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Lecture notes on Analysis of Manufacturing Systems

• Chapter 3: 3.1, 3.2, 3.3
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• Effective process time is total time seen by a job at a station

• Coefficient of variation c is relative measure of variability

c = σ/t

where t is the mean and σ the standard deviation

• Preemptive breakdowns:

A =
m f

m f + mr
(availability)

te =
t0
A

c2
e = c2

0 + A(1− A)
mr

t0
+ c2

r A(1− A)
mr

t0

where

– t0 and c0 are mean and cv of natural process time

– m f is mean exponential time to failure

– mr and σr are mean and standard deviation of time to repair

Recap: Process time variability
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Example: What is better: short frequent stops or long rare ones?

Suppose t0 = σ0 = 10 minutes

Machine M1: m f = 90, mr = 10, σr = 0

Machine M2: m f = 900, mr = 100, σr = 0

Both machines have same availability A = 0.9, so same effective capacity

re =
1
te
=

A
t0
=

0.9
10
= 0.09

but c2
e = 1.09 for M1 and c2

e = 1.9 for M2!

Recap: Process time variability
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• Flow refers to transfer of jobs from one station to another

• ta and σa are mean and standard deviation of time between arrivals

• Arrival rate

ra =
1
ta

• Coefficient of variation of time between arrivals

ca =
σa

ta

Low ca arrivals

High ca arrivals

Flow variability
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• Times between arrivals are independent and exponential with rate λ

• Memoryless property

P(arrival in (t, t +1)) = 1− e−λ1≈ λ1

So in each small interval1 is an arrival with probability λ1!

• Dividing (0, t) into many small intervals of length1, the number of arrivals
in (0, t) is binomial with n = t/1 and p = λ1

• Since n is large and p is small, this number is Poisson distributed with
parameter np = λt (as1 tends to 0)

P(k arrivals in (0, t)) = e−λt (λt)k

k!
, k = 0, 1, 2, . . .

Poisson flow
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• Since density f (x) = λe−λx is maximal for x = 0, short inter-arrival times
occur more frequently than long ones. So arrivals tend to cluster:

• Superposition of many independent rarely occurring arrival flows is (close
to) Poisson: this is why Poisson flows often occur in practice!

• Merging of two Poisson flows with rates λ1 and λ2 is again Poisson with
rate λ1 + λ2, since

P(arrival in (t, t +1)) ≈ (λ1 + λ2)1.

• Random splitting of Poisson flows with rate λ and splitting probability p is
again Poisson with rate pλ, since

P(arrival in (t, t +1)) ≈ pλ1.

Poisson flow
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Example:

• Two type of jobs arrive at machine for processing, type A and B

• Both job types arrive according to Poisson flows

• Type A jobs arrive at rate 2 jobs per hour, type B with rate 3

Questions:

• What is the probability that during 1 hour no jobs arrive?

• What is the probability that the next job to arrive is type A?

• What is the probability that during 2 hours at least 2 type B jobs arrive?

Poisson flow
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• td is mean time between departures from workstation

• σd is standard deviation of time between departures from workstation

• Departure rate

rd =
1
td

• Coefficient of variation of time between departures

cd =
σd

td

• In serial production lines:

Departures from workstation i are arrivals to workstation i + 1, so

ta(i + 1) = td(i), ca(i + 1) = cd(i)

Departure flow variability
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• Utilization of workstation with identical m machines

u =
rate
m

• Single machine workstation (m = 1)

c2
d ≈ (1− u2)c2

a + u2c2
e (weighted average of c2

a and c2
e)

• Multi machine workstation (m > 1)

c2
d ≈ 1+ (1− u2)(c2

a − 1)+
u2
√

m
(c2

e − 1)

Departure flow variability
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Remarks:

• Times between departures are approximately independent

• If inter-arrival and process times are exponential (ca = ce = 1),
then inter-departure times are independent and exponential (cd = 1)

Question: Does the approximation for cd make sense?

• If u ≈ 1 and m = 1, then machine nearly always busy, so

cd ≈ ce

• If u ≈ 0, then te is very small compared to ta, so

cd ≈ ca

• If ca = ce = 1, then cd = 1 (as it should)

Departure flow variability
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• Building blocks for describing effects of variability in production lines:

– Process time variability

– Flow variability

• Question: How to evaluate impact of variability on key performance?

– WIP

– cycle time

– throughput

• Note: Process time is often small part of cycle time, extra time is waiting

• Fundamental issue is to understand the underlying causes of waiting

• Science of waiting: Queueing theory

• Queueing system consists of three components:

– arrival process

– service (production) process

– queue (buffer)

Variability interactions - Queueing
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Components:

• Generator G sends jobs to machine M;

• Machine M processes these jobs and sends finished jobs to exit E;

• Exit E is doing some book keeping.

Parameters:

• Mean inter-arrival time ta of the generator G;

• Mean process time te of the machine M .

Question: What is the throughput δ?

Note: This model can also be seen as two-machine zero-buffer mode

Single machine model
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type job = int;

Jobs are numbered.

Object type job
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proc G(chan! job a; real ta):
job x;

while true:
a!x;
delay ta;
x = x + 1;

end
end

G generates jobs with constant inter-arrival times ta.

Generator G
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proc M(chan? job a; chan! job b; real te):
job x;

while true:
a?x;
delay te;
b!x;

end
end

M processes jobs with constant process times te.

Machine M
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proc real E(chan? job a; int n):
job x;

while x < n:
a?x;

end;
exit x / time

end

Exit E computes throughput over first n jobs.

Exit E
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model real GME(real ta, te; int n):
chan job a, b;

run G(a, ta), M(a, b, te), E(b, n)
end

Single machine model G M E
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Question: Why is δ for random process times smaller than for constant times?

Let A be inter-arrival time, B the (effective) process time and C cycle time,

C = max{A, B}.

Then

δ =
1

E(C)
≤

1
max{E(A), E(B)}

with equality only for constant A and B.

Randomness leads to starvation (A > B) and blocking (A < B)!

Single machine model
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Question: How to deal with variations in inter-arrival times and process times?

Answer: Use buffers!

If buffer is sufficiently large, then

δ =
1

max{E(A), E(B)}
.

Single machine model
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proc B(chan? job a; chan! job b; int N):
list job xs;
job x;
while true:

select
size(xs) < N, a?x:

xs = xs + [x]
alt

size(xs) > 0, b!xs[0]:
xs = xs[1:]

end
end

end

model real GBME(real ta, te; int n, N):
chan job a, b;
run G(a, ta), B(a, b, N), M(b, c, te), E(c, n)

end

Question: How to calculate throughput in case of buffers?
Answer: Use queueing theory!

Buffer machine model G B M E
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• Inter-arrival time is exponential with rate λ

• Process time is exponential with rate µ

• Maximal n jobs in system (including one in G and M).

pi is long-run probability (or fraction of time) of finding i jobs in the system

Question: How to determine these probabilities?

Answer: Through balance equations!

Exponential buffer machine model
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State i means a total of i jobs in the system, 1 in process and i − 1 waiting

Note: One of the waiting jobs in state n occupies machine G (which is blocked)

Balance equations

Flow from state i to i + 1 = Flow from state i + 1 to i

This yields

piλ = pi+1µ, i = 0, . . . , n − 1,

Exponential buffer machine model
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Solution

pi = p0

(
λ

µ

)i

, i = 0, . . . , n

and p0 follows from normalization

1 =
n∑

i=0

pi = p0
1− (λ/µ)n+1

1− λ/µ

so

p0 =
1− λ/µ

1− (λ/µ)n+1 .

The machine utilization is u = 1− p0 and the throughput

δ = uµ = (1− p0)µ

Exponential buffer machine model
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Now let buffer capacity n tend to infinity

p0 = 1−
λ

µ

and for all i = 0, 1, 2, . . .

pi =

(
1−

λ

µ

)(
λ

µ

)i

.

Number in system has geometric distribution with parameter λ/µ!

Remarks:

• We have to require

λ < µ

otherwise the system will explode

• Interpretation: pi is long-run fraction of time of finding i jobs in the system

Infinite capacity buffer model
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• Throughput

δ = λ

• Utilization

u = 1− p0 =
λ

µ

• Mean Work-In-Process (WIP) level

w =

∞∑
i=0

i pi =
λ/µ

1− λ/µ
=

u
1− u

• Mean Flow time

ϕ =
w

λ
=

1/µ
1− λ/µ

=
1/µ

1− u

• Question: What happens to w and ϕ as u ↑ 1?

Infinite capacity buffer model
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proc B(chan? job a; chan! job b):
list job xs;
job x;
while true:

select
a?x:

xs = xs + [x]
alt

size(xs) > 0, b!xs[0]:
xs = xs[1:]

end
end

end
model real GIBME(real ta, te; int n):

chan job a, b;
run G(a, exponential(ta)), B(a, b),

M(b, c, exponential(te)), E(c, n)
end

Infinite capacity buffer model
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• Inter-arrival time is exponential with mean ta = 1/λ

• Process time is exponential with mean te = 1/µ

• Infinite capacity buffer

• Single machine

• Processing in order of arrival

Then

ϕ =

(
u

1− u
+ 1

)
· te

with

• u = te/ta = λ
µ

Mean flow time
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• Inter-arrival time is exponential with mean ta = 1/λ

• Process time is general with mean te and standard deviation σe

• Infinite capacity buffer

• Single machine

• Processing in order of arrival

Then

ϕ =

(
γ ·

u
1− u

+ 1
)
· te

with

• u = te/ta = λte

• γ = 1
2 · (1+ c2

e)

• ce = σe/te

• Note that ce = 1 for exponential process times!

Mean flow time
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• Inter-arrival time is general with mean ta and standard deviation σa

• Process time is general with mean te and standard deviation σe

• Infinite capacity buffer

• Single machine

• Processing in order of arrival

Then

ϕ ≈

(
γ ·

u
1− u

+ 1
)
· te

with

• u = te/ta

• γ = 1
2 · (c

2
a + c2

e)

• ca = σa/ta

• ce = σe/te

Mean flow time
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ϕ ≈

(
γ ·

u
1− u

+ 1
)
· te (1)

Lessons:

• As u tends to 1 then ϕ tends to∞

• As u tends to 1, then approximation (1) becomes exact:
relative error tends to 0;

• As u tends to 1, then distribution of flow time becomes exponential

• Summary:
As system operates close to its maximum capacity,
flow times are long and exponential with mean (1)

• Insensitivity: Mean flow time only depends on mean and standard devia-
tion of inter-arrival times and process times!

Mean flow time
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Mean flow time ϕ as function of utilization u, for 0 < u < 1, and

ca = 1, cs = 0, 1, 3. Who is who?

Mean flow time


