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• Workstations 1, . . . ,M

• Workstation m has cm parallel identical machines

• Jobs arrive according to Poisson stream with rate λ

• Arriving job joins workstation m with probabilty γm

• Processing times in workstation m are exponential with rate µm

• Processing order is FCFS

• Buffers are unlimited

• Markovian routing:
job moves from workstation m to n with probability pmn and leaves system
with probability pm0

This network is also called Open Jackson network

Exponential open job shops
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Let vm be average number of visits (of a job) to work station m

vm = γm +

M∑
n=1

vn pnm, m = 1, . . . ,M.

Equations have unique solution for v1, . . . , vM .

Then λvm is total number of visits per time unit to work station m.

Bottleneck station: station with the highest load

max
1≤m≤M

λvm ·
1

cmµm

Stability: For all m,

λvm ·
1

cmµm
< 1.

Network capacity
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States of network k = (k1, . . . , kM) where km is number of jobs in station m

State probabilities p(k1, k2, . . . , kM) satisfy balance equations (cm = 1)

Flow out of k = Flow into k

p(k)

(
λ+

M∑
m=1

µmε(km)

)
=

M∑
m=1

p(k + em)µm pm0

+

M∑
n=1

M∑
m=1

p(k + en − em)µn pnmε(km)

+

M∑
m=1

p(k − em)λγmε(km).

where em = (0, . . . , 1, . . . , 0) with 1 at place m and ε(k) =
{

1 if k > 0
0 else

Exponential single server network
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Product form solution “Jackson’s miracle”

p(k) = p1(k1)p2(k2) · · · pM(kM),

where

pm(km) = (1− ρm)ρ
km
m , km = 0, 1, . . .

and

ρm =
λm

µm

with λm = vmλ total arrival rate to workstation m

This is just the product of M/M/1 solutions!

Exponential single server network
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Surprising result:

• Marginal distribution pm(·) is exactly the same as distribution of M/M/1
with arrival rate λm and service rate µm

• Inflow to workstation m is in general not Poisson!

Example: µ = 1/ε, p = 1− ε (so µ(1− p) = 1), λ� 1

� − �
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Arrival pattern: (So not Poisson at all!)

Question: What is the solution for an exponential multi-server network?

Exponential single server network
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• Queue lengths at workstations are independent (if you take a snapshot)!

• Inflow to workstation m is in general not Poisson! But you can “do as if”

• Infinite server station cm = ∞

pm(km) = e−ρm
ρ

km
m

km!
(Poisson distribution)

where ρm = λm/µm

• Distribution for cm = ∞ also valid for general service time distribution!

• Infinite server stations useful to describe transportation delay

• Product form result also valid for fixed route C1,C2, . . . ,Cn in which case

λm = λ

n∑
i=1

1[Ci = m]

where 1[Ci = m] = 1 if Ci = m and 0 otherwise (Ci is workstation i )

Exponential open job shops
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1/3
21

1/2

• M = 2 workstations

• c1 = c2 = 1 (single server network)

• Arriving jobs join workstation 1 (γ1 = 1)

• Markovian routing: p12 =
1
2, p21 =

2
3

Then:

• λ1 =
3
2λ, λ2 =

3
4λ

• Stability: λ1 < µ1, λ2 < u2, so λ < min{23µ1,
4
3µ2}

• E(S1) =
1

µ1−λ1
, E(S2) =

1
µ2−λ2

, E(S) = 3
2 E(S1)+

3
4 E(S2)

Example
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1/3
21

1/2

• M = 2 workstations

• c1 = c2 = 1 (single server network)

• Arriving jobs join workstation 1 (γ1 = 1)

• Markovian routing: p12 =
1
2, p21 =

2
3

Questions: What is the mean total flow time in case of

• Fixed routing: 1, 2, 1?

• Fixed transportation delays T in between workstations?

• 3 types of jobs: 50% with routing 1, 2, 1;
25% with routing 1; 25% with routing 1, 2

Example
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• Workstations 1, . . . ,M

• Workstation m has cm parallel identical machines

• Arrival process with general inter-arrival times A, mean 1
λ

and scv c2
A

• Arriving job joins workstation m with probabilty γm

• General processing times Bm in station m with mean E(Bm) and scv c2
Bm

• Processing order is FCFS

• Buffers are unlimited

• Markovian routing:
job moves from workstation m to n with probability pmn and leaves system
with probability pm0

General open job shops
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Let vm be average number of visits to work station m

vm = γm +

M∑
n=1

vn pnm, m = 1, . . . ,M.

Equations have unique solution for v1, . . . , vM

Bottleneck station: station with the highest load

max
1≤m≤M

λvm ·
1

cmµm

where µm = 1/E(Bm) is processing rate of station m

Stability: For all m,

λvm ·
1

cmµm
< 1.

Network capacity
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Lesson learned from Jackson networks:

• Each station can be analyzed in isolation with appropriate arrival process

• These results can be combined to produce overall performance

Approach for general open job shops:

• Model each work station m as G/G/c with c = cm, B = Bm and A = Am

• Am is inter-arrival time at workstation m with

E(Am) = 1/λm (λm = vmλ)

and an appropriate scv c2
Am

• Overall performance:

p(k1, k2, . . . , kM) ≈ p1(k1)p2(k2) · · · pM(kM)

where pm(km) be (approximate) queue length distribution of this G/G/cm

General open job shops
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What is an appropriate c2
Am

?

Estimate c2
Am

using:

• Merging of streams: If two streams with rates λ1 and λ2 and scv c2
A1

and
c2

A2
are merged, then the resulting stream has rate λ1 + λ2 and its scv can

be approximated by

c2
A ≈

λ1

λ1 + λ2
c2

A1
+

λ2

λ1 + λ2
c2

A2

• Random splitting of stream: If arriving jobs are randomly split with proba-
bility p from a stream with rate λ and scv c2, then the resulting stream has
rate pλ and

c2
A = pc2

+ 1− p

General open job shops
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(Fixed-point) Equations for c2
Am

:

c2
Am
=

λγm

λm

[
γmc2

A + (1− γm)
]
+

M∑
n=1

λn pnm

λm

[
pnmc2

Dn
+ (1− pnm)

]
for all m = 1, . . . ,M, where

c2
Dn
= 1+ (1− ρ2

n)(c
2
An
− 1)+ ρ2

n(c
2
Bn
− 1)/

√
cn

and ρn = λn E(Bn)/cn

Observation:

For “large randomly routed networks” the arrival process at each station can
be approximated by a “random” process, thus Poisson process (c2

Am
= 1)

General open job shops
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• Workstations 1, . . . ,M

• Workstation m has cm parallel identical machines

• Job types 1, . . . , R

• Jobs of type r arrive at rate3r and scv of inter-arrival times is c2
r

• Jobs of type r require nr operations, labeled 1, 2, . . . , nr

• Jobs of type r follow fixed routing: C1r ,C2r , . . . ...,Cnrr
where Cir is workstation for operation i , with processing time Bir

• Processing order is FCFS

• Buffers are unlimited

Question: What is mean total flow time E(Sr) of type r job?

General multi-class open job shops
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Approximation approach for large random network:

• Model workstation m as M/G/c with c = cm

• Arrival rate at station m

λm =

R∑
r=1

3r

nr∑
i=1

1[Cir = m]

• Service time Bm of arbitrary job

E(Bm) =

R∑
r=1

3r

λm

nr∑
i=1

1[Cir = m]E(Bir)

E(B2
m) =

R∑
r=1

3r

λm

nr∑
i=1

3r

λm
1[Cir = m]E(B2

ir)

General multi-class open job shops
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Approximation approach for large random network:

• Mean waiting time (which does not depend on job type!)

E(Wm) =
5W

1− ρm

E(Rm)

cm

where ρm = λm E(Bm)/cm, E(Rm) =
1
2 E(B2

m)/E(Bm) and
5W is probability of waiting in M(λm)/M(µm)/cm with µm = 1/E(Bm)

• Mean flow time of operation i of type r job

E(Sir) =

M∑
m=1

E(Wm)1[Cir = m]+E(Bir)

• Mean total flow time of type r job

E(Sr) =

nr∑
i=1

E(Sir)

General multi-class open job shops
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Production system with two single-machine work stations and two job types

r 3r (jobs/hour) Cir E(Bir) (min) σ(Bir) E(B2
ir)

1 3 1,2,1 10,5,6 2,5,2 104,50,40
2 2 2 20 0 400

Thus processing characteristics of an arbitrary job in station 1 and 2

m λm (jobs/hour) E(Bm) (min) E(B2
m) ρm

1 6 8 72 0.80
2 5 11 190 0.92

Hence

E(W1) = 18(min), E(W2) = 99.3(min)

so

E(S1) = 18+ 10+ 99.3+ 5+ 18+ 6 = 156.3(min), E(S2) = 119.3(min)

Example
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• Workstations 1, . . . ,M

• Workstation m has cm parallel identical machines

• N circulating jobs (N is the population size)

• Processing times in workstation m are exponential with rate µm

• Processing order is FCFS

• Buffers are unlimited

• Markovian routing:
job moves from workstation m to n with probability pmn

This network is also called Closed Jackson network

Exponential closed networks
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Exponential closed networks
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States of network k = (k1, . . . , kM) where km is number of jobs in station m

Note that

M∑
m=1

km = N

so there are
(N+M−1

M−1

)
states!

State probabilities p(k1, k2, . . . , kM) satisfy balance equations (cm = 1)

Flow out of k = Flow into k

p(k)
M∑

m=1

µmε(km) =

M∑
n=1

M∑
m=1

p(k + en − em)µn pnmε(km)

where em = (0, . . . , 1, . . . , 0) with 1 at place m and ε(k) =
{

1 if k > 0
0 else

Exponential single server network
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Product form solution “Jackson’s miracle”

p(k) = Cp1(k1)p2(k2) · · · pM(kM),

where C is normalizing constant and

pm(km) =

(
vm

µm

)km

, km = 0, 1, . . .

with vm the “arrival rate” to workstation m

This is again the product of M/M/1 solutions!

But: What is vm?

Exponential single server network
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vm is the relative arrival rate or visiting frequency to m, satisfying

vm =

M∑
n=1

vn pnm, m = 1, . . . ,M

Remarks:

• Equations above determine vm’s up to a multiplicative constant

• Set v1 = 1, then vm is the expected number of visits to m in between two
successive visits to station 1

• Although p(k) is again a product, the queues at stations are dependent!

• How to compute C?

Exponential single server network
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Let

C(m, n) =
∑

k1, . . . , km ≥ 0∑m
i=1 ki = n

(
v1

µ1

)k1
(
v2

µ2

)k2

· · ·

(
vm

µm

)km

.

Then C = 1/C(M, N )

Recursion:

C(m, n) = C(m − 1, n)+
vm

µm
C(m, n − 1)

with initial conditions

C(0, n) = 0, n = 1, . . . , N , C(m, 0) = 1, m = 1, . . . ,M,

Normalizing constant
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• What is the real arrival rate λm?
Note that

input rate to station M = output rate from station M

λM = vm
C(M, N − 1)

C(M, N )

and λm/λM = vm/vM

• What is mean number E(L M) in station M?

E(L M) =

∑N
kM=0 kM

(
vM
µM

)kM
C(M − 1, N − kM)

C(M, N )

• What is expected cycle time E(C) between two visits to station 1?
By Little’s law

λ1E(C) = N

Absolute arrival rate


