
Stochastic Models of
Manufacturing Systems

Ivo Adan

Tuesday May 19

2/49

Tuesday May 19

• Continuous systems
State changes continuously in time (e.g., in chemical applications)

• Discrete systems
State is observed at fixed regular time points (e.g., periodic review inven-
tory system)

• Discrete-event systems
The system is completely determined by random event times t1, t2, . . . and
by the changes in state taking place at these moments (e.g., production
line, queueing system)

Systems

3/49

Tuesday May 19

• Look at regular time points 0,1, 21, . . . (synchronous simulation); in con-
tinuous systems it may be necessary to take1 very small

• Jump from one event to the next and describe the changes in state at
these moments (asynchronous simulation)

We will concentrate on asynchronous simulation of discrete-event systems

Time advance

4/49

Tuesday May 19

• System
Collection of objects interacting through time (e.g. production system)

• Model
Mathematical representation of a system (e.g., queueing or fluid model)

• Entity
An object in a system (e.g., jobs, machines)

• Attribute
Property of an entity (e.g., arrival time of a job)

• Linked list
Collection of records chained together

Some common terms

5/49

Tuesday May 19

• Event
Change in state of a system

• Event notice
Record describing when event takes place

• Process
Collection of events ordered in time

• Future-event set
Linked list of event notices ordered by time (FES)

• Timing routine
Procedure maintaining FES and advancing simulated time

Some common terms

6/49

Tuesday May 19

• Event-scheduling approach
Focuses on events, i.e., the moments in time when state changes occur

• Process-interaction approach
Focuses on processes, i.e., the flow of each entity through the system

In general-purpose languages one mostly uses the event-scheduling ap-
proach; simulation languages (e.g., χ) use the process-interaction approach

Basic approaches

7/49

Tuesday May 19

Example: Single machine model

Machine
Jobs

A single machine processes jobs in order of arrival. The interarrival times and
processing times are exponential with parameters λ and µ (with λ < µ).

• What is the mean waiting time?

• What is the mean queue length?

• How does the performance change if we speed up the machine?

Event-scheduling approach

8/49

Tuesday May 19

An the interarrival time between job n and n + 1

Bn the processing time of job n

Wn the waiting time of job n

Then (Lindley’s equation):

Wn+1 = max(Wn + Bn − An, 0)

Discrete simulation

9/49

Tuesday May 19

model lindley():
int n, N = 100;
real w, sumw, a, b;

while n < N:
a = sample exponential(1.25);
b = sample exponential(1.0);
w = max(w + b - a, 0.0);
sumw = sumw + w;
n = n + 1

end;

writeln("E(W) = %g", sumw / N);
end

Program

10/49

Tuesday May 19

Entity Attribute

Job Arrival time

Machine Status (idle or busy)

Job is a temporary entity
Machine is a permanent entity

Discrete-event simulation

11/49

Tuesday May 19

Job: Machine:

arrival remove from queue

departure become busy

begin service become idle

end service

join queue

Elementary events

12/49

Tuesday May 19

Arrival

become busy

join queue

begin service

arrival

Compound events

13/49

Tuesday May 19

Departure

remove from

begin service

become idle

departureend service

queue

Compound events

14/49

Tuesday May 19

program

schedule

initial events

timing
routine

end

simulation

show
statistics

end

Prototypical approach

15/49

Tuesday May 19

timing
routine

execute
event

advance time
to next event
time

time <
run length?

simulation
end

select next
event from

FES

no

yes

Prototypical approach

16/49

Tuesday May 19

arrival create
Job

determine
time next
arrival

schedule
next
arrival

attempt
service

succes?
service
arrange

yes

no

join queue

select next
event

Arrival event

17/49

Tuesday May 19

departure queue
empty?

get first
job from
queue

arrange
service

select next
event

machine
becomes
idle

no

yes

Departure event

18/49

Tuesday May 19

type job = real;
type event = tuple (string e; real t);

func bool pred(event x, y):
return real(x.t) < real(y.t)

end

Discrete-event simulation

19/49

Tuesday May 19

model GG1():
bool busy; string e; int n;
real t, sumw;
list job queue; list event fes;

fes = [("a", t + sample exponential(1.25))];
while n < 1000000:

e, t = fes[0];
fes = fes[1:];
if e == "a":

...
elif e == "d":

...
else:

writeln("error: unknown event");
break;

end;
end;
writeln("E(W) = %g", sumw / n);

Discrete-event simulation

20/49

Tuesday May 19

if e == "a":
if busy == false:

busy = true;
n = n + 1;
fes = insert(fes,

("d", t + sample exponential(1.0)), pred);
else:

queue = queue + [t];
end;
fes = insert(fes,

("a", t + sample exponential(1.25)), pred);

Discrete-event simulation

21/49

Tuesday May 19

elif e = "d":
if size(queue) > 0:

sumw = sumw + (t - queue[0]);
queue = queue[1:];
n = n + 1;
fes = insert(fes,

("d", t + sample exponential(1.0)), pred);
else:

busy = false;
end;

Discrete-event simulation

22/49

Tuesday May 19

This approach focusses on describing processes;
In the event-scheduling approach one regards a simulation as executing a
sequence of events ordered in time; but no time elapses within an event.

The process-interaction approach provides a process for each entity in the
system; and time elapses during a process.

In production systems we have processes for:

• Arrivals

• Buffers

• Machines

• Exit

Proces-Interaction approach

23/49

Tuesday May 19

• Generator G sends jobs to buffer B;

• Buffer B receives jobs from G and sends jobs to machine M;

• Machine M processes these jobs and sends finished jobs to exit E;

• Exit E is doing some book keeping.

Single machine model

24/49

Tuesday May 19

type job = real;

Object type job

25/49

Tuesday May 19

proc G(chan! job a; dist real u):

while true:
a!time;
delay sample u;

end
end

G generates jobs with inter-arrival times sampled from distribution u.

Generator G

26/49

Tuesday May 19

proc B(chan? job a; chan! job b):
list job xs;
job x;

while true:
select

a?x:
xs = xs + [x]

alt
size(xs) > 0, b!xs[0]:

xs = xs[1:]
end

end
end

B receives, stores and sends jobs

Bufffer B

27/49

Tuesday May 19

proc M(chan? job a; chan! job b; dist real u):
job x;

while true:
a?x;
b!x;
delay sample u;

end
end

M processes jobs with processing times sampled from distribution u.

Machine M

28/49

Tuesday May 19

proc E(chan? job a; int n):
int i;
real sumw;
job x;

while i < n:
a?x;
sumw = sumw + (time - x);
i = i + 1;

end;
writeln("E(W) = %g", sumw / n);

end

Exit E computes mean waiitng time over first n jobs.

Exit E

29/49

Tuesday May 19

model GBME():
chan job a, b, c;

run G(a, exponential(1.25)),
B(a, b),
M(b, c, exponential(1.0)),
E(c, 1000)

end

Single machine model G B M E

30/49

Tuesday May 19

In Arena you can construct simulation models without programming, but
simply with click, drag and drop...

Student version of Arena is available in the campus software

Book with CD-ROM:

W. David Kelton, Randall P. Sadowski, Deborah A. Sadowski:
Simulation with Arena. 2nd ed., London: McGraw-Hill, 2002

Simulation system Arena

31/49

Tuesday May 19

Method of independent replications

Example: Long-run ("steady-state") mean waiting time E(W) in the single
machine model

Produce n independent sample paths of waiting times W (k)
1 ,W (k)

2 , . . . ,W (k)
N

and compute

SW (k)
N =

1
N

N∑
j=1

W (k)
j , k = 1, . . . , n.

Output analysis

32/49

Tuesday May 19

Then, for large N , an approximate 100(1 − α)% confidence interval for the
mean waiting time E(W) is

SWN (n)± z1−1
2α

SN (n)
√

n

where SWN ((n) and S2
N ((n) are the sample mean and variance of the realiza-

tions SW (1)
N , . . . , SW (n)

N ,

SWN (n) =
1
n

n∑
k=1

SW (k)
N

S2
N (n) =

1
n

n∑
k=1

[SW (k)
N −

SWN (n)]2

Output analysis

33/49

Tuesday May 19

xper X():
int n;
real w, sum1, sum2, smean, svar;

n = 10;
for i in range(n):

w = GBME();
sum1 = sum1 + w;
sum2 = sum2 + w * w;
writeln("E(W(\%d) = \%g", i, w)

end;

smean = sum1 / n;
svar = sum2 / n - smean * smean;
writeln("E(W) = \%g +- \%g",

smean, 1.96 * sqrt(svar / n));
end;

Output analysis

34/49

Tuesday May 19

Results for λ = 0.5, µ = 1 and 10 runs, each of N = 104 waiting times

k SW (k)
N

1 0.995
2 1.002
3 0.959
4 1.037
5 0.902
6 1.011
7 1.125
8 1.007
9 1.075

10 1.044

E(W) = 1.016± 0.036 (95% confidence interval)

Output analysis

35/49

Tuesday May 19

Results for λ = 0.9, µ = 1 and 10 runs, each of N = 104 waiting times

k SW (k)
N

1 7.373
2 8.496
3 8.574
4 7.752
5 8.637
6 7.404
7 9.556
8 8.863
9 8.537

10 11.000

E(W) = 8.619± 0.632 (95% confidence interval)

Clearly, a more congested system is harder to simulate!
To obtain a more accurate estimate we should increase the number of runs
and/or the length of each run: How much?

Output analysis

36/49

Tuesday May 19

We are interested in the long-run behavior of the system and maybe the
choice of the initial state of the simulation will influence the quality of our
estimate.

One way of dealing with this problem is to choose N very large and to neglect
this initialization effect. However, a better way is to throw away in each run
the first m observations:

SW (k)
N =

1
N − m

N∑
j=m+1

W (k)
j .

We call m the length of the warm-up period and it can be determined by a
graphical procedure.

Disadvantage of the independent replication method:
Initialization effect in each simulation run.

Initialization effect

37/49

Tuesday May 19

• Arrival process of jobs:

– Interarrival times are independent and identically distributed;

– Jobs arrivals one-by-one.

• Processing times:

– Processing times are independent and identically distributed;

• Processing order:

– First come first served (FCFS);

– Processing one-by-one.

• Processing capacity:

– Single machine machine.

• Buffer capacity:

– Ample (infinite).

Single machine model

38/49

Tuesday May 19

Interarrival times of jobs are independent and exponential with rate λ.

Because of memoryless property,

P(arrival in (t, t +1)) = 1− e−λ1≈ λ1

and whether or not there is an arrival is independent of any arrivals before t .

Hence, dividing (0, t) into small intervals of length 1, the number of arrivals
in (0, t) is binomial with n = t/1 and p = λ1. Since n is large and p is small,
this number is Poisson distributed with parameter np = λt ,

P(k arrivals in (0, t)) = e−λt (λt)k

k!
, k = 0, 1, 2, . . .

Poisson arrival process

39/49

Tuesday May 19

• Since density f (x) = λe−λx is maximal for x = 0, short interarrival times
occur more frequently than long ones. So arrivals tend to cluster:

Poisson

t

Erlang-10

t

• Superposition of many independent rarely occurring arrival processes is
(close to) Poisson: this is why Poisson processes often occur in practice!

• Merging of two Poisson streams with rates λ1 and λ2 is again Poisson with
rate λ1 + λ2, since

P(arrival in (t, t +1)) ≈ (λ1 + λ2)1.

• Random splitting of Poisson stream with rate λ and splitting probability p
is again Poisson with rate pλ, since

P(arrival in (t, t +1)) ≈ pλ1.

Poisson arrival process

40/49

Tuesday May 19

Since exponentials are memoryless:

• State X (t) of system at time t is characterized by number in the system

Let

pi(t) = P(i jobs in the system at time t), i = 0, 1,

How to determine these time dependent probabilities?

Via differential equations...

Exponential machine model

41/49

Tuesday May 19

Clearly

P(arrival in (t, t +1)) = 1− e−λ1 ≈ λ1,
P(departure in (t, t +1)) = 1− e−µ1 ≈ µ1,

P(no arr or dep in (t, t +1)) = e−(λ+µ)1 ≈ 1− λ1− µ1.

So for i = 1, . . .,

pi(t +1) = pi−1(t)λ1+ pi(t)(1− λ1− µ1)+ pi+1(t)µ1

and thus

pi(t +1)− pi(t)
1

= pi−1(t)λ− pi(t)(λ+ µ)+ pi+1(t)µ.

Letting1→ 0 yields

d
dt

pi(t) = pi−1(t)λ− pi(t)(λ+ µ)+ pi+1(t)µ.

Exponential machine model

42/49

Tuesday May 19

Hence, for i = 1, 2, . . .,

d
dt

pi(t) = pi−1(t)λ− pi(t)(λ+ µ)+ pi+1(t)µ

and similarly, for i = 0,

d
dt

p0(t) = −p0(t)λ+ p1(t).

This system of differential equations can be solved, but...

It is easier to look at long-run or limiting behavior as t →∞.

Provided λ < µ, the limits

pi = lim
t→∞

pi(t)

exist, and thus limt→∞
d
dt pi(t) = 0 (Why?).

Exponential machine model

43/49

Tuesday May 19

Thus we get the following equations for the limiting probabilities pi ,

p0λ = p1µ,

pi(λ+ µ) = pi−1λ+ pi+1µ, i = 1, . . .

Remarks:

• pi can be interpreted as long-run fraction of time system is in state i .

• The equations for pi are balance of flow equations:

Flow out of state i = Flow into state i .

• Adding equations from state 0 to state i gives easier equations:

piλ = pi+1µ, i = 0, 1, . . . ,

so also

Flow from state i to i + 1 = Flow from state i + 1 to i .

Exponential machine model

44/49

Tuesday May 19

Solution

pi = p0

(
λ

µ

)i

, i = 0, 1, . . . ,

and p0 follows from

1 =
∞∑

i=0

pi = p0
1

1− λ/µ
,

so

p0 = 1− λ/µ.

The machine utilization is ρ = 1− p0 = λ/µ and thus

pi = (1− ρ)ρi , i = 0, 1, . . . ,

which is the geometric distribution.

Exponential machine model

45/49

Tuesday May 19

Little’s law

Consider system in equilibrium

• E(L) is mean number in system

• E(S) is mean time spent in system

• λ is arrival rate (or departure rate)

Then:

E(L) = λE(S)

The definition of system is flexible (e.g. queue, server, queue+server)

PASTA: Poisson Arrivals See Time Averages

Poisson arrivals see the system in equilibrium,
that is, they see the same as random outside observer!

Fundamental relations

46/49

Tuesday May 19

• Poisson arrivals with rate λ

• Exponential service times with mean 1/µ

• Stability: λ < µ or ρ = λ/µ < 1

• Single server

• FCFS service

Then:

• pk = P(k jobs in system) = (1− ρ)ρk, k = 0, 1, . . . (Geometric)

• E(L) =
∑
∞

k=0 kpk =
ρ

1−ρ

• E(S) = E(L)/λ = 1/µ
1−ρ

• E(Q) =
∑
∞

k=1(k − 1)pk =
ρ2

1−ρ

• E(W) = E(Q)/λ = ρ/µ
1−ρ

or via PASTA+Little...

Exponential machine model

47/49

Tuesday May 19

• Poisson arrivals with rate λ

• Exponential service times with mean 1/µ

• Stability: λ < µ or ρ = λ/µ < 1

• Single server

• FCFS service

Via PASTA+Little...

E(S) = E(La)
1
µ
+

1
µ
,

where La is the number on arrival. By PASTA, E(La) = E(L), so

E(S) = E(L)
1
µ
+

1
µ

and thus by Little’s law, E(L) = λE(S),

E(S) =
1/µ

1− ρ
.

Exponential machine model

48/49

Tuesday May 19

• Poisson arrivals with rate λ

• General service times B with distribution FB(·)

• Stability: ρ = λE(B) < 1

• Single server

• FCFS service

Then:

E(W) = E(Qa)E(B)+ ρE(R) = E(Q)E(B)+ ρE(R)

where Q (Qa) is number in queue (on arrival) and R is residual service time,

E(R) =
E(B2)

2E(B)
=

1
2

E(B) (1+ c2
B).

So with Little’s law E(Q) = λE(W), we get...

General machine model

49/49

Tuesday May 19

• Poisson arrivals with rate λ

• General service times B with distribution FB(·)

• Stability: ρ = λE(B) < 1

• Single server

• FCFS service

Then:

E(W) =
ρE(R)
1− ρ

where R is residual service time,

E(R) =
E(B2)

2E(B)
=

1
2

E(B) (1+ c2
B)

so

E(W) =
ρ

1− ρ
1
2

E(B) (1+ c2
B)

General machine model

