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• Chapter 5: 5.4, 5.5

• Chapter 11: 11.1, 11.2, 11.3, 11.4.1, 11.5
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• Normal random variable X with parameters µ and σ > 0,

f (x) =
1

σ
√

2π
e−

1
2(x−µ)

2/σ 2
, −∞ < x <∞

Then

E(X) = µ, var(X) = σ 2.

Density f (x) is denoted as N (µ, σ 2) density.

• Standard normal random variable X has N (0, 1) density, so

f (x) = φ(x) =
1
√

2π
e−

1
2 x2

and

P(X ≤ x) = 8(x) =
1
√

2π

∫ x

−∞

e−
1
2 y2

dy.

Recap
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• Linearity: If X is normal, then aX + b is normal

• Additivity: If X and Y are independent and normal, then X + Y is normal

• Probability that X lies≥ z standard deviations above its mean is

P(X ≥ µ+ zσ) = 1−8(z)

• 100p% percentile z p of standard normal distribution is solution of

8(z p) = p

For example, z0.95 = 1.64, z0.975 = 1.96

Recap
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Normal (or Gaussian) distribution

Properties of normals
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The Galton board:

Central limit theorem in action

http://www.jcu.edu/math/isep/Quincunx/Quincunx.html
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X1, X2, . . . are independent random variables with the same distribution, and

µ = E(X), σ = σ(X)

Then

E(X1 + · · · + Xn) = nµ, σ(X1 + · · · + Xn) = σ
√

n

Question:

What is the distribution of X1 + · · · + Xn when n is large?

Central limit theorem
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For any a < b,

lim
n→∞

P(a ≤
X1 + · · · + Xn − nµ

σ
√

n
≤ b) = 8(b)−8(a).

In words:

X1 + · · · + Xn has approximately a normal distribution when n is large,
no matter what form the distribution of X i takes!

Remark:

• Central limit theorem still valid for nonidentical X i

• Many random quantities are addition of many small random effects:
That is why the normal distribution often appears!

Central limit theorem
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Example:

A friend claims to have tossed 5.227 heads in 10.000 tosses?

Do you believe this guy?

Central limit theorem
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Question: How to estimate the unknown µ = E(X) of a random variable X?

Suppose n independent repetitions of experiment are performed,
where Xk is the outcome of experiment k, k = 1, . . . , n

An estimator for the unknown µ = E(X) is the sample mean

X(n) =
1
n

n∑
k=1

Xk

The Central limit theorem tells us

X1 + · · · + Xn − nµ
σ
√

n

has an approximately standard normal distribution with σ = σ(X)

Confidence intervals
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So

X(n)− µ
σ/
√

n

has an approximately standard normal distribution!

• Percentile z1−1
2α

is the point for which the area under the standard normal
curve between points−z1−1

2α
and z1−1

2α
equals 100(1− α)%.

• z1−1
2α

is 1.960 and 2.324 for α = 0.05 and α = 0.01.

Then

P

(
−z1−1

2α
≤

X(n)− µ
σ/
√

n
≤ z1−1

2α

)
≈ 1− α

or...

Confidence intervals
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this leads to the following interval containing µ with probability 1− α

P
(

X(n)− z1−1
2α

σ
√

n
≤ µ ≤ X(n)+ z1−1

2α

σ
√

n

)
≈ 1− α.

Remarks:

• If σ is unknown, it can be estimated by square root of sample variance

S2(n) =
1
n

n∑
k=1

[
Xk − X(n)

]2
• For large n, an approximate 100(1− α)% confidence interval for µ is

X(n)± z1−1
2α

S(n)
√

n

• To reduce the width of a confidence interval by a factor of x ,
about x2 times as many observations are needed!

Confidence intervals
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Beware: The confidence interval is random, not the mean µ!
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100 confidence intervals for the mean of uniform random variable on (−1, 1),
where each interval is based on 100 observations

Interpretation
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If X and Y are discrete random variables, then

p(x, y) = P(X = x, Y = y)

is the joint probability mass function of X and Y , and

PX(x) = P(X = x) =
∑

y

P(X = x, Y = y)

PY (y) = P(Y = y) =
∑

x

P(X = x, Y = y)

are the marginal probability mass functions of X and Y .

Example:

Repeatedly draw from 1, . . . , 10. Let X be number of draws until 1 appears
and Y until 10 appears. What is joint probability mass of X and Y ?
What is the probability mass of min(X, Y )?

Joint random variables
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If X and Y are continuous random variables, then

P(X ≤ a, Y ≤ b) =
∫ a

x=−∞

∫ b

y=−∞
f (x, y)dxdy

is the joint probability distribution function of X and Y ,
where f (x, y) is the joint density, satisfying

f (x, y) ≥ 0,
∫
∞

x=−∞

∫
∞

y=−∞
f (x, y)dxdy = 1

The marginal densities of X and Y are

fX(x) =
∫
∞

−∞

f (x, y)dy,

fY (y) =
∫
∞

−∞

f (x, y)dx .

Joint random variables
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• More generally, for every set B,

P((X, Y ) ∈ B) =
∫ ∫

B
f (x, y)dxdy.

• Interpretation of joint density: for small1 > 0

P(x < X ≤ x +1, y < Y ≤ y +1) ≈ f (x, y)12

• Joint density follows by taking partial derivatives,

f (x, y) =
∂2

∂x∂y
P(X ≤ x, Y ≤ y)

Joint random variables
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Example:

X is distance to 0 and Y is angle (in radians) of a random point in a disk of
radius r . Then:

• Joint distribution of X and Y is

P(X ≤ x, Y ≤ y) =
x2

r2
y

2π
, 0 ≤ x ≤ r, 0 ≤ y ≤ 2π

• Joint density of X and Y is

f (x, y) =
2x
r2

1
2π
, 0 ≤ x ≤ r, 0 ≤ y ≤ 2π

Joint random variables



18/24

Example:

• Convolution: Z = X + Y has density

fZ(z) =
∫
∞

−∞

f (u, z − u)du.

• Let X be random on (0, 1) and Y be random on (0, X).
What is the density of the area of the rectangle with sides X and Y ?

Joint random variables
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• The marginal densities of X and Y are

fX(x) =
∫
∞

−∞

f (x, y)dy

fY (y) =
∫
∞

−∞

f (x, y)dx

• X and Y are independent if

f (x, y) = fX(x) fY (y) for all x, y.

Independent random variables
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Example:

• X is distance to 0 and Y is angle (in radians) of a random point in a disk of
radius r . Then:

fX(x) =
2x
r2 , 0 ≤ x ≤ r, fY (y) =

1
2π
, 0 ≤ y ≤ 2π,

and hence f (x, y) = fX(x) fY (y), so X and Y are independent

• Let X and Y be independent standard normal random variables.
What is the distribution of X2

+ Y 2?

Independent random variables
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Example:

Let X1, . . . , Xn be independent exponentials with rates λ1, . . . , λn

• Probability that X i = min{X1, . . . , Xn} is proportional to λi ,

P(X i = min
j

X j) = P(X i < min
j 6=i

X j) =
λi

λ1 + · · · + λn
.

• Ordering of X i and min j X j are independent,

P(X i < min
j 6=i

X j |min
j

X j > t) = P(X i − t < min
j 6=i

X j − t |min
j

X j > t)

= P(X i < min
j 6=i

X j).

Size of minimum does not tell anything about whom of X i is the minimum!

Independent random variables
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Property: For any function g of the continuous X and Y with density f (x, y),

E(g(X, Y )) =
∫
∞

−∞

∫
∞

−∞

g(x, y) f (x, y)dxdy

(assuming that it exists).

Example:

Pick two points at random from the interval (0, 1).
What is the mean distance between these two points?

Substitution rule
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The joint density of X and Y is f (x, y) and let:

• R be distance of point (X, Y ) to 0

• 8 be angle (in radians) of line from 0 to (X, Y ) (between 0 and 2π )

Then the joint density of R and8 is f (rcosφ, rsinφ)r

Example:

X and Y are independent standard normal random variables.
What is the joint density of R and8? And their marginal densities?

Polar coordinates
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• The covariance of X and Y is

cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]
= E(XY )− E(X)E(Y )

• If X and Y are independent, then cov(X, Y ) = 0.

• The correlation coefficient of X and Y is

ρ(X, Y ) =
cov(X, Y )
σ (X)σ (Y )

• Property: −1 ≤ ρ(X, Y ) ≤ 1.

• X and Y are uncorrelated if ρ(X, Y ) = 0

• Independent random variables are uncorrelated

Covariance and correlation


