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Recap: Process time variability

e Effective process time is total time seen by a job at a station

e Coefficient of variation c is relative measure of variability
c=o0/t

where 7 is the mean and o the standard deviation

e Preemptive breakdowns:
m
— "I (availability)
mf + my
1o
A
A+ A0 - AL 1 2A0 — AL
1o o
where
— to and ¢ are mean and cv of natural process time

— m s is mean exponential time to failure
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Recap: Process time variability

Example: What is better: short frequent stops or long rare ones?

Suppose ) = op = 10 minutes

Machine My: m s =90, m, = 10,0, =0

Machine M>: m y = 900, m, = 100, 0, =0

Both machines have same availability A = 0.9, so same effective capacity
A 09
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but ¢2 = 1.09 for M; and ¢2 = 1.9 for M!




Flow variability

e Flow refers to transfer of jobs from one station to another
e t, and o, are mean and standard deviation of time between arrivals

e Arrival rate
1

g =—
a ta
e Coefficient of variation of time between arrivals
Oq
la

Cq =

@ @
Low ¢, arrivals

—@ ®

High ¢, arrivals




Poisson flow

e Times between arrivals are independent and exponential with rate A

o Memoryless property
P(arrivalin (7, + A) = 1 — e *2x~ 1A

So in each small interval A is an arrival with probability AA!

e Dividing (0, ¢) into many smallintervals of length A, the number of arrivals
in (0, ¢) is binomialwithn =¢/A and p = LA

e Since n is large and p is small, this number is Poisson distributed with
parameter np = At (as A tends to 0)

G0

P(k arrivalsin (0,7)) = e 0

k=0,1,2,...




Poisson flow

e Since density f(x) = Le™** is maximal for x = 0, short inter-arrival times
occur more frequently than long ones. So arrivals tend to cluster:

——0 @ —© @ *—0—0—>

o Superposition of many independent rarely occurring arrival flows is (close
to) Poisson: this is why Poisson flows often occur in practice!

e Merging of two Poisson flows with rates A; and X, is again Poisson with
rate A; + Ao, Since

P(arrivalin (z,t + A)) = (A1 + M) A.

e Random splitting of Poisson flows with rate A and splitting probability p is
again Poisson with rate pA, since

P(arrivalin (t,t + A)) = pAA.




Poisson flow

Example:
e Two type of jobs arrive at machine for processing, type A and B
e Both job types arrive according to Poisson flows

e Type A jobs arrive at rate 2 jobs per hour, type B with rate 3

Questions:
e What is the probability that during 1 hour no jobs arrive?
e What is the probability that the next job to arrive is type A?
e What is the probability that during 2 hours at least 2 type B jobs arrive?




Departure flow variability

e 1; is mean time between departures from workstation
e o, is standard deviation of time between departures from workstation

e Departure rate

|

e Coefficient of variation of time between departures
0d

ld

Cq =
e In serial production lines:

Departures from workstation i are arrivals to workstationi + 1, so

ta@+1) =1400), cali +1)=cali)
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Departure flow variability

e Utilization of workstation with identical = machines

Fale
u =
m

e Single machine workstation (m = 1)

22

2~ (1—ud)e? +u (weighted average of ¢2 and 2)

e Multi machine workstation (m > 1)

2
u
a4+ (1 —u?) (- 1)+ﬁ(c§— 1)




Departure flow variability

Remarks:
e Times between departures are approximately independent

e If inter-arrival and process times are exponential (¢, = c. = 1),
then inter-departure times are independent and exponential (c; = 1)

Question: Does the approximation for c; make sense?
e Ifu =~ 1and m = 1, then machine nearly always busy, so
Cq ~ Ce
o If u =~ 0, then ¢, is very small compared to 7,, SO

CdNCa

o lfc, =c,=1,thenc; = 1 (as it should)




Variability interactions - Queueing

e Building blocks for describing effects of variability in production lines:

— Process time variability
— Flow variability

e Question: How to evaluate impact of variability on key performance?

- WIP
— cycle time
— throughput

e Note: Process time is often small part of cycle time, extra time is waiting
e Fundamental issue is to understand the underlying causes of waiting

e Science of waiting: Queueing theory

e Queueing system consists of three components:

— arrival process
— service (production) process
— queue (buffer)




Single machine model

Components:
e Generator G sends jobs to machine M;
e Machine M processes these jobs and sends finished jobs to exit E;

e Exit E is doing some book keeping.

Parameters:
e Mean inter-arrival time ¢, of the generator G;

e Mean process time ¢, of the machine M.

Question: What is the throughput §?

Note: This model can also be seen as two-machine zero-buffer mode
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Object type job

type job = int;

Jobs are numbered.




Generator G

proc G(chan! job a; real ta):
Jjob x;

while true:
alx;
delay ta;
X = x + 1;
end
end

G generates jobs with constant inter-arrival times z,,.
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Machine M

proc M(chan? job a; chan! Jjob b; real te):
Jjob x;

while true:
a7’x;
delay te;
b!x;
end
end

M processes jobs with constant process times #..
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proc real E(chan? job a; int n):
Jjob x;

while x < n:
a7’x;
end;
exit x / time
end

Exit E computes throughput over first n jobs.
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Single machine model GM E

model real GME (real ta, te; int n):
chan job a, b;

run G(a, ta), M(a, b, te), E(b, n)
end




Single machine model

Question: Why is § for random process times smaller than for constant times?

Let A be inter-arrival time, B the (effective) process time and C cycle time,
C = max{A, B}.

Then

5 — 1 - 1
E(C) ~ max{E(A), E(B)}

with equality only for constant A and B.

Randomness leads to starvation (A > B) and blocking (A < B)!
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Single machine model

Question: How to deal with variations in inter-arrival times and process times?

Answer: Use buffers!

If buffer is sufficiently large, then

|
~ max{E(A), E(B)}’




Buffer machine model GBME

proc B(chan? job a; chan! job b; int N):
list job xs;
Jjob x;
while true:
select
size (xs)
Xs =
alt
size (xs)
XS =
end
end
end

model real GBME (real ta, te; int n, N):
chan job a, b;

run G(a, ta), B(a, b, N), M(b, ¢, te), E(c, n)
end

Question: How to calculate throughput in case of buffers? TU /e Technische Universiteit
Answer: Use queueing theory! e




Exponential buffer machine model

e Inter-arrival time is exponential with rate A
e Process time is exponential with rate

e Maximal n jobs in system (including one in G and M).

p; is long-run probability (or fraction of time) of finding i jobs in the system

Question: How to determine these probabilities?

Answer: Through balance equations!




Exponential buffer machine model

State i means a total of i jobs in the system, 1 in process and i — 1 waiting

Note: One of the waiting jobs in state n occupies machine G (which is blocked)

Balance equations

Flow from statei toi + 1 = Flow from statei + 1to i

This yields

DiA = Pit1 L,




Exponential buffer machine model

Solution

A i
Pi = D0 (_> ’ l
M

and p follows from normalization

n
L=/
1=>"pi=po

L=/

1 =4/
1— O/t

The machine utilization is u = 1 — pg and the throughput

Po =

6 =up = (- pon




Infinite capacity buffer model

Now let buffer capacity n tend to infinity

A
po=1—-—
7

andforalli =0,1,2, ...

(-2

Number in system has geometric distribution with parameter A /u!

Remarks:

e We have to require
A<

otherwise the system will explode

e Interpretation: p; is long-run fraction of time of finding i jobs in the system
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Infinite capacity buffer model

e Throughput
5= A

e Utilization

A
u=1-py="=
w

e Mean Work-In-Process (WIP) level

(©.¢)

. Al u
w_;lpl_l—k/u_l—u

e Mean Flow time

_ ek
1—A/w 1—u

e Question: What happenstow andg asu 1 1?7




Infinite capacity buffer model

proc B(chan? job a; chan! job b):

list job xs;
Jjob x;
while true:
select
a?x:

end

end

model real GIBME (real ta, te;
chan job a, b;

run G(a, exponential (ta)),
M(b, c, exponential (te

int n):

B(a, b),
)), E(c,




Mean flow time

e Inter-arrival time is exponential with meanr, = 1/A
e Process time is exponential with meant, = 1/u

e Infinite capacity buffer

e Single machine

e Processing in order of arrival

Then

= 1)t
o= (741

with

.u:te/ta:ﬁ
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Mean flow time

e Inter-arrival time is exponential with meanr, = 1/A

e Process time is general with mean 7, and standard deviation o,
e Infinite capacity buffer

e Single machine

e Processing in order of arrival

Then

u
¢=<y- -+0'Q
I —u

with
ou="1,/t; = Al,
oy =15-(1+c)

® Co = 0./l

e Note that ¢, = 1 for exponential process times! TU /e Technische Uriversitet
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Mean flow time

e Inter-arrival time is general with mean 7, and standard deviation o,
e Process time is general with mean 7, and standard deviation o,

e Infinite capacity buffer

e Single machine

e Processing in order of arrival

Then

u
§0%<V' +1)‘te
1 —u

with
ou=1,/t,
oy =35-(c2+cd

°Cq =04/l

J— Technische Universiteit
[ J Ce —_— Ue/te I U Eindhoven
University of Technology




Mean flow time

Lessons:

e As u tends to 1 then ¢ tends to oo

e As u tends to 1, then approximation (1) becomes exact:
relative error tends to 0;

e As u tends to 1, then distribution of flow time becomes exponential

e Summary:
As system operates close to its maximum capacity,
flow times are long and exponential with mean (1)

e Insensitivity: Mean flow time only depends on mean and standard devia-
tion of inter-arrival times and process times!




Mean flow time

Mean flow time ¢ as function of utilization u«, forO < u < 1, and

ca=1, ¢ =0,1,3. Whoiswho?




