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• Chapter 5: 5.1, 5.2 (till 5.2.3)

• Chapter 10: 10.1, 10.2, 10.3, 10.4 (till 10.4.8), 10.5, 10.6
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• Ingredients of a probability model

– Sample space S, which can be discrete or continuous

– Events, which are subsets of S
– Probabilities P(E) of events

• Conditional probability

P(E |F) =
P(E F)
P(F)

, or P(E F) = P(E |F)P(F)

• Independent events E and F

P(E F) = P(E)P(F)

Recap
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• Discrete random variable X takes discrete values x1, x2, . . .

• Function p j = P(X = x j) is probability mass function

• Continuous random variable X has density f (x) and distribution function

F(x) = P(X ≤ x) =
∫ x

−∞

f (y)dy

• Interpretation of density: P(x < X ≤ x + dx) ≈ f (x)dx

• Random variables X and Y are independent if for all x and y,

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

Recap
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• Expected value (discrete)

E(X) =
∞∑
j=1

x j p j

• Expected value (continuous)

E(X) =
∫
∞

−∞

x f (x)dx

• Expectation of sum = sum of expectation

E(X + Y ) = E(X)+ E(Y )

• Variance (measure of variability)

var(X) = E
(
(X − E(X))2

)
= E(X2)− (E(X))2 .

Recap
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100 people line up to board an airplane with 100 seats. Each passenger
gets on one at a time to select his assigned seat. The first one has lost his
boarding pass and takes a random seat. If subsequent passengers come and
claim his seat, he apologizes and takes another random unoccupied seat.

You are the last passenger...

What is the probability that your seat is free?

Boarding pass problem
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Consider a system composed of n components, and qi is the probability that
component i works (which is independent of the other components).

Serial system: All components have to work for the system to work.

Then the probability Q that the system works is

Q = q1q2 · · · qn =

n∏
i=1

qi .

Parallel (or redundant) system: At least one component has to work for the
system to work.

Then the probability Q that the system works is

Q = 1−
n∏

i=1

(1− qi).

Reliability
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Serial system of length n, where part i is a parallel system of ki components.
Component (i, j) works with probability qi, j . Then

Qi = 1−
ki∏

j=1

(1− qi, j)

is the probability that part i works and the probability that system works is

Q =
n∏

i=1

Qi .

Example: Improve reliability of serial system.

Which option to prefer?

• K copies of the serial system in parallel.

• K copies of each component in parallel.

Reliability of combined system
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Serial system of length n, where part i is a parallel system of ki identical com-
ponents. Component (i, j) works with probability qi . Then

Qi(ki) = 1− (1− qi)
ki

is the probability that part i works and the probability that system works is

Q(k1, k2, . . . , kn) =

n∏
i=1

Qi(ki).

Question: What are the minimal numbers ki such that Q(k1, k2, . . . , kn) > Q?

Greedy (optimal) approach:

Start with k1 = · · · = kn = 1 and then subsequently add a component for
which Qi(ki + 1)/Qi(ki) is maximal, until Q(k1, k2, . . . , kn) > Q.

Minimal redundancy
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Example:

Serial system with 3 parts, q1 = 0.5, q2 = 0.7, q3 = 0.8.
Target Q is 0.8.
What is the minimal number of components required?

i 1 2 3
Qi(1) 0.500 0.700 0.800
Qi(2) 0.750 0.910 0.960
Qi(3) 0.875 0.973 0.992
Qi(4) 0.938 0.992 0.998

i 1 2 3
Qi(2)/Qi(1) 1.50 1.30 1.20
Qi(3)/Qi(2) 1.17 1.06 1.03
Qi(4)/Qi(3) 1.07 1.02 1.01

You will need 5 extra components. Which?

Minimal redundancy
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• Uniform random variable X on (a, b),

f (x) =
1

b − a
, a < x < b, E(X) =

1
2
(a+b), var(X) =

1
12
(b−a)2.

• Exponential random variable X with parameter (or rate) λ > 0,

f (x) = λe−λx, x > 0, E(X) =
1
λ
, var(X) =

1
λ2 .

• Memoryless property for exponential X : for all t, s > 0,

P(X > t + s|X > s) = P(X > t).

• For independent exponentials X1, . . . , Xn with rates λ1, . . . , λn,

P(min
i

X i > t) = e−(λ1+···+λn)t , t > 0.

So min{X1, . . . , Xn} is exponential with rate λ1 + · · · + λn.

Recap
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Example:

One-time business decision: How much stock to order in order to meet ran-
dom demand during a single period? The demand is a continuous random
variable X with density f (x) = µe−µx for x > 0.

Questions:

• Suppose you order Q units.
What is the (stockout) probability that the stock Q will not be enough to
meet demand?

• How to choose Q so that the stockout probability is no more than 10%?

Recap
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Example:

The time (in hundreds of hours) until failure of power supply to a radar system
is a random variable X with probability density function

f (x) =
{ 1

625(x − 50) for 50 < x ≤ 75,
1

625(100− x) for 75 < x ≤ 100,

and f (x) = 0 otherwise (triangular distribution).

Question:

What is the expected value of X?

Recap
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Let X1, . . . , Xn be independent exponentials with rates λ1 = · · · = λn = λ.

• The density of the sum X = X1 + · · · + Xn is

f (x) = λe−λt (λt)n−1

(n − 1)!
, t > 0,

and

P(X ≤ t) = 1−
n−1∑
i=0

e−λt (λt)i

(i)!
.

This is the Erlang distribution.

Sums of exponentials



15/22

• Gamma random variable X with parameters α > 0 and λ > 0,

f (x) =
1

0(α)
λαxα−1e−λx, x > 0,

and f (x) = 0 otherwise, where 0(a) is the gamma function,

0(a) =
∫
∞

0
e−y ya−1dy, a > 0.

Then

E(X) =
α

λ
, var(X) =

α

λ2 .

Note: The gamma function has the property (integrate by parts)

0(a) = (a − 1)0(a − 1),

so, if a = n, then 0(n) = (n − 1)!, so Gamma(λ, n) = Erlang(λ, n)

Continuous random variables
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• Normal random variable X with parameters µ and σ > 0,

f (x) =
1

σ
√

2π
e−

1
2(x−µ)

2/σ 2
, −∞ < x <∞

Then

E(X) = µ, var(X) = σ 2.

Density f (x) is denoted as N (µ, σ 2) density.

• Standard normal random variable X has N (0, 1) density, so

f (x) = φ(x) =
1
√

2π
e−

1
2 x2

and

P(X ≤ x) = 8(x) =
1
√

2π

∫ x

−∞

e−
1
2 y2

dy.

Continuous random variables
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Normal distribution
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• Linearity: If X is normal, then aX + b is normal.

• Additivity: If X and Y are independent and normal, then X + Y is normal.

Question: What are the parameters of aX + b and X + Y ?

• Probability that X lies≥ z standard deviations above its mean is

P(X ≥ µ+ zσ) = 1−8(z).

• 100p% percentile z p of standard normal distribution is solution of

8(z p) = p.

For example, z0.95 = 1.64, z0.975 = 1.96.

Properties of normals
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Normal (or Gaussian) distribution

Properties of normals
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Let X have density f (x), and v(x) be strictly increasing, with inverse w(y).

Then the density of the random variable Y = v(X) is

f (w(y))
d

dy
w(y).

Example: Let X be exponential with rate λ, then the density of Y =
√

X is
f (y) = 2λye−λy2

. This density is called the Rayleigh density.

σ 2
= 1/(2λ)

Transformations
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Let U be uniform on (0, 1) and X have continuous increasing distribution F ,
with inverse F−1.

Then Y = F−1(U ) has the same distribution as X .

Simulating a random observation X :

• Generate U from U (0, 1);

• Return X = F−1(U ).

Example:

X = −1
λ

log(U ) is exponential with rate λ.

Inverse-transformation method
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X with density f (x) is the life time of an item.

Probability that item of age x will fail in the next1 time units is

P(X ≤ x +1|X > x) =
P(x < X ≤ x +1)

P(X > x)
≈

f (x)1
1− F(x)

.

The failure rate or hazard rate of X is defined as

r(x) =
f (x)

1− F(x)
,

which is the intensity that an item of age x will fail in the next moment.

Example: If X is exponential with rate λ, then r(x) = λ.

Example: If X is uniform on (a, b), then what is r(x)?

Many complex systems have bathtub-shaped failure rate.

Failure rate


