Stochastic Models of Manufacturing Systems

Ivo Adan

Exponential closed networks

- Workstations 1, ..., M
- Workstation m has c_{m} parallel identical machines
- N circulating jobs (N is the population size)
- Processing times in workstation m are exponential with rate μ_{m}
- Processing order is FCFS
- Buffers are unlimited
- Markovian routing: job moves from workstation m to n with probability $p_{m n}$

This network is also called Closed Jackson network

Exponential closed networks

Example: Robotic barn

Example: Robotic barn

How to design a robotic barn? How many robots?

Example: Robotic barn

Closed network with K circulating cows (the herd) and 6 workstations:

1. Milking robot,
2. Concentrate feeder,
3. Forage lane,
4. Water trough,
5. Cubicle and
6. (artifical one) Walking.

Example: Robotic barn

Closed network with K circulating cows and 6 workstations:

TU/e

Zone-Picking Systems

Example: Zone-Picking

Example: Zone-Picking

Issues in design:

- What should be the layout of the network?
- Size of zones?
- Where to locate items?
-What number of pickers and zones?
- Required CONWIP level?

Example: Single Zone

Example: Single Zone

Closed network with K totes and 6 workstations

Example: KIVA robots

Example: KIVA robots

How to design a KIVA system? How many robots?

Example: KIVA robots

Closed queueing network model with K circulating robots

Example: Container terminal

How many AGVs needed for unloading ship?

Example: Container terminal

Abstract view of load/unload process

Example: Container terminal

Closed queueing network model with K circulating AGVs

Exponential single server network

States of network $\left(k_{1}, \ldots, k_{M}\right)$ where k_{m} is number of jobs in workstation m
Note that

$$
\sum^{M} k_{m}=N
$$

so there are $\binom{N+M-1}{M-1}$ states!
State probabilities $p\left(k_{1}, k_{2}, \ldots, k_{M}\right)$ satisfy balance equations ($c_{m}=1$)

$$
\begin{aligned}
\text { Flow out of } \underline{k} & =\text { Flow into } \underline{k} \\
p(\underline{k}) \sum_{m=1}^{M} \mu_{m} \epsilon\left(k_{m}\right) & =\sum_{n=1}^{M} \sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{n}-\underline{e}_{m}\right) \mu_{n} p_{n m} \epsilon\left(k_{m}\right)
\end{aligned}
$$

where $\underline{e}_{m}=(0, \ldots, 1, \ldots, 0)$ with 1 at place m and $\epsilon(k)= \begin{cases}1 & \text { if } k>0 \\ 0 & \text { else }\end{cases}$

Exponential single server network

Product form solution "Jackson's miracle"

$$
p(\underline{k})=C p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right)
$$

where C is normalizing constant and

$$
p_{m}\left(k_{m}\right)=\left(\frac{v_{m}}{\mu_{m}}\right)^{k_{m}}, \quad k_{m}=0,1, \ldots
$$

with v_{m} the "arrival rate" to workstation m

This is again a product of $M / M / 1$ solutions:
Number in station m follows $M / M / 1$ with arrival rate v_{m} and service rate μ_{m} !

Exponential single server network

v_{m} is the relative arrival rate or visiting frequency to m, satisfying

$$
v_{m}=\sum_{n=1}^{M} v_{n} p_{n m}, \quad m=1, \ldots, M
$$

Remarks:

- Equations above determine v_{m} 's up to a multiplicative constant
- Set $v_{1}=1$, then v_{m} is the expected number of visits to m in between two successive visits to station 1
- Although $p(\underline{k})$ is again a product, the queues at stations are dependent!
- Product form result also valid for fixed routing
- How to compute C ?

Normalizing constant

Let

$$
C(m, n)=\sum_{\substack{k_{1}, \ldots, k_{m} \geq 0 \\ \sum_{i=1}^{m} k_{i}=n}}\left(\frac{v_{1}}{\mu_{1}}\right)^{k_{1}}\left(\frac{v_{2}}{\mu_{2}}\right)^{k_{2}} \cdots\left(\frac{v_{m}}{\mu_{m}}\right)^{k_{m}}
$$

So $C(m, n)$ is sum of products in network with stations $1, \ldots, m$ and population n. Clearly $C=1 / C(M, N)$

Recursion (Buzen's algorithm):

$$
C(m, n)=C(m-1, n)+\frac{v_{m}}{\mu_{m}} C(m, n-1)
$$

with initial conditions

$$
C(0, n)=0, \quad n=1, \ldots, N, \quad C(m, 0)=1, \quad m=1, \ldots, M,
$$

Normalizing constant

Recursion (Buzen's algorithm):

$$
C(m, n)=C(m-1, n)+\frac{v_{m}}{\mu_{m}} C(m, n-1)
$$

with initial conditions

$$
C(0, n)=0, \quad n=1, \ldots, N, \quad C(m, 0)=1, \quad m=1, \ldots, M,
$$

Mean values

- What is the real arrival rate λ_{m} ?

Note that

$$
\lambda_{M}=v_{m} \frac{C(M, N-1)}{C(M, N)}
$$

and

$$
\lambda_{m}=\frac{v_{m}}{v_{M}} \lambda_{M}
$$

- What is mean number $E\left(L_{M}\right)$ in station M ?

$$
E\left(L_{M}\right)=\frac{1}{C(M, N)} \sum_{k_{M}=0}^{N} k_{M}\left(\frac{v_{M}}{\mu_{M}}\right)^{k_{M}} C\left(M-1, N-k_{M}\right)
$$

-What is expected cycle time $E(C)$ between two visits to station 1 ?

$$
E(C)=\frac{N}{\lambda_{1}} \quad(\text { Little's law })
$$

Exponential multi server network

Product form solution

$$
p(\underline{k})=C p_{1}\left(k_{1}\right) p_{2}\left(k_{2}\right) \cdots p_{M}\left(k_{M}\right),
$$

where C is normalizing constant and

$$
p_{m}\left(k_{m}\right)=\prod_{k=1}^{k_{m}} \frac{v_{m}}{\mu_{m}(k)}
$$

where $\mu_{m}(k)=\min \left(k, c_{m}\right) \mu_{m}$ and v_{m} the visiting frequency to workstation m

This is product of $M / M / c_{m}$ solutions with arrival rate v_{m} and service rate μ_{m} !
Normalizing constant C can again be calculated via recursion (verify!)

Arrival theorem

Question: What is the state seen by job moving from one station to another?
Total number of jumps per time unit that see the (single server) network in state $\underline{k} \in S(N-1)=\left\{\underline{k} \geq 0 \mid \sum_{i=1}^{M} k_{i}=N-1\right\}$

$$
\sum_{m=1}^{M} p\left(\underline{k}+\underline{e}_{m}\right) \mu_{m}=\frac{1}{C(M, N)} p_{1}\left(k_{1}\right) \cdots p_{M}\left(k_{M}\right) \sum_{m=1}^{M} v_{m}
$$

where $p_{m}\left(k_{m}\right)=\left(\frac{v_{m}}{\mu_{m}}\right)^{k_{m}}$
Total number of all jumps per time unit in the (single server) network

$$
\sum_{\underline{l} \in S(N-1)} \sum_{m=1}^{M} p\left(\underline{l}+\underline{e}_{m}\right) \mu_{m}=\frac{1}{C(M, N)} \sum_{\underline{l} \in S(N-1)} p_{1}\left(l_{1}\right) \cdots p_{M}\left(l_{M}\right) \sum_{m=1}^{M} v_{m},
$$

Arrival theorem

Fraction of jumps per time unit that see the network in state $\underline{k} \in S(N-1)$
$\frac{\frac{1}{C(M, N)} p_{1}\left(k_{1}\right) \cdots p_{M}\left(k_{M}\right) \sum_{m=1}^{M} v_{m}}{\frac{1}{C(M, N)} \sum_{\underline{l} \in S(N-1)} p_{1}\left(l_{1}\right) \cdots p_{M}\left(l_{M}\right) \sum_{m=1}^{M} v_{m}}=\frac{1}{C(M, N-1)} p_{1}\left(k_{1}\right) \cdots p_{M}\left(k_{M}\right)$
which is probability that network with $N-1$ circulating jobs is in state \underline{k}

Conclusion:

Arbitrary job moving from one station to another sees the network in equilibrium with a population with one job less (job does not see himself)

Remarks:

- Also valid in multi-server networks (verify!)
- Also valid for jobs moving to a specific station (verify!)
- What is the impact of this result?

Mean value analysis

Define for network with population k

$$
\begin{aligned}
E\left(S_{m}(k)\right) & =\text { mean production lead time at station } m \\
\Lambda_{m}(k) & =\text { throughput of station } m \\
E\left(L_{m}(k)\right) & =\text { mean number of jobs in station } m
\end{aligned}
$$

For population $k=1,2, \ldots, N$ in single server network

$$
\begin{aligned}
E\left(S_{m}(k)\right) & =E\left(L_{m}(k-1)\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}} \quad \text { (Arrival theorem) } \\
\Lambda_{m}(k) & =\frac{k v_{m}}{\sum_{n=1}^{M} v_{n} E\left(S_{n}(k)\right)} \quad(\text { Little }) \\
E\left(L_{m}(k)\right) & =\Lambda_{m}(k) E\left(S_{m}(k)\right) \quad(\text { Little })
\end{aligned}
$$

with initially $E\left(L_{m}(0)\right)=0$ for all m

Remark:

- $\sum_{n=1}^{M} v_{n} E\left(S_{n}(k)\right)$ is mean cycle time of job

Mean value analysis

In multi server network

$$
E\left(S_{m}(k)\right)=\Pi_{m}(k-1) \frac{1}{c_{m} \mu_{m}}+\left(E\left(L_{m}(k-1)\right)-\frac{\Lambda_{m}(k-1)}{\mu_{m}}\right) \frac{1}{c_{m} \mu_{m}}+\frac{1}{\mu_{m}}
$$

where $\Pi_{m}(k-1)$ is probability that all servers are busy
Approximate $\Pi_{m}(k-1)$ by probability of waiting in corresponding $M / M / c_{m}$

$$
\Pi_{m}(k-1) \approx \frac{\frac{1}{c_{m}!}\left(\frac{\Lambda_{m}(k-1)}{\mu_{m}}\right)^{c_{m}}}{\left(1-\frac{\Lambda_{m}(k-1)}{c_{m} \mu_{m}}\right) \sum_{i=0}^{c_{m}-1} \frac{1}{i!}\left(\frac{\Lambda_{m}(k-1)}{\mu_{m}}\right)^{i}+\frac{1}{c_{m}!}\left(\frac{\Lambda_{m}(k-1)}{\mu_{m}}\right)^{c_{m}}}
$$

If $c_{m}=\infty$ (no waiting)

$$
E\left(S_{m}(k)\right)=\frac{1}{\mu_{m}}
$$

General closed networks

In multi server station

$$
\begin{aligned}
E\left(S_{m}(k)\right)= & \Pi_{m}(k-1) \frac{E\left(R_{m}\right)}{c_{m}}+\left(E\left(L_{m}(k-1)\right)-\Lambda_{m}(k-1) E\left(B_{m}\right)\right) \frac{E\left(B_{m}\right)}{c_{m}} \\
& +E\left(B_{m}\right)
\end{aligned}
$$

where $\Pi_{m}(k-1)$ is approximated by probability of waiting in $M / M / c$

In single server station this reduces to

$$
E\left(S_{m}(k)\right)=\rho_{m}(k-1) E\left(R_{m}\right)+\left(L_{m}(k-1)-\rho_{m}(k-1)\right) E\left(B_{m}\right)+E\left(B_{m}\right)
$$

where $\rho_{m}(k-1)=\Lambda_{m}(k-1) E\left(B_{m}\right)$

Example

Closed system with 4 single server stations and 10 circulating pallets:

Processing characteristics:

Station	$E\left(B_{m}\right)$	$c_{B_{m}}^{2}$
1	1.25	0.25
2	1.25	0.50
3	2.00	0.33
4	1.60	1.00

Example

Mean value analysis: $\Lambda_{1}(10)=0.736$ parts per time unit Simulation: $\Lambda_{1}(10)=0.743 \pm 0.003$ parts per time unit

Station	$E\left(S_{m}(10)\right)$	
	amva	sim
1	4.417	4.890 ± 0.106
2	5.050	4.760 ± 0.169
3	4.181	3.860 ± 0.068
4	4.086	3.790 ± 0.118

Example

Production system:

- C machines
- N pallets
- M operations to be performed
- each operation requires a specific tool set
- r_{m} copies of tool set m
- $v_{m} E\left(B_{m}\right)$ is work load to be handled by tool set m

Example

Optimization problem:

$$
\begin{aligned}
& \max T H\left(c_{1}, c_{2}, \ldots, c_{M}\right) \\
& \text { subject to } \\
& \sum_{m=1}^{M} c_{m} \leq C, \\
& 1 \leq c_{m} \leq r_{m}, \quad m=1,2, \ldots, M .
\end{aligned}
$$

where c_{m} is number of tool sets m being used

Example

Optimization problem:

$$
\begin{aligned}
& \max T H\left(c_{1}, c_{2}, \ldots, c_{m}\right) \\
& \text { subject to } \\
& \sum_{m=1}^{M} c_{m} \leq C, \\
& 1 \leq c_{m} \leq r_{m}, \quad m=1,2, \ldots, M .
\end{aligned}
$$

where c_{m} is number of tool sets m being used
Heuristic solution:

- Subsequently allocate tool sets to machines
- allocate tool set with maximum increase in throughput

Example: Robotic barn

Closed network with K circulating cows and 6 workstations:

1. Milking robot,
2. Concentrate feeder,
3. Forage lane,
4. Water trough,
5. Cubicle and
6. (artifical one) Walking.

Example: Robotic barn

Histogram of the processing time (in min.) in the milking robot:

Example: Robotic barn

Processing times in the facilities of the barn:

		Processing time (in min.)	
Facility	Routing probability	Mean	Standard deviation
Milking robot	0.164	8.41	2.52
Concentrate feeder	0.155	6.38	6.25
Forage lane	0.235	15.0	11.9
Water trough	0.170	3.18	2.30
Cubicle	0.276	38.9	60.3

Example: Robotic barn

General closed network model of robotic dairy barn.

Type Cow

type cow = tuple (real arr; int stat); type cow_walk = tuple(cow x; timer t);

```
proc B(chan? cow a; chan! cow b):
    list cow xs;
    cow x;
while true:
    select
        a?x:
                            x.arr = time;
                            xS = xS + [x]
    alt
        size(xs) > 0, b!xs[0]:
                        xs = xs[1:]
    end
end
end
```


Machine

```
proc M(chan? cow a; chan! cow b, c; dist real u):
    cow x;
    while true:
    a?x;
    b!x;
    delay sample u;
    c!x;
    end
end
```


Workstation

```
proc W(chan? cow a; chan! cow b, c; dist real u; int m):
    chan cow d;
run B(a,d),
    unwind j in range(m):
        M(d, b, c, u)
    end
end
```


Workstation Walking

```
proc L(chan? cow a; chan! cow b; real walk):
    list cow_walk xst;
    cow x;
    while true:
        select
        a?x:
                            xst = xst + [(x, timer(walk))]
    alt
            not empty(xst) and ready(xst[0].t), b!xst[0].
                                xst = xst[1:]
    end
    end
end
```


Routing

```
proc R(chan? cow a; list chan! cow b):
    COW x;
    list(1000) int dest;
    for i in range(1000):
    if i < 164:
        dest[i] = 0;
    elif i < 319:
            dest[i] = 1;
    end;
    while true:
        a?x;
    x.stat = dest[sample uniform(0, 1000)];
    b[x.stat]!x
end end
```


Model Dairy Barn

```
model DairyBarn():
chan cow a, c, d;
    list(5) chan cow b;
run G(a, 10),
    L(a, d, 5.0),
    R(d, b),
    W(b[0], c, a, exponential(8.41), 1),
    W(b[1], c, a, exponential(6.38), 1),
    W(b[2], c, a, exponential(15.0), 1),
    W(b[3], c, a, exponential(3.18), 1),
    W(b[4], c, a, exponential(38.9), 1),
    E(c, 100000)
end
```


Multiple visits to work stations

- n_{m} distinct types of operations at (single server) work station m
- $v_{m r}$ visits to work station m for type r operation
- mean processing time for type r operation at work station m is $E\left(B_{m r}\right)$
- mean residual processing time is $E\left(R_{m r}\right)$

Multiple visits to work stations

Define

$E\left(S_{m r}(k)\right)=$ mean production lead time at station m for job of type r operation
$\Lambda_{m r}(k)=$ arrival rate at station m of jobs for type r operation
$E\left(L_{m r}(k)\right)=$ mean number of jobs at station m for type r operation

Then

$$
\begin{aligned}
E\left(S_{m r}(k)\right)= & \sum_{s=1}^{n_{m}} \rho_{m s}(k-1) E\left(R_{m s}\right)+\sum_{s=1}^{n_{m}}\left(E\left(L_{m s}(k-1)\right)-\rho_{m s}(k-1)\right) E\left(B_{m s}\right) \\
& +E\left(B_{m r}\right)
\end{aligned}
$$

where $\rho_{m s}(k-1)=\Lambda_{m s}(k-1) E\left(B_{m s}\right)$ and

$$
\begin{aligned}
\Lambda_{m r}(k) & =\frac{k v_{m r}}{\sum_{n=1}^{M} \sum_{s=1}^{n_{m}} v_{n s} E\left(S_{n s}(k)\right)} \\
E\left(L_{m r}(k)\right) & =\Lambda_{m r}(k) E\left(S_{m r}(k)\right)
\end{aligned}
$$

Closed multi-class networks

- Workstations 1, ..., M
- Workstation m has c_{m} parallel identical machines
- R job types
- N_{r} circulating jobs of type r
- Processing times in workstation m are exponential with rate μ_{m} (so processing times are job-type independent!)
- Processing order is FCFS
- Buffers are unlimited
- Markovian routing: type r job moves from workstation m to n with probability $p_{m n}^{r}$ (so each job type has its own Markovian routing)

This network is also called Closed multi-class Jackson network

Closed multi-class networks

States of network $\left(\underline{k}_{1}, \ldots, \underline{k}_{M}\right)$ where

- $\underline{k}_{m}=\left(k_{m 1}, \ldots, k_{m R}\right)$ is the aggregate situation in station k
- $k_{m r}$ is the number of type r jobs in workstation m

Note that for each r

$$
\sum_{m=1}^{M} k_{m r}=N_{r}
$$

$v_{m r}$ is the relative visiting frequency to station m of type r jobs satisfying

$$
v_{m r}=\sum_{n=1}^{M} v_{n r} p_{n m}^{r}, \quad m=1,2, \ldots, M
$$

Closed multi-class networks

Jackson's miracle

$$
p(\underline{k})=C p_{1}\left(\underline{k}_{1}\right) p_{2}\left(\underline{k}_{2}\right) \cdots p_{M}\left(\underline{k}_{M}\right),
$$

where C is normalizing constant
If $c_{m}=1$

$$
p_{m}\left(\underline{k}_{m}\right)=\frac{\left(k_{m 1}+k_{m 2}+\cdots+k_{m R}\right)!}{k_{m 1}!k_{m 2}!\cdots k_{m R}!}\left(\frac{v_{m 1}}{\mu_{m}}\right)^{k_{m 1}}\left(\frac{v_{m 2}}{\mu_{m}}\right)^{k_{m 2}} \cdots\left(\frac{v_{m R}}{\mu_{m}}\right)^{k_{m R}}
$$

If $c_{m}>1$
$p_{m}\left(\underline{k}_{m}\right)=\frac{\left(k_{m 1}+k_{m 2}+\cdots+k_{m R}\right)!}{k_{m 1}!k_{m 2}!\cdots k_{m R}!} \frac{v_{m 1}^{k_{m 1}} v_{m 2}^{k_{m 2}} \cdots v_{m R}^{k_{m}}}{\mu_{m}(1) \mu_{m}(2) \cdots \mu_{m}\left(k_{m 1}+k_{m 2}+\cdots+k_{m R}\right)}$
where $\mu_{m}(k)=\min \left(k, c_{m}\right) \mu_{m}$

Arrival theorem

Arbitrary type r job moving from one station to another sees the network in equilibrium with a population with one job of his own type less (job does not see himself)
$\underline{N}=\left(N_{1}, N_{2}, \ldots, N_{R}\right)$ is the population vector

So jumping type r job sees the network in equilibrium with population $\underline{N}-\underline{e}_{r}$

Mean value analysis

Define for network with population \underline{N}
$E\left(S_{m r}(\underline{N})\right)=$ mean production lead time at work station m for type r job
$\Lambda_{m r}(\underline{N})=$ throughput of type r jobs of station m
$E\left(L_{m r}(\underline{N})\right)=$ mean number of type r jobs in station m
In single-server network

$$
\begin{aligned}
E\left(S_{m r}(\underline{N})\right) & =\sum_{s=1}^{r} E\left(L_{m s}\left(\underline{N}-\underline{e}_{r}\right)\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}} \\
\Lambda_{m r}(\underline{N}) & =\frac{N_{r} v_{m r}}{\sum_{n=1}^{M} v_{n r} E\left(S_{n r}(\underline{N})\right)} \\
E\left(L_{m r}(\underline{N})\right) & =\Lambda_{m r}(\underline{N}) E\left(S_{m r}(\underline{N})\right)
\end{aligned}
$$

with initially $E\left(L_{m s}(\underline{0})\right)$
Recursion over population vector \underline{N}, starting from $\underline{k}=\underline{0}$ to $\underline{k}=\underline{N}$!

Priority stations

Define for network with population \underline{N}
$E\left(W_{m r}(\underline{N})\right)=$ mean waiting time at work station m for type r job
$\Lambda_{m r}(\underline{N})=$ throughput of type r jobs of station m
$E\left(Q_{m r}(\underline{N})\right)=$ mean number of type r jobs waiting in station m
In non-preemptive (single server) priority station m (type 1 highest priority)

$$
\begin{aligned}
E\left(W_{m r}(\underline{N})\right)= & \sum_{s=1}^{R} \rho_{m s}\left(\underline{N}-\underline{e}_{r}\right) \frac{1}{\mu_{m}}+\sum_{s=1}^{r} E\left(Q_{m s}\left(\underline{N}-\underline{e}_{r}\right)\right) \frac{1}{\mu_{m}} \\
& +\sum_{s=1}^{r-1} \Lambda_{m s}\left(\underline{N}-\underline{e}_{r}\right) E\left(W_{m r}(\underline{N})\right) \frac{1}{\mu_{m}}
\end{aligned}
$$

where $\rho_{m r}(\underline{N})=\Lambda_{m r}(\underline{N}) \frac{1}{\mu_{m}}$

Fixed-point modeling

Breaking the recursion:

Assume jumping type r job sees the system in equilibrium with population \underline{N} (instead of $\underline{N}-\underline{e}_{r}$)

In FCFS single server station m

$$
E\left(S_{m r}(\underline{N})\right)=\sum_{s=1}^{r} E\left(L_{m s}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}}
$$

So mean number seen on arrival is mean number in system including himself

Fixed-point modeling

Breaking the recursion:

Assume jumping type r job sees the system in equilibrium with population \underline{N} (instead of $\underline{N}-\underline{e}_{r}$)

In FCFS single server station m

$$
E\left(S_{m r}(\underline{N})\right)=\sum_{s=1}^{r} E\left(L_{m s}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}}
$$

So mean number seen on arrival is mean number in system including himself
To avoid self queueing

$$
E\left(S_{m r}(\underline{N})\right)=\sum_{s \neq r} E\left(L_{m s}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{N_{r}-1}{N_{r}} E\left(L_{m r}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}}
$$

Fixed-point modeling

$3 M R$ equations for $3 M R$ unknowns $E\left(S_{m r}(\underline{N})\right), \Lambda_{m r}(\underline{N})$ and $E\left(L_{m r}(\underline{N})\right)$

$$
\begin{aligned}
E\left(S_{m r}(\underline{N})\right) & =\sum_{s \neq r} E\left(L_{m s}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{N_{r}-1}{N_{r}} E\left(L_{m r}(\underline{N})\right) \frac{1}{\mu_{m}}+\frac{1}{\mu_{m}} \\
\Lambda_{m r}(\underline{N}) & =\frac{N_{r} v_{m r}}{\sum_{n=1}^{M} v_{n r} E\left(S_{n r}(\underline{N})\right)} \\
E\left(L_{m r}(\underline{N})\right) & =\Lambda_{m r}(\underline{N}) E\left(S_{m r}(\underline{N})\right)
\end{aligned}
$$

Solution by successive substitutions

Wrapping up: Examination

- Weekly (8) take home (individual) assignments
- Best 7 out of 8 take home assignments count (40\%)
- Final assignment, done in groups of two (60\%)
- Send email to iadan@tue.nl to inform about group composition
- Final assignment will be returned by mail
- Due date for final assignment is September 1, send report as pdf
- Report: Present your work clearly (assumptions, analysis, results, etc.) and try to keep size of report limited, to say 3-4 pages
- Appointments will be scheduled: individual evaluation, which is mix of report evaluation and oral exam

