fitted and empirical curves.

• Statistical tests (goodness-of-fit tests).

Adequacy of fit
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• Normal random variable X with parameters µ and σ > 0,

f (x) =
1

σ
√

2π
e−

1
2(x−µ)

2/σ 2
, −∞ < x <∞

Then

E(X) = µ, var(X) = σ 2.

Density f (x) is denoted as N (µ, σ 2) density.

• Standard normal random variable X has N (0, 1) density, so

f (x) = φ(x) =
1
√

2π
e−

1
2 x2

and

P(X ≤ x) = 8(x) =
1
√

2π

∫ x

−∞

e−
1
2 y2

dy.

Continuous random variable
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• Linearity: If X is normal, then aX + b is also normal.

• Additivity: If X and Y are independent and normal,
then X + Y is also normal.

• Probability that X lies≥ z standard deviations above its mean is

P(X ≥ µ+ zσ) = 1−8(z).

• 100p% percentile z p of standard normal distribution is solution of

8(z p) = p.

For example, z0.95 = 1.64, z0.975 = 1.96.

Properties of normals
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X1, X2, . . . are independent random variables with the same distribution. Let

µ = E(X), σ = σ(X).

Then

E(X1 + · · · + Xn) = nµ, σ(X1 + · · · + Xn) = σ
√

n.

Question: What is the distribution of X1 + · · · + Xn when n is large?

Central limit theorem
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For any a < b,

lim
n→∞

P(a ≤
X1 + · · · + Xn − nµ

σ
√

n
≤ b) = 8(b)−8(a).

In words:

X1 + · · · + Xn has approximately a normal distribution when n is large,
no matter what form the distribution of X i takes!

Remarks:

• Central limit theorem is still valid when the random variables X i exhibit
different distributions.

• Many random quantities are addition of many small random effects: that
is why the normal distribution often appears!

Central limit theorem
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The galton board:

Central limit theorem in action

http://www.jcu.edu/math/isep/Quincunx/Quincunx.html
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Question: How to estimate the unknown µ = E(X) of a random variable X?

Suppose n independent repetitions of experiment are performed,
where Xk is the outcome of experiment k, k = 1, . . . , n.

An estimator for the unknown µ = E(X) is the sample mean

X(n) =
1
n

n∑
k=1

Xk.

The Central limit theorem tells us

X1 + · · · + Xn − nµ
σ
√

n

has an approximately standard normal distribution, where σ = σ(X).

Confidence intervals
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So

X(n)− µ
σ/
√

n

has an approximately standard normal distribution!

Define

• z1−1
2α

is the point for which the area under the standard normal curve be-
tween points−z1−1

2α
and z1−1

2α
equals 100(1− α)%.

• Percentile z1−1
2α

is 1.960 and 2.324 for α = 0.05 and α = 0.01.

Then

P

(
−z1−1

2α
≤

X(n)− µ
σ/
√

n
≤ z1−1

2α

)
≈ 1− α

or...

Confidence intervals
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this leads to the following interval containing µ with probability 1− α

P
(

X(n)− z1−1
2α

σ
√

n
≤ µ ≤ X(n)+ z1−1

2α

σ
√

n

)
≈ 1− α.

Remarks:

• If σ is unknown, it can be estimated by square root of sample variance

S2(n) =
1
n

n∑
k=1

[
Xk − X(n)

]2
.

• For large n, an approximate 100(1− α)% confidence interval for µ is

X(n)± z1−1
2α

S(n)
√

n
.

• To reduce the width of a confidence interval by a factor of x , about x2 times
as many observations are needed!

Confidence intervals
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Beware: The confidence interval is random, not the mean µ!
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100 confidence intervals for the mean of uniform random variable on (−1, 1),
where each interval is based on 100 observations.

Interpretation
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• The width of a confidence interval can be reduced by

– increasing the number of observations n
– decreasing the value of S(n)

The reduction obtained by halving S(n) is the same as the one obtained
by producing four times as much observations.

• Hence, variance reduction techniques are important.

Confidence intervals


