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• Poisson arrivals with rate λ

• Exponential service times with mean 1/µ

• Stability: λ < µ or ρ = λ/µ < 1

• Single server and FCFS service

Then:

pk = P(k jobs in system) = (1− ρ)ρk, k = 0, 1, . . .

and

E(W ) =
ρ

1− ρ
1
µ

Single server: exponential
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• Poisson arrivals with rate λ

• General service times B with distribution FB(·)

• Stability: ρ = λE(B) < 1

• Single server and FCFS service

Then:

E(W ) =
ρ

1− ρ
E(R)

where R is residual service time,

E(R) =
E(B2)

2E(B)

=
1
2

E(B) (1+ c2
B)

Single server: general service
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• Poisson arrivals with rate λ

• Exponential service times with mean 1/µ

• Stability: λ < cµ or ρ = λ/(cµ) < 1

• c parallel servers and FCFS service

Then:

E(W ) =
5W

1− ρ
1

cµ

where5W is probability of waiting,

5W = P(W > 0)
= pc + pc+1 + · · ·

=
(cρ)c

c!

(
(cρ)c

c!
+ (1− ρ)

c−1∑
n=0

(cρ)n

n!

)−1

Multi server: exponential
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Tuesday June 2

• Poisson arrivals with rate λ

• General service times B with distribution FB(·)

• Stability: ρ = λE(B)/c < 1

• c parallel servers and FCFS service

Then:

E(W ) ≈
5W

1− ρ
E(R)

c

where5W is probability of waiting in corresponding exponential system, so

E(W ) ≈
5W

1− ρ
1
2

E(B)
c

(1+ c2
B)

Multi server: general service
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• Poisson arrivals of type i with rate λi , i = 1, . . . , r

• General service times Bi for type i , residual service time is Ri

• Stability: ρ =
∑r

i=1 ρi < 1 where ρi = λi E(Bi)

• Single server

• Non-Preemptive priority service (type 1 highest priority)

Then:

E(Wi) =

∑r
j=1 ρ j E(R j)

(1− ρ<i)
(
1− ρ≤i

)
where

ρ<i =

i−1∑
j=1

ρ j , ρ≤i =

i∑
j=1

ρ j .

Single server: NP priority
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• Poisson arrivals with rate λ

• General service times B with distribution FB(·) en density fB(x)

• Stability: ρ = λE(B) < 1

• Single server

• Shortest Processing Time First service discipline

Then, for waiting time W (x) of a job with service time x:

E(W (x)) =
ρE(R)

(1− ρ(x))2

where ρ(x) is utilization due to jobs with service time≤ x ,

ρ(x) =
∫ x

0
yλ fB(y)dy

Single server: SPTF priority
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• Poisson arrivals of type i with rate λi

• General service times B for all types i with distribution FB(·)

• Stability: ρ =
∑r

i=1 ρi < 1 where ρi = λi E(B)/c

• c parallel servers

• Non-Preemptive priority service (type 1 highest priority)

Then:

E(Wi) ≈
5W

(1− ρ<i)
(
1− ρ≤i

) E(R)
c

where5W is probability of waiting in corresponding exponential system

Multi server: NP priority
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• Target throughput T H

• Total work content of job W

• Number of machines m

Minimum number of required machines: m ≥ T H ·W

Typically more than minimum required because of, for example,

• unbalance

• variability in processing times

• machine failures

Issues in design and operation of production lines:

• Degree of paralleling of workstations

• Location and size of buffers

• Choice of material handling system

• Allocation of tasks and operators to workstations

Production lines
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Synchronous lines:

• Coordinated (simultaneous) movement of jobs

• WIP (number of jobs) is constant

• No buffers needed

• Paced (maximum limit for processing time) or unpaced

Asynchronous lines:

• No coordination of movement of jobs

• WIP fluctuates

• Blocking and starvation

• Buffers needed

Production lines
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• m machines in series

• Bi processing time of machine i with distribution FBi (·)

• C is the cycle time, so C = max{B1, . . . , Bm} and thus

FC(t) = P(C ≤ t) = P(max{B1, . . . , Bm} ≤ t) = FB1(t) · · · FBm(t)

Then throughput T H of the line

T H =
1

E(C)

where

E(C) =
∫
∞

0
t fC(t)dt =

∫
∞

0
(1− FC(t)) dt =

∫
∞

0

(
1− FB1(t) · · · FBm(t)

)
dt

Unpaced synchronous lines
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What can variability of processing times do to the throughput?

Examples:

• Bi are uniform on (0, 1), then

E(C) = 1−
1

m + 1

• Bi are exponential with rate 2, then

E(C) =
1
2

(
1
m
+

1
m − 1

+ · · · +
1
2
+ 1

)
≈

1
2

log m

Unpaced synchronous lines
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• m machines in series

• Bi processing time of machine i with distribution FBi (·)

• Fixed cycle time c

Then throughput T H of jobs with no defects

T H =
Q(c)

c

where

Q(c) = P(B1 ≤ c) · · · P(Bm ≤ c) = FB1(c) · · · FBm(c)

So trade-off between volume T H of output and quality Q(c) of output

Paced synchronous lines
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Cycle time c∗ maximizing T H is the solution of

Q′(c) =
Q(c)

c

Then cycle time c should be set greater or equal to c∗!

Examples: Bi are exponential with rate 1

m c c∗ Q(c∗) T H
5 5.51 2.55 0.66 0.26

10 6.21 3.60 0.76 0.21
20 6.90 4.50 0.80 0.18

c is minimal cycle time to meet Q = 0.98

Paced synchronous lines
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• Machines 1, . . . ,m

• Jobs arrive according to Poisson process with rate λ

• Processing times at machine i are exponential with rate µi

• Buffers have infinite (unlimited) capacity

• Stability: ρi =
λ
µi
< 1 for all i

Output of M/M/1 is again Poisson, so every workstation is M/M/1!

E(L i) =
ρi

1− ρi
, i = 1, . . . ,m

E(S) =
E(L)
λ
=

∑m
i=1 E(L i)

λ

Asynchronous exponential lines
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• Machines 1, . . . ,m

• Jobs arrive according to Poisson process with rate λ

• Mean total work content of jobs is W

• Processing times at machine i are exponential with mean wi

• Stability: ρi = λwi < 1 for all i

Question: How to allocate wi so as to minimize E(L)?

min
m∑

i=1

λwi

1− λwi

subject to
m∑

i=1

wi = W,

0 ≤ λwi < 1, i = 1, 2, . . . ,m.

Workload allocation
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• Machines 1, . . . ,m

• Jobs arrive according to Poisson process with rate λ

• Mean total work content of jobs is W

• Processing times at machine i are exponential with mean wi

• Stability: ρi = λwi < 1 for all i

Question: How to allocate wi so as to minimize E(L)?

min
m∑

i=1

λwi

1− λwi

subject to
m∑

i=1

wi = W,

0 ≤ λwi < 1, i = 1, 2, . . . ,m.

Solution: wi =
W
m for all i , so balance the line!

Workload allocation
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• Line with 4 machines, 1, 2, 3, 4

• Arrival rate λ = 1

• Mean processing time at machine i is wi

• Average work load per machine, ρ = 1
4(ρ1 + ρ2 + ρ3 + ρ4)

ρ w1 w2 w3 w4 E(L1) E(L2) E(L3) E(L4) E(L)
0.80 0.85 0.65 0.90 0.80 5.7 1.9 9.0 4.0 20.5
0.80 0.80 0.80 0.80 0.80 4.0 4.0 4.0 4.0 16.0
0.90 0.95 0.83 0.97 0.85 19.0 4.9 32.3 5.7 61.9
0.90 0.90 0.90 0.90 0.90 9.0 9.0 9.0 9.0 36.0
0.95 0.96 0.93 0.97 0.94 24.0 13.3 32.3 15.7 85.3
0.95 0.95 0.95 0.95 0.95 19.0 19.0 19.0 19.0 76.0

Impact of unbalance
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• Machines 1, . . . ,m

• Arrival process with general inter-arrival times A, mean 1
λ

and scv c2
A

• General processing times Bi at machine i with mean E(Bi) and scv c2
Bi

• Buffers have infinite (unlimited) capacity

• Stability: ρi = λE(Bi) < 1 for all i

Arrival process of workstation i is output of workstation i − 1, so workstation
i can be approximated by G/G/1 with arrival rate λ (conservation of flow) and

c2
A1
= c2

A, c2
Ai
≈ (1− ρ2

i−1)c
2
Ai−1
+ ρ2

i−1c2
Bi−1

, i = 2, . . . ,m

Approximation of the mean flow time at workstation i

E(Si) ≈
ρi

1− ρi

1
2

E(Bi)(c2
Ai
+ c2

Bi
)+ E(Bi)

Asynchronous general lines
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• Balanced line E(B1) = · · · = E(Bm)

• Any ordering of machine is feasible

Question: What ordering minimizes total flow time E(S)?

Optimal ordering
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• Balanced line E(B1) = · · · = E(Bm)

• Any ordering of machine is feasible

Question: What ordering minimizes total flow time E(S)?

Answer: Machines with best processing reliability should be first!

Let π1, . . . , πm be permutation of 1, . . . ,m

Then optimal ordering should satisfy

c2
Bπ1
≤ c2

Bπ2
≤ · · · ≤ c2

Bπm

Optimal ordering
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• Machines 0, 1, 2

• Poisson inflow with rate λ

• E(Bi) = 1 (balanced line)

• c2
Bi
= i

Machine order λ E(S)
2 1 0 0.80 12.8
0 1 2 0.80 10
2 1 0 0.90 30
0 1 2 0.90 22.3
2 1 0 0.95 64.8
0 1 2 0.95 47.2

Optimal ordering
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• Use G/G/c approximation for workstation with c parallel machines

• Use for diverging and converging production lines:

– Merging of streams: If two streams with rates λ1 and λ2 and scv c2
A1

and c2
A2

are merged, then the resulting stream has rate λ1 + λ2 and its
scv can be approximated by

c2
A ≈

λ1

λ1 + λ2
c2

A1
+

λ2

λ1 + λ2
c2

A2

– Random splitting of stream: If arriving jobs are randomly split with
probability p from a stream with rate λ and scv c2, then the resulting
stream has rate pλ and

c2
A = pc2

+ 1− p

Asynchronous general lines
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• Workstations 1, . . . ,M

• Workstation m has cm parallel identical machines

• Jobs arrive according to Poisson stream with rate λ

• Arriving job joins workstation m with probabilty γm

• Processing times in workstation m are exponential with rate µm

• Processing order is FCFS

• Buffers are unlimited

• Markovian routing:
job moves from workstation m to n with probability pmn and leaves system
with probability pm0

This network is also called Open Jackson network

Exponential open job shops
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Exponential open job shops
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Let vm be average number of visits (of a job) to work station m

vm = γm +

M∑
n=1

vn pnm, m = 1, . . . ,M.

Equations have unique solution for v1, . . . , vM .

Then λm = λvm is total number of visits per time unit to work station m.

Bottleneck station: station with the highest load

max
1≤m≤M

λm

cmµm

Stability: For all m,

ρm =
λm

cmµm
< 1.

Network capacity
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States of network k = (k1, . . . , kM) where km is number of jobs in station m

State probabilities p(k1, k2, . . . , kM) satisfy balance equations (cm = 1)

Flow out of k = Flow into k

p(k)

(
λ+

M∑
m=1

µmε(km)

)
=

M∑
m=1

p(k + em)µm pm0

+

M∑
n=1

M∑
m=1

p(k + en − em)µn pnmε(km)

+

M∑
m=1

p(k − em)λγmε(km).

where em = (0, . . . , 1, . . . , 0) with 1 at place m and ε(k) =
{

1 if k > 0
0 else

Exponential single server network
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Product form solution Jackson’s miracle

p(k) = p1(k1)p2(k2) · · · pM(kM),

where

pm(km) = (1− ρm)ρ
km
m , km = 0, 1, . . .

and

ρm =
λm

µm

with λm = vmλ total arrival rate to workstation m

This is just the product of M/M/1 solutions!

Exponential single server network
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Surprising result:

• Marginal distribution pm(·) is exactly the same as distribution of M/M/1
with arrival rate λm and service rate µm

• Inflow to workstation m is in general not Poisson!

• Queue lengths at workstations are independent (if you take a snapshot)!

Example: µ = 1/ε, p = 1− ε (so µ(1− p) = 1), λ� 1

� − �

�

�������	�
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Arrival pattern: (So not Poisson at all!)

Now you can guess the solution for an exponential multi-server network

Exponential single server network


