Stochastic Models of Manufacturing Systems

Ivo Adan

Fundamental relations

Little's law

Consider system in equilibrium

- $E(L)$ is mean number in system
- $E(S)$ is mean time spent in system
- λ is arrival rate (or departure rate)

Then:

$$
E(L)=\lambda E(S)
$$

The definition of system is flexible (e.g. queue, server, queue+server)
PASTA: Poisson Arrivals See Time Averages
Poisson arrivals see the system in equilibrium:
They see the same as random outside observer!

Single server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<\mu$ or $\rho=\lambda / \mu<1$
- Single server and FCFS service

Then:

- $p_{k}=P(k$ in system $)=(1-\rho) \rho^{k}, k=0,1, \ldots$ (Geometric)
- $E(L)=\sum_{k=0}^{\infty} k p_{k}=(1-\rho) \rho \sum_{k=0}^{\infty} k \rho^{k-1}=(1-\rho) \rho \frac{1}{(1-\rho)^{2}}=\frac{\rho}{1-\rho}$
- $E(S)=E(L) / \lambda=\frac{1 / \mu}{1-\rho}$
- $E(Q)=\sum_{k=1}^{\infty}(k-1) p_{k}=\frac{\rho^{2}}{1-\rho}$
- $E(W)=E(Q) / \lambda=\frac{\rho / \mu}{1-\rho}$
or via PASTA+Little...

Single server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<\mu$ or $\rho=\lambda / \mu<1$
- Single server and FCFS service

Via PASTA+Little...

$$
E(S)=E\left(L^{a}\right) \frac{1}{\mu}+\frac{1}{\mu},
$$

where L^{a} is the number on arrival. By PASTA, $E\left(L^{a}\right)=E(L)$, so

$$
E(S)=E(L) \frac{1}{\mu}+\frac{1}{\mu}
$$

and thus by Little's law, $E(L)=\lambda E(S)$,

$$
E(S)=\frac{1 / \mu}{1-\rho}
$$

Single server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<\mu$ or $\rho=\lambda / \mu<1$
- Single server and FCFS service

Then:

- Let a_{k} be arrival distribution, then by PASTA $a_{k}=P(k$ in system just before arrival $)=p_{k}$
- Let d_{k} be departure distribution, then $d_{k}=P(k$ in system just after departure $)=a_{k}\left(=p_{k}\right)$
- $P(S>t)=e^{-\mu(1-\rho) t}, t \geq 0$ (Exponential)
- $P(W>t)=\rho e^{-\mu(1-\rho) t}, t \geq 0$ (nearly Exponential)
- Output process is again Poisson!

Single server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<\mu$ or $\rho=\lambda / \mu<1$
- Single server and FCFS service

Let $f_{k+1}(t)$ be density of $k+1$ independent exponential service times,

$$
f_{k+1}(t)=\mu e^{-\mu t} \frac{(\mu t)^{k}}{k!} \quad(\text { Erlang }-k+1 \text { distribution })
$$

Density $f_{S}(t)$ of sojourn (waiting plus service) time S :

$$
\begin{aligned}
f_{S}(t) & =\sum_{k=0}^{\infty} a_{k} f_{k+1}(t)=\sum_{k=0}^{\infty}(1-\rho) \rho^{k} \mu e^{-\mu t} \frac{(\mu t)^{k}}{k!} \\
& =\mu(1-\rho) e^{-\mu t} \sum_{k=0}^{\infty} \frac{(\rho \mu t)^{k}}{k!}=\mu(1-\rho) e^{-\mu(1-\rho) t},
\end{aligned}
$$

so S is exponential with parameter $(1-\rho) \mu$!

Single server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<\mu$ or $\rho=\lambda / \mu<1$
- Single server and FCFS service

Density $f_{W}(t)$ of waiting time W :

$$
\begin{aligned}
f_{W}(t) & =\sum_{k=1}^{\infty} a_{k} f_{k}(t)=\sum_{k=1}^{\infty}(1-\rho) \rho^{k} \mu e^{-\mu t} \frac{(\mu t)^{k-1}}{(k-1)!} \\
& =\rho \mu(1-\rho) e^{-\mu t} \sum_{k=1}^{\infty} \frac{(\rho \mu t)^{k-1}}{(k-1)!}=\rho \mu(1-\rho) e^{-\mu(1-\rho) t}
\end{aligned}
$$

Note that $P(W>0)=\rho$ by PASTA, so

$$
P(W>t \mid W>0)=\frac{P(W>t)}{P(W>0)}=e^{-\mu(1-\rho) t},
$$

so conditional $W \mid W>0$ is exponential with parameter $(1-\rho) \mu$!

How does WIP behave over time?

Exponential model, $\lambda=1.0, \rho=0.5$
TU/e

How does WIP behave over time?

Exponential model, $\lambda=1.0, \rho=0.9$
TU/e

How does WIP behave over time?

Exponential model, $\lambda=1.0, \rho=0.95$

Single server: general service

- Poisson arrivals with rate λ
- General service times B with distribution $F_{B}(\cdot)$
- Stability: $\rho=\lambda E(B)<1$
- Single server and FCFS service

Then:

$$
E(W)=E\left(Q^{a}\right) E(B)+\rho E(R)=E(Q) E(B)+\rho E(R)
$$

where $Q\left(Q^{a}\right)$ is number in queue (on arrival) and R is residual service time,

$$
E(R)=\frac{E\left(B^{2}\right)}{2 E(B)}=\frac{1}{2} E(B)\left(1+c_{B}^{2}\right) .
$$

So with Little's law $E(Q)=\lambda E(W)$, we get...

Single server: general service

- Poisson arrivals with rate λ
- General service times B with distribution $F_{B}(\cdot)$
- Stability: $\rho=\lambda E(B)<1$
- Single server and FCFS service

Then:

$$
E(W)=\frac{\rho E(R)}{1-\rho}
$$

where R is residual service time,

$$
E(R)=\frac{E\left(B^{2}\right)}{2 E(B)}=\frac{1}{2} E(B)\left(1+c_{B}^{2}\right)
$$

SO

$$
E(W)=\frac{\rho}{1-\rho} \frac{1}{2} E(B)\left(1+c_{B}^{2}\right)
$$

Single server: residual service

Probability of randomly selected service X of size x is proportional to its size x and $f_{B}(x) d x$, which is number of services of size x :

$$
P(x<X<x+d x)=f_{X}(x) d x=C x f_{B}(x) d x
$$

where C is normalizing constant, so $C=1 / \int_{x=0}^{\infty} x f_{B}(x) d x=1 / E(B)$ and

$$
f_{X}(x)=\frac{x f_{B}(x)}{E(B)}
$$

The mean of randomly selected service is

$$
E(X)=\int_{x=0}^{\infty} x f_{X}(x) d x=\frac{1}{E(B)} \int_{x=0}^{\infty} x^{2} f_{B}(x) d x=\frac{E\left(B^{2}\right)}{E(B)}
$$

On average, in the middle of randomly selected service, so

$$
E(R)=\frac{E(X)}{2}=\frac{E\left(B^{2}\right)}{2 E(B)}
$$

Single server: general

- General inter-arrival times A with distribution $F_{A}(\cdot)$, mean $E(A)$, sd $\sigma(A)$
- General service times B with distribution $F_{B}(\cdot)$, mean $E(B)$, sd $\sigma(B)$
- Stability: $\rho=E(B) / E(A)<1$
- Single server and FCFS service

Then:

$$
E(W) \approx \frac{\rho}{1-\rho} \frac{1}{2} E(B)\left(c_{A}^{2}+c_{B}^{2}\right)
$$

where c_{A} and c_{B} are coefficients of variation of A and B :

$$
c_{A}=\frac{\sigma(A)}{E(A)}, \quad c_{B}=\frac{\sigma(B)}{E(B)} .
$$

Single server: general

$$
\begin{equation*}
E(W) \approx \frac{\rho}{1-\rho} \frac{1}{2} E(B)\left(c_{A}^{2}+c_{B}^{2}\right) \tag{1}
\end{equation*}
$$

Lessons:

- As ρ tends to 1 then $E(W)$ tends to ∞
- As ρ tends to 1 then approximation (1) becomes exact: the relative error tends to 0
- As ρ tends to 1 then waiting time distribution becomes exponential
- Summary: As system operates close to its maximum capacity, waiting times are long and exponential with mean (1)
- Insensitivity: Mean waiting time only depends on mean and standard deviation of inter-arrival times and service times!

Single server: output process

Inter-departure times D :

- Conservation of flow gives $E(D)=E(A)$ or output rate $=$ input rate
- Squared coefficient of variation $c_{D}^{2} \approx\left(1-\rho^{2}\right) c_{A}^{2}+\rho^{2} c_{B}^{2}$
- This makes sense since:
- If $\rho \approx 1$, then server nearly always busy, so

$$
c_{D} \approx c_{B}
$$

- If $\rho \approx 0$, then $E(B)$ is very small compared to $E(A)$, so

$$
c_{D} \approx c_{A}
$$

Multi server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<c \mu$ or $\rho=\lambda /(c \mu)<1$
- c parallel servers and FCFS service

Then:

$$
p_{k}=P(k \text { in system })= \begin{cases}\frac{(c \rho)^{k}}{k!} p_{0} & k=0,1, \ldots c-1, \\ \rho^{k-c \frac{(c \rho)^{c}}{c!} p_{0}} & k=c, c+1, \ldots\end{cases}
$$

where

$$
\frac{1}{p_{0}}=\sum_{k=0}^{c-1} \frac{(c \rho)^{k}}{k!}+\frac{(c \rho)^{c}}{c!} \frac{1}{1-\rho}
$$

Multi server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<c \mu$ or $\rho=\lambda /(c \mu)<1$
- c parallel servers and FCFS service

Then:

- $E(W)=E(Q) \frac{1}{c \mu}+\Pi_{W} \frac{1}{c \mu}$, so with Little's law, $E(W)=\frac{\Pi_{W}}{1-\rho} \frac{1}{c \mu}$
- Π_{W} is probability of waiting,

$$
\begin{aligned}
\Pi_{W} & =P(W>0) \\
& =p_{c}+p_{c+1}+\cdots=\frac{(c \rho)^{c}}{c!}\left(\frac{(c \rho)^{c}}{c!}+(1-\rho) \sum_{n=0}^{c-1} \frac{(c \rho)^{n}}{n!}\right)^{-1}
\end{aligned}
$$

- $P(W>t)=\Pi_{W} e^{-c \mu(1-\rho) t}, t \geq 0$ (nearly Exponential)

Multi server: exponential

- Let a_{k} be arrival distribution, then $a_{k}=p_{k}$ by PASTA
- Let d_{k} be departure distribution, then $d_{k}=a_{k}\left(=p_{k}\right)$
- Output process is again Poisson!

Multi server: general service

- Poisson arrivals with rate λ
- General service times B with distribution $F_{B}(\cdot)$
- Stability: $\rho=\lambda E(B) / c<1$
- c parallel servers and FCFS service

Then:

$$
E(W) \approx \frac{\Pi_{W}}{1-\rho} \frac{E(R)}{c}
$$

where Π_{W} is probability of waiting in corresponding exponential system, so

$$
E(W) \approx \frac{\Pi_{W}}{1-\rho} \frac{1}{2} \frac{E(B)}{c}\left(1+c_{B}^{2}\right) .
$$

- Π_{W} is fairly insensitive to service time distribution;
- Corresponding system means with same mean service times.

Multi server: general

- General inter-arrival times A with distribution $F_{A}(\cdot)$, mean $E(A)$, sd $\sigma(A)$
- General service times B with distribution $F_{B}(\cdot)$, mean $E(B)$, sd $\sigma(B)$
- Stability: $\rho=E(B) /(c E(A))<1$
- c parallel servers and FCFS service

Then:

$$
E(W) \approx \frac{\Pi_{W}}{1-\rho} \frac{1}{2} \frac{E(B)}{c}\left(c_{A}^{2}+c_{B}^{2}\right)
$$

where c_{A} and c_{B} are coefficients of variation of A and B

Multi server: output process

Inter-departure times D :

- Conservation of flow gives $E(D)=E(A)$ or output rate $=$ input rate
- Coefficient of variation $c_{D}^{2} \approx 1+\left(1-\rho^{2}\right)\left(c_{A}^{2}-1\right)+\rho^{2}\left(c_{B}^{2}-1\right) / \sqrt{c}$

