Stochastic Models of Manufacturing Systems

Ivo Adan

Single server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<\mu$ or $\rho=\lambda / \mu<1$
- Single server and FCFS service

Then:

$$
p_{k}=P(k \text { jobs in system })=(1-\rho) \rho^{k}, \quad k=0,1, \ldots
$$

and

$$
E(W)=\frac{\rho}{1-\rho} \frac{1}{\mu}
$$

Single server: general service

- Poisson arrivals with rate λ
- General service times B with distribution $F_{B}(\cdot)$
- Stability: $\rho=\lambda E(B)<1$
- Single server and FCFS service

Then:

$$
E(W)=\frac{\rho}{1-\rho} E(R)
$$

where R is residual service time,

$$
\begin{aligned}
E(R) & =\frac{E\left(B^{2}\right)}{2 E(B)} \\
& =\frac{1}{2} E(B)\left(1+c_{B}^{2}\right)
\end{aligned}
$$

Multi server: exponential

- Poisson arrivals with rate λ
- Exponential service times with mean $1 / \mu$
- Stability: $\lambda<c \mu$ or $\rho=\lambda /(c \mu)<1$
- c parallel servers and FCFS service

Then:

$$
E(W)=\frac{\Pi_{W}}{1-\rho} \frac{1}{c \mu}
$$

where Π_{W} is probability of waiting,

$$
\begin{aligned}
\Pi_{W} & =P(W>0) \\
& =p_{c}+p_{c+1}+\cdots \\
& =\frac{(c \rho)^{c}}{c!}\left(\frac{(c \rho)^{c}}{c!}+(1-\rho) \sum_{n=0}^{c-1} \frac{(c \rho)^{n}}{n!}\right)^{-1}
\end{aligned}
$$

Multi server: general service

- Poisson arrivals with rate λ
- General service times B with distribution $F_{B}(\cdot)$
- Stability: $\rho=\lambda E(B) / c<1$
- c parallel servers and FCFS service

Then:

$$
E(W) \approx \frac{\Pi_{W}}{1-\rho} \frac{E(R)}{c}
$$

where Π_{W} is probability of waiting in corresponding exponential system, so

$$
E(W) \approx \frac{\Pi_{W}}{1-\rho} \frac{1}{2} \frac{E(B)}{c}\left(1+c_{B}^{2}\right)
$$

Single server: NP priority

- Poisson arrivals of type i with rate $\lambda_{i}, i=1, \ldots, r$
- General service times B_{i} for type i, residual service time is R_{i}
- Stability: $\rho=\sum_{i=1}^{r} \rho_{i}<1$ where $\rho_{i}=\lambda_{i} E\left(B_{i}\right)$
- Single server
- Non-Preemptive priority service (type 1 highest priority)

Then:

$$
E\left(W_{i}\right)=\frac{\sum_{j=1}^{r} \rho_{j} E\left(R_{j}\right)}{\left(1-\rho_{<i}\right)\left(1-\rho_{\leq i}\right)}
$$

where

$$
\rho_{<i}=\sum_{j=1}^{i-1} \rho_{j}, \quad \rho_{\leq i}=\sum_{j=1}^{i} \rho_{j} .
$$

Single server: SPTF priority

- Poisson arrivals with rate λ
- General service times B with distribution $F_{B}(\cdot)$ en density $f_{B}(x)$
- Stability: $\rho=\lambda E(B)<1$
- Single server
- Shortest Processing Time First service discipline

Then, for waiting time $W(x)$ of a job with service time x :

$$
E(W(x))=\frac{\rho E(R)}{(1-\rho(x))^{2}}
$$

where $\rho(x)$ is utilization due to jobs with service time $\leq x$,

$$
\rho(x)=\int_{0}^{x} y \lambda f_{B}(y) d y
$$

Multi server: NP priority

- Poisson arrivals of type i with rate λ_{i}
- General service times B for all types i with distribution $F_{B}(\cdot)$
- Stability: $\rho=\sum_{i=1}^{r} \rho_{i}<1$ where $\rho_{i}=\lambda_{i} E(B) / c$
- c parallel servers
- Non-Preemptive priority service (type 1 highest priority)

Then:

$$
E\left(W_{i}\right) \approx \frac{\Pi_{W}}{\left(1-\rho_{<i}\right)\left(1-\rho_{\leq i}\right)} \frac{E(R)}{c}
$$

where Π_{W} is probability of waiting in corresponding exponential system

Production lines

- Target throughput T H
- Total work content of job W
- Number of machines m

Minimum number of required machines: $m \geq T H \cdot W$
Typically more than minimum required because of, for example,

- unbalance
- variability in processing times
- machine failures

Issues in design and operation of production lines:

- Degree of paralleling of workstations
- Location and size of buffers
- Choice of material handling system
- Allocation of tasks and operators to workstations

Synchronous lines:

- Coordinated (simultaneous) movement of jobs
- WIP (number of jobs) is constant
- No buffers needed
- Paced (maximum limit for processing time) or unpaced

Asynchronous lines:

- No coordination of movement of jobs
- WIP fluctuates
- Blocking and starvation
- Buffers needed

Unpaced synchronous lines

- m machines in series
- B_{i} processing time of machine i with distribution $F_{B_{i}}(\cdot)$
- C is the cycle time, so $C=\max \left\{B_{1}, \ldots, B_{m}\right\}$ and thus

$$
F_{C}(t)=P(C \leq t)=P\left(\max \left\{B_{1}, \ldots, B_{m}\right\} \leq t\right)=F_{B_{1}}(t) \cdots F_{B_{m}}(t)
$$

Then throughput TH of the line

$$
T H=\frac{1}{E(C)}
$$

where

$$
E(C)=\int_{0}^{\infty} t f_{C}(t) d t=\int_{0}^{\infty}\left(1-F_{C}(t)\right) d t=\int_{0}^{\infty}\left(1-F_{B_{1}}(t) \cdots F_{B_{m}}(t)\right) d t
$$

Unpaced synchronous lines

What can variability of processing times do to the throughput?

Examples:

- B_{i} are uniform on $(0,1)$, then

$$
E(C)=1-\frac{1}{m+1}
$$

- B_{i} are exponential with rate 2 , then

$$
E(C)=\frac{1}{2}\left(\frac{1}{m}+\frac{1}{m-1}+\cdots+\frac{1}{2}+1\right) \approx \frac{1}{2} \log m
$$

Paced synchronous lines

- m machines in series
- B_{i} processing time of machine i with distribution $F_{B_{i}}(\cdot)$
- Fixed cycle time c

Then throughput $T H$ of jobs with no defects

$$
T H=\frac{Q(c)}{c}
$$

where

$$
Q(c)=P\left(B_{1} \leq c\right) \cdots P\left(B_{m} \leq c\right)=F_{B_{1}}(c) \cdots F_{B_{m}}(c)
$$

So trade-off between volume TH of output and quality $Q(c)$ of output

Paced synchronous lines

Cycle time c^{*} maximizing $T H$ is the solution of

$$
Q^{\prime}(c)=\frac{Q(c)}{c}
$$

Then cycle time c should be set greater or equal to c^{*} !
Examples: B_{i} are exponential with rate 1

m	c	c^{*}	$Q\left(c^{*}\right)$	$T H$
5	5.51	2.55	0.66	0.26
10	6.21	3.60	0.76	0.21
20	6.90	4.50	0.80	0.18

c is minimal cycle time to meet $Q=0.98$

Asynchronous exponential lines

- Machines $1, \ldots, m$
- Jobs arrive according to Poisson process with rate λ
- Processing times at machine i are exponential with rate μ_{i}
- Buffers have infinite (unlimited) capacity
- Stability: $\rho_{i}=\frac{\lambda}{\mu_{i}}<1$ for all i

Output of $M / M / 1$ is again Poisson, so every workstation is $M / M / 1$!

$$
\begin{aligned}
& E\left(L_{i}\right)=\frac{\rho_{i}}{1-\rho_{i}}, \quad i=1, \ldots, m \\
& E(S)=\frac{E(L)}{\lambda}=\frac{\sum_{i=1}^{m} E\left(L_{i}\right)}{\lambda}
\end{aligned}
$$

Workload allocation

- Machines $1, \ldots, m$
- Jobs arrive according to Poisson process with rate λ
- Mean total work content of jobs is W
- Processing times at machine i are exponential with mean w_{i}
- Stability: $\rho_{i}=\lambda w_{i}<1$ for all i

Question: How to allocate w_{i} so as to minimize $E(L)$?

$$
\begin{aligned}
& \min \sum_{i=1}^{m} \frac{\lambda w_{i}}{1-\lambda w_{i}} \\
& \text { subject to } \\
& \sum_{i=1}^{m} w_{i}=W, \\
& 0 \leq \lambda w_{i}<1, \quad i=1,2, \ldots, m .
\end{aligned}
$$

Workload allocation

- Machines $1, \ldots, m$
- Jobs arrive according to Poisson process with rate λ
- Mean total work content of jobs is W
- Processing times at machine i are exponential with mean w_{i}
- Stability: $\rho_{i}=\lambda w_{i}<1$ for all i

Question: How to allocate w_{i} so as to minimize $E(L)$?

$$
\begin{aligned}
& \min \sum_{i=1}^{m} \frac{\lambda w_{i}}{1-\lambda w_{i}} \\
& \text { subject to } \\
& \sum_{i=1}^{m} w_{i}=W, \\
& 0 \leq \lambda w_{i}<1, \quad i=1,2, \ldots, m .
\end{aligned}
$$

Solution: $w_{i}=\frac{W}{m}$ for all i, so balance the line!

Impact of unbalance

- Line with 4 machines, 1, 2, 3, 4
- Arrival rate $\lambda=1$
- Mean processing time at machine i is w_{i}
- Average work load per machine, $\rho=\frac{1}{4}\left(\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4}\right)$

ρ	w_{1}	w_{2}	w_{3}	w_{4}	$E\left(L_{1}\right)$	$E\left(L_{2}\right)$	$E\left(L_{3}\right)$	$E\left(L_{4}\right)$	$E(L)$
0.80	0.85	0.65	0.90	0.80	5.7	1.9	9.0	4.0	20.5
0.80	0.80	0.80	0.80	0.80	4.0	4.0	4.0	4.0	16.0
0.90	0.95	0.83	0.97	0.85	19.0	4.9	32.3	5.7	61.9
0.90	0.90	0.90	0.90	0.90	9.0	9.0	9.0	9.0	36.0
0.95	0.96	0.93	0.97	0.94	24.0	13.3	32.3	15.7	85.3
0.95	0.95	0.95	0.95	0.95	19.0	19.0	19.0	19.0	76.0

Asynchronous general lines

- Machines $1, \ldots, m$
- Arrival process with general inter-arrival times A, mean $\frac{1}{\lambda}$ and $\operatorname{scv} c_{A}^{2}$
- General processing times B_{i} at machine i with mean $E\left(B_{i}\right)$ and $\operatorname{scv} c_{B_{i}}^{2}$
- Buffers have infinite (unlimited) capacity
- Stability: $\rho_{i}=\lambda E\left(B_{i}\right)<1$ for all i

Arrival process of workstation i is output of workstation $i-1$, so workstation i can be approximated by $G / G / 1$ with arrival rate λ (conservation of flow) and

$$
c_{A_{1}}^{2}=c_{A}^{2}, \quad c_{A_{i}}^{2} \approx\left(1-\rho_{i-1}^{2}\right) c_{A_{i-1}}^{2}+\rho_{i-1}^{2} c_{B_{i-1}}^{2}, \quad i=2, \ldots, m
$$

Approximation of the mean flow time at workstation i

$$
E\left(S_{i}\right) \approx \frac{\rho_{i}}{1-\rho_{i}} \frac{1}{2} E\left(B_{i}\right)\left(c_{A_{i}}^{2}+c_{B_{i}}^{2}\right)+E\left(B_{i}\right)
$$

Optimal ordering

- Balanced line $E\left(B_{1}\right)=\cdots=E\left(B_{m}\right)$
- Any ordering of machine is feasible

Question: What ordering minimizes total flow time $E(S)$?

Optimal ordering

- Balanced line $E\left(B_{1}\right)=\cdots=E\left(B_{m}\right)$
- Any ordering of machine is feasible

Question: What ordering minimizes total flow time $E(S)$?

Answer: Machines with best processing reliability should be first!
Let π_{1}, \ldots, π_{m} be permutation of $1, \ldots, m$

Then optimal ordering should satisfy

$$
c_{B_{\pi_{1}}}^{2} \leq c_{B_{\pi_{2}}}^{2} \leq \cdots \leq c_{B_{\pi_{m}}}^{2}
$$

Optimal ordering

- Machines 0, 1, 2
- Poisson inflow with rate λ
- $E\left(B_{i}\right)=1$ (balanced line)
- $c_{B_{i}}^{2}=i$

Machine order				λ
2	1	0	$E(S)$	
0	1	2	0.80	12.8
2	1	0	0.80	10
0	1	2	0.90	30
2	1	0	0.90	22.3
0	1	2	0.95	47.2

Asynchronous general lines

- Use $G / G / c$ approximation for workstation with c parallel machines
- Use for diverging and converging production lines:
- Merging of streams: If two streams with rates λ_{1} and λ_{2} and $\operatorname{scv} c_{A_{1}}^{2}$ and $c_{A_{2}}^{2}$ are merged, then the resulting stream has rate $\lambda_{1}+\lambda_{2}$ and its scv can be approximated by

$$
c_{A}^{2} \approx \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} c_{A_{1}}^{2}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} c_{A_{2}}^{2}
$$

- Random splitting of stream: If arriving jobs are randomly split with probability p from a stream with rate λ and $\operatorname{scv} c^{2}$, then the resulting stream has rate $p \lambda$ and

$$
c_{A}^{2}=p c^{2}+1-p
$$

Exponential open job shops

- Workstations 1, ..., M
- Workstation m has c_{m} parallel identical machines
- Jobs arrive according to Poisson stream with rate λ
- Arriving job joins workstation m with probabilty γ_{m}
- Processing times in workstation m are exponential with rate μ_{m}
- Processing order is FCFS
- Buffers are unlimited
- Markovian routing:
job moves from workstation m to n with probability $p_{m n}$ and leaves system with probability $p_{m 0}$

This network is also called Open Jackson network

Exponential open job shops

Network capacity

Let v_{m} be average number of visits (of a job) to work station m

$$
v_{m}=\gamma_{m}+\sum_{n=1}^{M} v_{n} p_{n m}, \quad m=1, \ldots, M
$$

Equations have unique solution for v_{1}, \ldots, v_{M}.
Then $\lambda_{m}=\lambda v_{m}$ is total number of visits per time unit to work station m.

Bottleneck station: station with the highest load

$$
\max _{1 \leq m \leq M} \frac{\lambda_{m}}{c_{m} \mu_{m}}
$$

Stability: For all m,

$$
\rho_{m}=\frac{\lambda_{m}}{c_{m} \mu_{m}}<1
$$

Exponential single server network

States of network $\underline{k}=\left(k_{1}, \ldots, k_{M}\right)$ where k_{m} is number of jobs in station m

State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ satisfy balance equations ($c_{m}=1$)

$$
\begin{aligned}
\text { Flow out of } \underline{k}= & \text { Flow into } \underline{k} \\
p(\underline{k})\left(\lambda+\sum_{m=1}^{M} \mu_{m} \epsilon\left(k_{m}\right)\right)= & \sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{m}\right) \mu_{m} p_{m 0} \\
& +\sum_{n=1}^{M} \sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{n}-\underline{e}_{m}\right) \mu_{n} p_{n m} \epsilon\left(k_{m}\right) \\
& +\sum_{m=1}^{M} p\left(\underline{k}-\underline{e}_{m}\right) \lambda \gamma_{m} \epsilon\left(k_{m}\right)
\end{aligned}
$$

where $\underline{e}_{m}=(0, \ldots, 1, \ldots, 0)$ with 1 at place m and $\epsilon(k)= \begin{cases}1 & \text { if } k>0 \\ 0 & \text { else }\end{cases}$

Exponential single server network

Product form solution Jackson's miracle

$$
p(\underline{k})=p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right),
$$

where

$$
p_{m}\left(k_{m}\right)=\left(1-\rho_{m}\right) \rho_{m}^{k_{m}}, \quad k_{m}=0,1, \ldots
$$

and

$$
\rho_{m}=\frac{\lambda_{m}}{\mu_{m}}
$$

with $\lambda_{m}=v_{m} \lambda$ total arrival rate to workstation m

This is just the product of $M / M / 1$ solutions!

Exponential single server network

Surprising result:

- Marginal distribution $p_{m}(\cdot)$ is exactly the same as distribution of $M / M / 1$ with arrival rate λ_{m} and service rate μ_{m}
- Inflow to workstation m is in general not Poisson!
- Queue lengths at workstations are independent (if you take a snapshot)!

Example: $\mu=1 / \epsilon, p=1-\epsilon($ so $\mu(1-p)=1), \lambda \ll 1$

Arrival pattern:
Ш1 Ш い ل \amalg (So not Poisson at all!)

Now you can guess the solution for an exponential multi-server network

