Stochastic Models of Manufacturing Systems

Ivo Adan

Exponential open job shops

- Workstations 1, ..., M
- Workstation m has c_{m} parallel identical machines
- Jobs arrive according to Poisson stream with rate λ
- Arriving job joins workstation m with probabilty γ_{m}
- Processing times in workstation m are exponential with rate μ_{m}
- Processing order is FCFS
- Buffers are unlimited
- Markovian routing:
job moves from workstation m to n with probability $p_{m n}$ and leaves system with probability $p_{m 0}$

This network is also called Open Jackson network

Exponential open job shops

Exponential open job shops

Network capacity

Let v_{m} be average number of visits (of a job) to work station m

$$
v_{m}=\gamma_{m}+\sum_{n=1}^{M} v_{n} p_{n m}, \quad m=1, \ldots, M .
$$

Equations have unique solution for v_{1}, \ldots, v_{M}.
Then λv_{m} is total number of visits per time unit to work station m.

Bottleneck station: station with the highest load

$$
\max _{1 \leq m \leq M} \lambda v_{m} \cdot \frac{1}{c_{m} \mu_{m}}
$$

Stability: For all m,

$$
\lambda v_{m} \cdot \frac{1}{c_{m} \mu_{m}}<1 .
$$

Exponential single server network

States of network $\underline{k}=\left(k_{1}, \ldots, k_{M}\right)$ where k_{m} is number of jobs in station m

State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ satisfy balance equations ($c_{m}=1$)

$$
\begin{aligned}
\text { Flow out of } \underline{k}= & \text { Flow into } \underline{k} \\
p(\underline{k})\left(\lambda+\sum_{m=1}^{M} \mu_{m} \epsilon\left(k_{m}\right)\right)= & \sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{m}\right) \mu_{m} p_{m 0} \\
& +\sum_{n=1}^{M} \sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{n}-\underline{e}_{m}\right) \mu_{n} p_{n m} \epsilon\left(k_{m}\right) \\
& +\sum_{m=1}^{M} p\left(\underline{k}-\underline{e}_{m}\right) \lambda \gamma_{m} \epsilon\left(k_{m}\right)
\end{aligned}
$$

where $\underline{e}_{m}=(0, \ldots, 1, \ldots, 0)$ with 1 at place m and $\epsilon(k)= \begin{cases}1 & \text { if } k>0 \\ 0 & \text { else }\end{cases}$

Exponential single server network

Product form solution "Jackson's miracle"

$$
p(\underline{k})=p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right),
$$

where

$$
p_{m}\left(k_{m}\right)=\left(1-\rho_{m}\right) \rho_{m}^{k_{m}}, \quad k_{m}=0,1, \ldots
$$

and

$$
\rho_{m}=\frac{\lambda_{m}}{\mu_{m}}
$$

with $\lambda_{m}=v_{m} \lambda$ total arrival rate to workstation m

This is just the product of $M / M / 1$ solutions!

Exponential single server network

Surprising result:

- Marginal distribution $p_{m}(\cdot)$ is exactly the same as distribution of $M / M / 1$ with arrival rate λ_{m} and service rate μ_{m}
- Inflow to workstation m is in general not Poisson!

Example: $\mu=1 / \epsilon, p=1-\epsilon($ so $\mu(1-p)=1), \lambda \ll 1$

Arrival pattern:

(So not Poisson at all!)
Question: What is the solution for an exponential multi-server network?

Exponential open job shops

- Queue lengths at workstations are independent (if you take a snapshot)!
- Inflow to workstation m is in general not Poisson! But you can "do as if"
- Infinite server station $c_{m}=\infty$

$$
p_{m}\left(k_{m}\right)=e^{-\rho_{m}} \frac{\rho_{m}^{k_{m}}}{k_{m}!} \quad \text { (Poisson distribution) }
$$

where $\rho_{m}=\lambda_{m} / \mu_{m}$

- Distribution for $c_{m}=\infty$ also valid for general service time distribution!
- Infinite server stations useful to describe transportation delay
- Product form result also valid for fixed route $C_{1}, C_{2}, \ldots, C_{n}$ in which case

$$
\lambda_{m}=\lambda \sum_{i=1}^{n} 1\left[C_{i}=m\right]
$$

where $1\left[C_{i}=m\right]=1$ if $C_{i}=m$ and 0 otherwise (C_{i} is workstation i)

Example

- $M=2$ workstations
- $c_{1}=c_{2}=1$ (single server network)
- Arriving jobs join workstation $1\left(\gamma_{1}=1\right)$
- Markovian routing: $p_{12}=\frac{1}{2}, p_{21}=\frac{2}{3}$

Then:

- $\lambda_{1}=\frac{3}{2} \lambda, \lambda_{2}=\frac{3}{4} \lambda$
- Stability: $\lambda_{1}<\mu_{1}, \lambda_{2}<u_{2}$, so $\lambda<\min \left\{\frac{2}{3} \mu_{1}, \frac{4}{3} \mu_{2}\right\}$
- $E\left(S_{1}\right)=\frac{1}{\mu_{1}-\lambda_{1}}, E\left(S_{2}\right)=\frac{1}{\mu_{2}-\lambda_{2}}, E(S)=\frac{3}{2} E\left(S_{1}\right)+\frac{3}{4} E\left(S_{2}\right)$

Example

- $M=2$ workstations
- $c_{1}=c_{2}=1$ (single server network)
- Arriving jobs join workstation $1\left(\gamma_{1}=1\right)$
- Markovian routing: $p_{12}=\frac{1}{2}, p_{21}=\frac{2}{3}$

Questions: What is the mean total flow time in case of

- Fixed routing: 1, 2, 1 ?
- Fixed transportation delays T in between workstations?
- 3 types of jobs: 50% with routing $1,2,1$;
25% with routing $1 ; 25 \%$ with routing 1,2

General open job shops

- Workstations 1, ..., M
- Workstation m has c_{m} parallel identical machines
- Arrival process with general inter-arrival times A, mean $\frac{1}{\lambda}$ and $\operatorname{scv} c_{A}^{2}$
- Arriving job joins workstation m with probabilty γ_{m}
- General processing times B_{m} in station m with mean $E\left(B_{m}\right)$ and $\operatorname{scv} c_{B_{m}}^{2}$
- Processing order is FCFS
- Buffers are unlimited
- Markovian routing:
job moves from workstation m to n with probability $p_{m n}$ and leaves system with probability $p_{m 0}$

Network capacity

Let v_{m} be average number of visits to work station m

$$
v_{m}=\gamma_{m}+\sum_{n=1}^{M} v_{n} p_{n m}, \quad m=1, \ldots, M
$$

Equations have unique solution for v_{1}, \ldots, v_{M}

Bottleneck station: station with the highest load

$$
\max _{1 \leq m \leq M} \lambda v_{m} \cdot \frac{1}{c_{m} \mu_{m}}
$$

where $\mu_{m}=1 / E\left(B_{m}\right)$ is processing rate of station m
Stability: For all m,

$$
\lambda v_{m} \cdot \frac{1}{c_{m} \mu_{m}}<1
$$

General open job shops

Lesson learned from Jackson networks:

- Each station can be analyzed in isolation with appropriate arrival process
- These results can be combined to produce overall performance

Approach for general open job shops:

- Model each work station m as $G / G / c$ with $c=c_{m}, B=B_{m}$ and $A=A_{m}$
- A_{m} is inter-arrival time at workstation m with

$$
E\left(A_{m}\right)=1 / \lambda_{m} \quad\left(\lambda_{m}=v_{m} \lambda\right)
$$

and an appropriate $\operatorname{scv} c_{A_{m}}^{2}$

- Overall performance:

$$
p\left(k_{1}, k_{2}, \ldots, k_{M}\right) \approx p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right)
$$

where $p_{m}\left(k_{m}\right)$ be (approximate) queue length distribution of this $G / G / c_{m}$

General open job shops

What is an appropriate $c_{A_{m}}^{2}$?
Estimate $c_{A_{m}}^{2}$ using:

- Merging of streams: If two streams with rates λ_{1} and λ_{2} and $\operatorname{scv} c_{A_{1}}^{2}$ and $c_{A_{2}}^{2}$ are merged, then the resulting stream has rate $\lambda_{1}+\lambda_{2}$ and its scv can be approximated by

$$
c_{A}^{2} \approx \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} c_{A_{1}}^{2}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} c_{A_{2}}^{2}
$$

- Random splitting of stream: If arriving jobs are randomly split with probability p from a stream with rate λ and $\operatorname{scv} c^{2}$, then the resulting stream has rate $p \lambda$ and

$$
c_{A}^{2}=p c^{2}+1-p
$$

General open job shops

(Fixed-point) Equations for $c_{A_{m}}^{2}$:

$$
c_{A_{m}}^{2}=\frac{\lambda \gamma_{m}}{\lambda_{m}}\left[\gamma_{m} c_{A}^{2}+\left(1-\gamma_{m}\right)\right]+\sum_{n=1}^{M} \frac{\lambda_{n} p_{n m}}{\lambda_{m}}\left[p_{n m} c_{D_{n}}^{2}+\left(1-p_{n m}\right)\right]
$$

for all $m=1, \ldots, M$, where

$$
c_{D_{n}}^{2}=1+\left(1-\rho_{n}^{2}\right)\left(c_{A_{n}}^{2}-1\right)+\rho_{n}^{2}\left(c_{B_{n}}^{2}-1\right) / \sqrt{c_{n}}
$$

and $\rho_{n}=\lambda_{n} E\left(B_{n}\right) / c_{n}$

Observation:

For "large randomly routed networks" the arrival process at each station can be approximated by a "random" process, thus Poisson process ($c_{A_{m}}^{2}=1$)

General multi-class open job shops

- Workstations $1, \ldots, M$
- Workstation m has c_{m} parallel identical machines
- Job types $1, \ldots, R$
- Jobs of type r arrive at rate Λ_{r} and scv of inter-arrival times is c_{r}^{2}
- Jobs of type r require n_{r} operations, labeled $1,2, \ldots, n_{r}$
- Jobs of type r follow fixed routing: $C_{1 r}, C_{2 r}, \ldots \ldots, C_{n_{r} r}$ where $C_{i r}$ is workstation for operation i, with processing time $B_{i r}$
- Processing order is FCFS
- Buffers are unlimited

Question: What is mean total flow time $E\left(S_{r}\right)$ of type r job?

General multi-class open job shops

Approximation approach for large random network:

- Model workstation m as $M / G / c$ with $c=c_{m}$
- Arrival rate at station m

$$
\lambda_{m}=\sum_{r=1}^{R} \Lambda_{r} \sum_{i=1}^{n_{r}} 1\left[C_{i r}=m\right]
$$

- Service time B_{m} of arbitrary job

$$
\begin{aligned}
& E\left(B_{m}\right)=\sum_{r=1}^{R} \frac{\Lambda_{r}}{\lambda_{m}} \sum_{i=1}^{n_{r}} 1\left[C_{i r}=m\right] E\left(B_{i r}\right) \\
& E\left(B_{m}^{2}\right)=\sum_{r=1}^{R} \frac{\Lambda_{r}}{\lambda_{m}} \sum_{i=1}^{n_{r}} \frac{\Lambda_{r}}{\lambda_{m}} 1\left[C_{i r}=m\right] E\left(B_{i r}^{2}\right)
\end{aligned}
$$

General multi-class open job shops

Approximation approach for large random network:

- Mean waiting time (which does not depend on job type!)

$$
E\left(W_{m}\right)=\frac{\Pi_{W}}{1-\rho_{m}} \frac{E\left(R_{m}\right)}{c_{m}}
$$

where $\rho_{m}=\lambda_{m} E\left(B_{m}\right) / c_{m}, E\left(R_{m}\right)=\frac{1}{2} E\left(B_{m}^{2}\right) / E\left(B_{m}\right)$ and
Π_{W} is probability of waiting in $M\left(\lambda_{m}\right) / M\left(\mu_{m}\right) / c_{m}$ with $\mu_{m}=1 / E\left(B_{m}\right)$

- Mean flow time of operation i of type r job

$$
E\left(S_{i r}\right)=\sum_{m=1}^{M} E\left(W_{m}\right) 1\left[C_{i r}=m\right]+E\left(B_{i r}\right)
$$

- Mean total flow time of type r job

$$
E\left(S_{r}\right)=\sum_{i=1}^{n_{r}} E\left(S_{i r}\right)
$$

Example

Production system with two single-machine work stations and two job types

r	Λ_{r} (jobs/hour)	$C_{i r}$	$E\left(B_{i r}\right)(\mathrm{min})$	$\sigma\left(B_{i r}\right)$	$E\left(B_{i r}^{2}\right)$
1	3	$1,2,1$	$10,5,6$	$2,5,2$	$104,50,40$
2	2	2	20	0	400

Thus processing characteristics of an arbitrary job in station 1 and 2

m	λ_{m} (jobs/hour)	$E\left(B_{m}\right)(\mathrm{min})$	$E\left(B_{m}^{2}\right)$	ρ_{m}
1	6	8	72	0.80
2	5	11	190	0.92

Hence

$$
E\left(W_{1}\right)=18(\mathrm{~min}), \quad E\left(W_{2}\right)=99.3(\mathrm{~min})
$$

SO

$$
E\left(S_{1}\right)=18+10+99.3+5+18+6=156.3(\mathrm{~min}), \quad E\left(S_{2}\right)=119.3(\mathrm{~min})
$$

Exponential closed networks

- Workstations 1, ..., M
- Workstation m has c_{m} parallel identical machines
- N circulating jobs (N is the population size)
- Processing times in workstation m are exponential with rate μ_{m}
- Processing order is FCFS
- Buffers are unlimited
- Markovian routing: job moves from workstation m to n with probability $p_{m n}$

This network is also called Closed Jackson network

Exponential closed networks

Exponential single server network

States of network $\underline{k}=\left(k_{1}, \ldots, k_{M}\right)$ where k_{m} is number of jobs in station m
Note that

$$
\sum^{M} k_{m}=N
$$

so there are $\binom{N+M-1}{M-1}$ states!
State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ satisfy balance equations ($c_{m}=1$)

$$
\begin{aligned}
\text { Flow out of } \underline{k} & =\text { Flow into } \underline{k} \\
p(\underline{k}) \sum_{m=1}^{M} \mu_{m} \epsilon\left(k_{m}\right) & =\sum_{n=1}^{M} \sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{n}-\underline{e}_{m}\right) \mu_{n} p_{n m} \epsilon\left(k_{m}\right)
\end{aligned}
$$

where $\underline{e}_{m}=(0, \ldots, 1, \ldots, 0)$ with 1 at place m and $\epsilon(k)= \begin{cases}1 & \text { if } k>0 \\ 0 & \text { else }\end{cases}$

Exponential single server network

Product form solution "Jackson's miracle"

$$
p(\underline{k})=C p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right)
$$

where C is normalizing constant and

$$
p_{m}\left(k_{m}\right)=\left(\frac{v_{m}}{\mu_{m}}\right)^{k_{m}}, \quad k_{m}=0,1, \ldots
$$

with v_{m} the "arrival rate" to workstation m

This is again the product of $M / M / 1$ solutions!
But: What is v_{m} ?

Exponential single server network

v_{m} is the relative arrival rate or visiting frequency to m, satisfying

$$
v_{m}=\sum_{n=1}^{M} v_{n} p_{n m}, \quad m=1, \ldots, M
$$

Remarks:

- Equations above determine v_{m} 's up to a multiplicative constant
- Set $v_{1}=1$, then v_{m} is the expected number of visits to m in between two successive visits to station 1
- Although $p(\underline{k})$ is again a product, the queues at stations are dependent!
- How to compute C ?

Normalizing constant

Let

$$
C(m, n)=\sum_{\substack{k_{1}, \ldots, k_{m} \geq 0 \\ \sum_{i=1}^{m} k_{i}=n}}\left(\frac{v_{1}}{\mu_{1}}\right)^{k_{1}}\left(\frac{v_{2}}{\mu_{2}}\right)^{k_{2}} \cdots\left(\frac{v_{m}}{\mu_{m}}\right)^{k_{m}} .
$$

Then $C=1 / C(M, N)$

Recursion:

$$
C(m, n)=C(m-1, n)+\frac{v_{m}}{\mu_{m}} C(m, n-1)
$$

with initial conditions

$$
C(0, n)=0, \quad n=1, \ldots, N, \quad C(m, 0)=1, \quad m=1, \ldots, M,
$$

Absolute arrival rate

- What is the real arrival rate λ_{m} ?

Note that
input rate to station $M=$ output rate from station M

$$
\lambda_{M}=v_{m} \frac{C(M, N-1)}{C(M, N)}
$$

and $\lambda_{m} / \lambda_{M}=v_{m} / v_{M}$

- What is mean number $E\left(L_{M}\right)$ in station M ?

$$
E\left(L_{M}\right)=\frac{\sum_{k_{M}=0}^{N} k_{M}\left(\frac{v_{M}}{\mu_{M}}\right)^{k_{M}} C\left(M-1, N-k_{M}\right)}{C(M, N)}
$$

-What is expected cycle time $E(C)$ between two visits to station 1 ? By Little's law

$$
\lambda_{1} E(C)=N
$$

