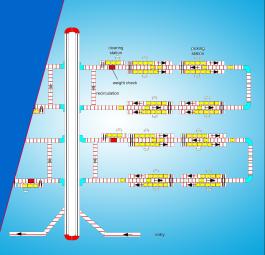
Stochastic Models of Manufacturing Systems

Ivo Adan



Technische Universiteit **Eindhoven** University of Technology

Fundamental relations

Little's law

Consider system in equilibrium

- *E*(*L*) is mean number in system
- *E*(*S*) is mean time spent in system
- λ is arrival rate (or departure rate)

Then:

 $E(L) = \lambda E(S)$

The definition of system is flexible (e.g. queue, server, queue+server)

PASTA: Poisson Arrivals See Time Averages

Poisson arrivals see the system in equilibrium: They see the same as random outside observer!

- Poisson arrivals with rate λ
- Exponential service times with mean $1/\mu$
- Stability: $\lambda < \mu$ or $\rho = \lambda/\mu < 1$
- Single server and FCFS service

Then:

- $p_k = P(k \text{ in system}) = (1 \rho)\rho^k$, k = 0, 1, ... (Geometric)
- $E(L) = \sum_{k=0}^{\infty} kp_k = (1-\rho)\rho \sum_{k=0}^{\infty} k\rho^{k-1} = (1-\rho)\rho \frac{1}{(1-\rho)^2} = \frac{\rho}{1-\rho}$
- $E(S) = E(L)/\lambda = \frac{1/\mu}{1-\rho}$
- $E(Q) = \sum_{k=1}^{\infty} (k-1)p_k = \frac{\rho^2}{1-\rho}$

•
$$E(W) = E(Q)/\lambda = \frac{\rho/\mu}{1-\mu}$$

or via PASTA+Little...

- Poisson arrivals with rate λ
- Exponential service times with mean $1/\mu$
- Stability: $\lambda < \mu$ or $\rho = \lambda/\mu < 1$
- Single server and FCFS service

Via PASTA+Little...

$$E(S) = E(\boldsymbol{L}^{\boldsymbol{a}})\frac{1}{\mu} + \frac{1}{\mu},$$

where L^a is the number on arrival. By PASTA, $E(L^a) = E(L)$, so

$$E(S) = E(L)\frac{1}{\mu} + \frac{1}{\mu}$$

and thus by Little's law, $E(L) = \lambda E(S)$,

$$E(S) = \frac{1/\mu}{1-\rho}.$$

- Poisson arrivals with rate λ
- Exponential service times with mean $1/\mu$
- Stability: $\lambda < \mu$ or $\rho = \lambda/\mu < 1$
- Single server and FCFS service

Then:

- Let a_k be arrival distribution, then by PASTA $a_k = P(k \text{ in system just before arrival}) = p_k$
- Let d_k be departure distribution, then $d_k = P(k \text{ in system just after departure}) = a_k (= p_k)$
- $P(S > t) = e^{-\mu(1-\rho)t}$, $t \ge 0$ (Exponential)
- $P(W > t) = \rho e^{-\mu(1-\rho)t}$, $t \ge 0$ (nearly Exponential)
- Output process is again Poisson!

- Poisson arrivals with rate λ
- Exponential service times with mean $1/\mu$
- Stability: $\lambda < \mu$ or $\rho = \lambda/\mu < 1$
- Single server and FCFS service

Let $f_{k+1}(t)$ be density of k + 1 independent exponential service times,

$$f_{k+1}(t) = \mu e^{-\mu t} \frac{(\mu t)^k}{k!}$$
 (Erlang- $k + 1$ distribution).

Density $f_S(t)$ of sojourn (waiting plus service) time S:

$$f_{S}(t) = \sum_{k=0}^{\infty} a_{k} f_{k+1}(t) = \sum_{k=0}^{\infty} (1-\rho) \rho^{k} \mu e^{-\mu t} \frac{(\mu t)^{k}}{k!}$$
$$= \mu (1-\rho) e^{-\mu t} \sum_{k=0}^{\infty} \frac{(\rho \mu t)^{k}}{k!} = \mu (1-\rho) e^{-\mu (1-\rho)t}$$

so *S* is exponential with parameter $(1 - \rho)\mu!$

- Poisson arrivals with rate λ
- Exponential service times with mean $1/\mu$
- Stability: $\lambda < \mu$ or $\rho = \lambda/\mu < 1$
- Single server and FCFS service

Density $f_W(t)$ of waiting time *W*:

$$f_W(t) = \sum_{k=1}^{\infty} a_k f_k(t) = \sum_{k=1}^{\infty} (1-\rho) \rho^k \mu e^{-\mu t} \frac{(\mu t)^{k-1}}{(k-1)!}$$
$$= \rho \mu (1-\rho) e^{-\mu t} \sum_{k=1}^{\infty} \frac{(\rho \mu t)^{k-1}}{(k-1)!} = \rho \mu (1-\rho) e^{-\mu (1-\rho)t}.$$

Note that $P(W > 0) = \rho$ by PASTA, so

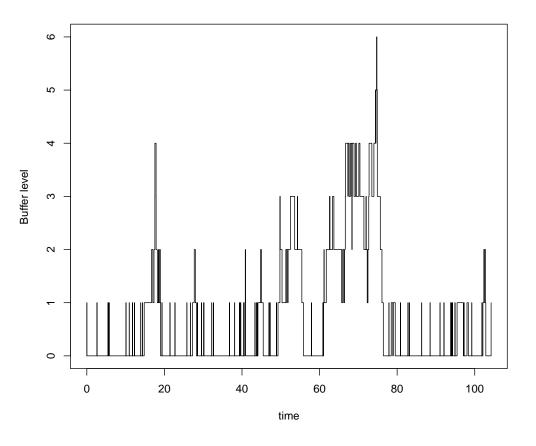
$$P(W > t | W > 0) = \frac{P(W > t)}{P(W > 0)} = e^{-\mu(1-\rho)t},$$

so conditional W|W > 0 is exponential with parameter $(1 - \rho)\mu!$

Tuesday May 26

Technische Universiteit Eindhoven University of Technology

How does WIP behave over time?

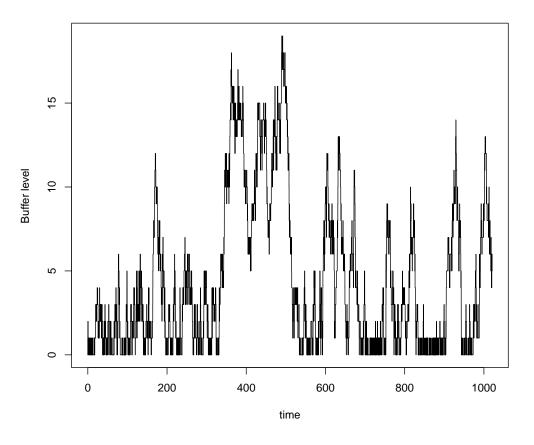


Tuesday May 26

Exponential model, $\lambda = 1.0$, $\rho = 0.5$

TU/e Technische Universit Eindhoven University of Technol

How does WIP behave over time?

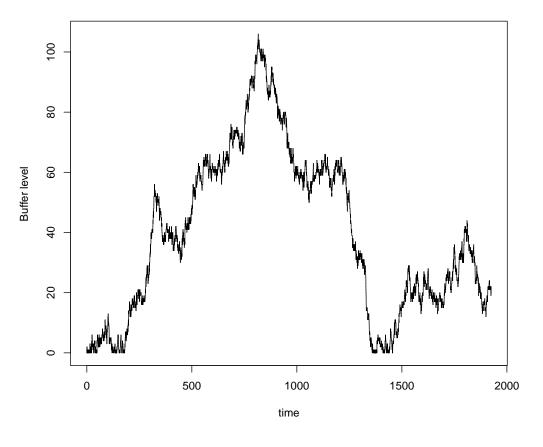


Tuesday May 26

Exponential model, $\lambda = 1.0$, $\rho = 0.9$

TU/e Technische Universiteit Eindhoven University of Technology

How does WIP behave over time?



Tuesday May 26

Exponential model, $\lambda = 1.0$, $\rho = 0.95$

TU/e Technische Universiteit Eindhoven University of Technolog

Single server: general service

- Poisson arrivals with rate λ
- General service times *B* with distribution $F_B(\cdot)$
- Stability: $\rho = \lambda E(B) < 1$
- Single server and FCFS service

Then:

$$E(W) = E(Q^a)E(B) + \rho E(R) = E(Q)E(B) + \rho E(R)$$

where $Q(Q^a)$ is number in queue (on arrival) and R is residual service time,

$$E(R) = \frac{E(B^2)}{2E(B)} = \frac{1}{2} E(B) (1 + c_B^2).$$

So with Little's law $E(Q) = \lambda E(W)$, we get...

Single server: general service

- Poisson arrivals with rate λ
- General service times *B* with distribution $F_B(\cdot)$
- Stability: $\rho = \lambda E(B) < 1$
- Single server and FCFS service

Then:

$$E(W) = \frac{\rho E(R)}{1 - \rho}$$

where *R* is residual service time,

$$E(R) = \frac{E(B^2)}{2E(B)} = \frac{1}{2} E(B) (1 + c_B^2)$$

S0

$$E(W) = \frac{\rho}{1-\rho} \frac{1}{2} E(B) (1+c_B^2)$$

TU/e Technische Universiteit Eindhoven University of Technology

12/22

Single server: residual service

Probability of randomly selected service X of size x is proportional to its size x and $f_B(x)dx$, which is number of services of size x:

 $P(x < X < x + dx) = f_X(x)dx = Cxf_B(x)dx$

where C is normalizing constant, so $C = 1 / \int_{x=0}^{\infty} x f_B(x) dx = 1 / E(B)$ and

$$f_X(x) = \frac{xf_B(x)}{E(B)}$$

The mean of randomly selected service is

$$E(X) = \int_{x=0}^{\infty} x f_X(x) dx = \frac{1}{E(B)} \int_{x=0}^{\infty} x^2 f_B(x) dx = \frac{E(B^2)}{E(B)}$$

On average, in the middle of randomly selected service, so

$$E(R) = \frac{E(X)}{2} = \frac{E(B^2)}{2E(B)}$$

13/22

Single server: general

- General inter-arrival times A with distribution $F_A(\cdot)$, mean E(A), sd $\sigma(A)$
- General service times *B* with distribution $F_B(\cdot)$, mean E(B), sd $\sigma(B)$
- Stability: $\rho = E(B)/E(A) < 1$
- Single server and FCFS service

Then:

$$E(W) \approx \frac{\rho}{1-\rho} \frac{1}{2} E(B) \left(c_A^2 + c_B^2\right)$$

where c_A and c_B are coefficients of variation of A and B:

$$c_A = \frac{\sigma(A)}{E(A)}, \quad c_B = \frac{\sigma(B)}{E(B)}.$$

$$E(W) \approx \frac{\rho}{1-\rho} \frac{1}{2} E(B) (c_A^2 + c_B^2)$$

Lessons:

- As ρ tends to 1 then E(W) tends to ∞
- As ρ tends to 1 then approximation (1) becomes *exact*: the relative error tends to 0
- As ρ tends to 1 then waiting time distribution becomes exponential
- Summary: As system operates close to its maximum capacity, waiting times are long and exponential with mean (1)
- Insensitivity: Mean waiting time only depends on mean and standard deviation of inter-arrival times and service times!

15/22

(1)

Single server: output process

Inter-departure times *D*:

- Conservation of flow gives E(D) = E(A) or output rate = input rate
- Squared coefficient of variation $c_D^2 \approx (1 \rho^2)c_A^2 + \rho^2 c_B^2$
- This makes sense since:
 - If ho pprox 1 , then server nearly always busy, so

 $c_D \approx c_B$

– If $\rho \approx 0$, then E(B) is very small compared to E(A), so

 $c_D \approx c_A$

Multi server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1/\mu$
- Stability: $\lambda < c\mu$ or $\rho = \lambda/(c\mu) < 1$
- c parallel servers and FCFS service

Then:

$$p_{k} = P(k \text{ in system}) = \begin{cases} \frac{(c\rho)^{k}}{k!} p_{0} & k = 0, 1, \dots c - 1, \\ \rho^{k-c} \frac{(c\rho)^{c}}{c!} p_{0} & k = c, c + 1, \dots \end{cases}$$

where

$$\frac{1}{p_0} = \sum_{k=0}^{c-1} \frac{(c\rho)^k}{k!} + \frac{(c\rho)^c}{c!} \frac{1}{1-\rho}.$$

Multi server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1/\mu$
- Stability: $\lambda < c\mu$ or $\rho = \lambda/(c\mu) < 1$
- c parallel servers and FCFS service

Then:

- $E(W) = E(Q)\frac{1}{c\mu} + \Pi_W \frac{1}{c\mu}$, so with Little's law, $E(W) = \frac{\Pi_W}{1-\rho} \frac{1}{c\mu}$
- Π_W is probability of waiting,

$$\Pi_W = P(W > 0)$$

= $p_c + p_{c+1} + \dots = \frac{(c\rho)^c}{c!} \left(\frac{(c\rho)^c}{c!} + (1-\rho)\sum_{n=0}^{c-1} \frac{(c\rho)^n}{n!}\right)^{-1}$

• $P(W > t) = \prod_{W} e^{-c\mu(1-\rho)t}$, $t \ge 0$ (nearly Exponential)

Multi server: exponential

- Let a_k be arrival distribution, then $a_k = p_k$ by PASTA
- Let d_k be departure distribution, then $d_k = a_k$ (= p_k)
- Output process is again Poisson!

Multi server: general service

- Poisson arrivals with rate λ
- General service times *B* with distribution $F_B(\cdot)$
- Stability: $\rho = \lambda E(B)/c < 1$
- c parallel servers and FCFS service

Then:

$$E(W) \approx \frac{\Pi_W}{1-\rho} \frac{E(R)}{c}$$

where Π_W is probability of waiting in corresponding exponential system, so

$$E(W) \approx \frac{\Pi_W}{1-\rho} \frac{1}{2} \frac{E(B)}{c} (1+c_B^2).$$

- Π_W is fairly insensitive to service time distribution;
- Corresponding system means with same mean service times.

Multi server: general

- General inter-arrival times A with distribution $F_A(\cdot)$, mean E(A), sd $\sigma(A)$
- General service times *B* with distribution $F_B(\cdot)$, mean E(B), sd $\sigma(B)$
- Stability: $\rho = E(B)/(cE(A)) < 1$
- c parallel servers and FCFS service

Then:

$$E(W) \approx \frac{\Pi_W}{1-\rho} \frac{1}{2} \frac{E(B)}{c} (c_A^2 + c_B^2)$$

where c_A and c_B are coefficients of variation of A and B

Multi server: output process

Inter-departure times *D*:

- Conservation of flow gives E(D) = E(A) or output rate = input rate
- Coefficient of variation $c_D^2 \approx 1 + (1-\rho^2)(c_A^2-1) + \rho^2(c_B^2-1)/\sqrt{c}$

