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Recap: Conditional expectation

Conditional expectation of X givenY = y:

e Discrete random variables X and Y

EX|Y =y) =) xP(X =x|Y =y),

and

E(X)=) EX|Y =y)P(Y =y).
y

e Continuous random variables X and Y

©.¢)

E(X|Y=y)=/ xfx(x|y)dx,

—00

and

EX) =f E(XIY = y) fy (y)dy.

—00




Recap: Conditional expectation

Example:

A batch consists of n items with probability (1 — p)p"~!,n > 1.
The production time of a single item is uniform between 4 and 10 minutes.

e What is the mean production time of a batch?




Example: Process time variability

e Effective process time is total time seen by a job at a station

e Preemptive breakdowns:

L S (availability)
m ¢ + m,

10

A

(00)2 N (m? +a2)(1 — Aty

A Am,

— to and ¢g are mean and cv of natural process time
— m s is mean exponential time to failure
— m, and o> are mean and variance of time to repair

e Question: How can we show that above formulas are correct?
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Example: Random sums

Ri, Ry, ... independent repair times with the same distribution

E(R) =m,, var(R)=o’

e Fixed number n of repair times

n n
E (Z Ri> = nm,, o2 (Z Ri) = norz
i=1 i=1

e Random number N of repair times

E (lZ:: R,-) =27, o2 (lZ:: R,-) =9

e Conditionon N = n!




Example: Random sums

Ri, Ry, ... independent repair times with the same distribution

E(R) =m,, var(R)=o’

e PIN=n)=p,,n=1,2,...

(%)

00 N

ZE (ZR,-|N :n) P(N =n)
n=1 i=1

> E (Z Ri) Pn

n=1 i=1

(@]

> nER)pa

n=1

= E(N)E(R)
= E(N)m,




Example: Random sums

Ri, Ry, ... independent repair times with the same distribution

E(R) =m,, var(R)=o’

=pp,n=12,...

= gE ((ﬁ;&)le —n) P(N =n)

2e((5))

Y (ER?) +n(n — D(ER)) pa

n=1

E(N)E(R*) + (E(N?) — E(N))(E(R))*
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Example: Random sums

Ri, Ry, ... independent repair times with the same distribution

E(R) =m,, var(R)=o’

e PIN=n)=p,,n=1,2,...

o) - ()5

2

= E(N)E(R?*) + (E(N*) — E(N))(E(R))* — (E(N)E(R))*
E(N)var(R) + var(N)(E(R))?
= E(N)o? +var(N)m?
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Example: Process time variability

o Constant natural process time 7y (so co = 0)
e Time to failure is exponential with rate 1/m s

e Preemptive breakdowns: N is number of breakdowns during 1

e N is Poisson(ry/m r)

1o
E(N) var(N) = —

mf
1o
te tO + _mr
m g
1o
A

_O'r +

m g
(m? + o)1 — Aty
Am,




Recap: Variability

e Variability is a fact of life
e There are many sources of variability in manufacturing systems
e Coefficient of variation is a key measure of variability

e Waiting time is often largest component of cycle time
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Recap: Process time variability

e Effective process time is total time seen by a job at a station, includes
— natural process time
— setups
— rework
— operator unavailability
— breakdowns
— and other shop floor realities

e Standard deviation o is absolute measure of variability

e Coefficient of variation c is relative measure of variability

where ¢ is the mean and o the standard deviation
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Recap: Flow variability

e Flow refers to transfer of jobs from one station to another
e t, and o, are mean and standard deviation of time between arrivals

e Arrival rate
1

g =—
a ta
e Coefficient of variation of time between arrivals
Oq
la

Cq =

@ @
Low ¢, arrivals

—@ ®

High ¢, arrivals




Recap: Poisson flow

e Times between arrivals are independent and exponential with rate A

o Memoryless property
P(arrivalin (7, + A) = 1 — e *2x~ 1A

So in each small interval A is an arrival with probability AA!

e Dividing (0, ¢) into many smallintervals of length A, the number of arrivals
in (0, ¢) is binomialwithn =¢/A and p = LA

e Since n is large and p is small, this number is Poisson distributed with
parameter np = At (as A tends to 0)

G0

P(k arrivalsin (0,7)) = e 0

k=0,1,2,...




Recap: Variability interactions

e Inter-arrival time is general with mean 7, and standard deviation o,
e Process time is general with mean ¢, and standard deviation o,

e m parallel identical machines

Then

with
o u =1,/(m-1t,) (utilization per machine)
oy:%-(cczl-l—cg)
e c, =04/,

® Co = 0./l




Recap: Variability

e Variability propagates




Recap: Departure process

e Inter-arrival time is general with mean 7, and standard deviation o,
e Process time is general with mean 7, and standard deviation o,

e m parallel identical machines

Inter-departure time has mean ¢, and standard deviation oy

e Output rate is input rate (conservation of flow)

e Coefficient of variation ¢; = o04/14 is approximately equal to

2
u
a4+ (1 —u?) (- 1)+—m(c§— 1)

NG

withc¢, = 0,/ty, ce = 0c/toandu =t./(m - t,)
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Splitting and merging

e Random splitting of flow: If a flow with rate A and cv c is randomly split (or
finned) with probability p, then resulting flow has rate pX and cv ¢,

cczlzpcz—l—l—p

e Merging flows: If two flows with rates A; and A, and cv ¢; and ¢, are
merged, then resulting flow has rate A; + A, and cv ¢,

2 Al 2 A2 2

cT =

cT + C
CT A+ r Va4 2

Note:

Poisson flows remain Poisson after merging or random splitting
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Blocking: Buffer machine model

e Process time machine 1 is exponential with rate A
e Process time machine 2 is exponential with rate
e Buffer of b — 2 jobs in between two machines

e Machine 1 never starved (always raw material)

e Machine 2 never blocked

Analysis:
e Two machine system can be in statesi =0,1,...,b

o State i means total of i jobs in the system,
with 1 job in process by machine 1 and i — 1 waiting in the buffer

e In state » machine 1 is blocked and occupied by waiting job




Blocking: Buffer machine model

e Process time machine 1 is exponential with rate A
e Process time machine 2 is exponential with rate
e Buffer of b — 2 jobs in between two machines

e Machine 1 never starved (always raw material)

e Machine 2 never blocked

Analysis:
oelfu=x1x/u#1

S L B
Pi = [ — b1 =0,1,...
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Blocking: Buffer machine model

e Process time machine 1 is exponential with rate A
e Process time machine 2 is exponential with rate
e Buffer of b — 2 jobs in between two machines

e Machine 1 never starved (always raw material)

e Machine 2 never blocked

Analysis:

e Mean Work-In-Process (WIP) level

b b+1
_ u (b+ 1u
i=0

—Uu

e Throughput

5 — 1 —ub L 1 —ub w1 o
=] gprl N T e U TU /e o et
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Blocking: Buffer machine model

e Process time machine 1 is exponential with rate A
e Process time machine 2 is exponential with rate
e Buffer of b — 2 jobs in between two machines

e Machine 1 never starved (always raw material)

e Machine 2 never blocked

Insights:
e Finite buffers force stability, regardless A and

e WIP is always less than in infinite buffer system

u
w <
1 —u

e Throughput is always less than in infinite buffer system

S <uu




Blocking: Buffer machine model

e Process time machine 1 is exponential with rate A
e Process time machine 2 is exponential with rate
e Buffer of b — 2 jobs in between two machines

e Machine 1 never starved (always raw material)

e Machine 2 never blocked

Insights:

e Only way to reduce WIP without sacrificing too much throughput is:

variability reduction
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Blocking: Buffer machine model

Example
e 1/A = 21 minutes, 1/ = 20 minutes
o u =20/21 =0.9524
e b =00

w = 20 jobs, § = 0.0476 jobs/minute, ¢ = 420.14 minutes
o b =4

w = 1.894 jobs, § = 0.039 jobs/minute, ¢ = 48.57 minutes

e 1/1 =20 minutes, 1/u = 21 minutes
ou=21/20=1.05
ebh=4:

w = 2.097 jobs, § = 0.039 jobs/minute, ¢ = 53.78 minutes
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