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CHAPTER1

INTRODUCTION

The history of traffic signal control started on December 1868 when the first traffic signal was installed
in London. Traffic signal setting is an important tool for thecirculation of traffic through cities. With
increasing traffic and congested roads the scheduling of traffic signals becomes more and more important.
Indeed, delays at intersections depend most of the times on signal setting. The classical objectives of traffic
control are according to Gazis[13] the improvement of safety and the decrease of discomfort of drivers.
In other words, signal control is used as a tool for increasing the performance of traffic networks without
changing the road structure.

The main goal of this thesis is to analyze the different traffic control systems nowadays used in the Nether-
lands, especially in Eindhoven. We try to improve the current control systems by using other mathematical
models and methods and try to implement these new signal control systems into new software, so that it
can be used by traffic engineers.

In this chapter we will give some information about the topics that are of interest for the problems described
in this thesis. The outline of this chapter is as follows: In the first section some background information is
given about the traffic situation and traffic control in the city of Eindhoven. The terminology used in this
thesis is listed in section 1.2. In section 1.3 the various system-types of traffic are explained. The various
control-types of traffic management that can be distinguished are illustrated in the next section. We list
several performance criteria for optimal adjustments in section 1.5. In the next section, the assumptions
used throughout this thesis are given. A brief overview of relevant literature is given in section 1.7. The
subjects of the research in this thesis are briefly describedin section 1.8. Finally, in the last section, the
outline of this thesis is given.

1.1 The city of Eindhoven

In this section some background information about the traffic (signal) situation in the city of Eindhoven is
given. First, some facts and numbers are presented to sketchthe traffic situation in this city. Finally, the
role of the department of administration for which this thesis was carried out is described.

1.1.1 Current situation

With more than two hundred thousand inhabitants Eindhoven is the fifth biggest city in the Netherlands.
All these inhabitants together possess almost one hundred thousands motorized vehicles. The presence of

3



1.2. Terminology CHAPTER 1. Introduction

a couple of big multinational companies leads to a lot of commuters from surrounding villages visiting
Eindhoven daily as well, and causing an extra number of vehicles in the city.

The last fifty years the population has increased enormouslyand the average number of motorized vehicles
per inhabitant as well, resulting in an extraordinary increase of the total amount of vehicles in the city of
Eindhoven. On the other hand, the infrastructure of Eindhoven didn’t change dramatically. This results
in congested roads, especially during the morning and evening rush-hours. To prevent having too many
traffic-jams, over one hundred fifty intersections are signalized to regulate the traffic. By adjusting the
signals on these intersections properly, the traffic can be controlled to some extent. When at the end of
the year 2004 the construction of the highway A50 from Nijmegen to Eindhoven is completed even more
vehicles will come into Eindhoven. This is making it even more important to have a good traffic signal
control system in Eindhoven.

1.1.2 Department of Technical Service

The local government of Eindhoven consists of eight different service organizations, and theUrban De-
velopment and Management Serviceis one of them. This service is responsible for the development and
adaptation of the city. Traffic and transportation play an important role here. The service can be divided into
a couple of different fields, including the field Strategy. They formulate points of view regarding the de-
velopment of the city and they make the policy for the Urban Development and Management Service. The
aims of Eindhoven to create good living and working conditions are written down in development-views,
policy documents and long-range plans.

The field Strategy also tries to find for the necessary (financial) resources, and determines the different
steps needed to get the desired results. An important aspectof the realization of the development and
management plans is the cooperation with other organizations, like government institutions. They monitor
the realization of the policy, so they can modify the policy if needed.

1.2 Terminology

In this section the terminology used in this thesis is listed.
Intersection A set of approaches and a common crossing area.
Approach A part of a road leading to the intersection such that the vehicles on it, have

right of way simultaneously.
Effective green-time The time during which the vehicles can leave the queue.
Effective red-time The time during which no departures occur.
Cycle time The time during which all the lights shown on each approach ofthe intersec-

tion have had right of way at least once.
Incompatible Two approaches that cannot safely cross the intersection atthe same time are

called incompatible.
Clearance-time The minimum amount of time between the end of the amber periodof one,

and the beginning of the green period of another traffic signal.
Conflict-group A set of approaches that are all incompatible with each other.
Maximal conflict-group A conflict-group, but with the extra requirement that each approach that is

added to this set is not incompatible with all of the approaches in the maximal
conflict-group.

Queue A line of vehicles waiting to proceed through an intersection.
Delay The difference between the travel time of a vehicle crossingthe signalized

junction and the time it would have taken if no other traffic were present and
the stream in which it travels had constant right of way.

Signal control A control which specifies the duration of the effective green- and red-times
and the sequence of these times for each intersection.

Fixed-time control A signal control method that allows only a fixed sequence and fixed duration
of the effective green-time.
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Fully-actuated control A control method that allows a variable sequence and variable duration of the
effective green-time, depending on vehicle demands.

Platoon A group of vehicles travelling together because of signal control, or other
factors.

Detector A device by which vehicles are registered.

1.3 System-types

With reference to the system to be controlled, we can distinguish three types of systems. The single
intersection, when an intersection operates independently of the others; the arterial system when some
intersections along a one-way or a two-way path are coordinated; the network, when the road system to be
controlled has one or more loops. In this section the three systems will be described in more detail.

1.3.1 Single intersection

An intersection is defined isolated if there are no interactions with the other surrounding intersections. In
practice, this means that the mutual distance must be sufficient to eliminate the platoon effect generated by
the traffic signals.

In the early seventies global agreements were made about thecoding of approaches on an intersection.
With this standard coding the numbers 1 to 99 are used which are broken down according to table 1.1.

Reserved for Numbers
Motorized traffic 1 - 12
Bicycles 21 - 28
Pedestrians 31 - 38
Public transport 41 - 52

Table 1.1: Standard coding of approaches on an intersection

In this thesis we will mainly focus on motorized traffic, because they form the major target group. In
figure 1.1 a basis intersection with all possible motorized traffic approaches is given.

1

2

3

456

7

9

8

10 11 12

Figure 1.1: Standard coding of a single intersection
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1.3.2 Arterial system

In an arterial system, adjacent intersections are connected by one-way or two-way paths. Traffic signals
force vehicles to stop and to remain stopped for a certain time, and then release vehicles in platoons. The
delays and speed changes caused by traffic signals considerably reduce the capacity of an arterial. Usually,
the traffic signals of the intersections of the arterial system are phased. In figure 1.2 an example of two
connected intersections is given.

1 2

Figure 1.2: A simple example of an arterial system

Arterial systems occur often in big cities where the traffic is led around the city center to prevent getting
too many cars in the center.

1.3.3 Network

In a network, a number of intersections are connected by one-way or two-way paths, such that the total
system contains one or more loops. An urban signalized traffic network can be expressed by a directed
graph. Traffic in a network is always moving in platoons, except for traffic arriving at the outside of the
network. An arterial system may be considered to be a simple form of a network.

1.4 Control-types

Typically, traffic signals operate in one of three differentcontrol modes at a signalized intersection, namely,
fixed-time control, pre-time control and fully-actuated control. In this section these three control-types will
be explained. In the rest of this thesis we will only make use of the fixed-time and fully-actuated control,
because the pre-time control can be modelled as a special case of the fixed-time control.

1.4.1 Fixed-time control

In fixed-time control, the traffic control calculated for average conditions, is independent of time and of
the actual characteristics of the traffic flows. The effective green-times and red-times together with the
cycle time are fixed. This is the most well-studied control. There are two related aspects of this kind of
control. The first aspect is that of identifying the optimum signal sequence to be used at a given intersection,
taking into account the characteristics of the intersection. The second aspect is the identification of optimal
durations of the effective green-times of signals whose order is already determined by some method.

Numerical results have shown that this type of control is oneof the best to apply at intersections with long
queues and high utilization.

1.4.2 Pre-time control

In pre-time control the traffic control changes automatically in some times of the day, according to the
amount of traffic present at that time of the day. Actually pre-time control is a form of fixed-time control,
where for certain times of the day a different fixed-time control is determined. Up to ten years ago, most
intersections in a city were functioning according to this type of control. Usually, five day-periods are
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distinguished, which are listed in table 1.2. For these periods a specific fixed-time control is determined,
resulting in a pre-time control.

Period of the day Point of time
Morning rush-hour 7.45 - 8.45
Daytime 8.45 - 16.45
Evening rush-hour 16.45 - 17.45
Evening 17.45 - 23.00
Night 23.00 - 7.45

Table 1.2: Division of a full day into five (pre-time) periods

Because pre-time control is a form of fixed-time control we leave this type of control in the remainder of
this thesis out of consideration.

1.4.3 Fully-actuated control

Fully-actuated control takes into account the presence of vehicles to determine the adjustment of the traffic
signals. The presence of vehicles is detected with a short loop (D1.1, D2.1 and D3.1) at the stop-line and
a long loop (D1.2, D2.2 and D3.2) near the stop-line. In figure1.3 a schematic view of the placement of
these detection loops can be seen.

123

D3.1 D2.1 D1.1

D3.2 D2.2 D1.2

Figure 1.3: Placement of detection loops on an intersection

Nowadays, the most commonly used fully-actuated control works as follows: A signal only turns green,
when vehicles are waiting in front of the stop-line. This canbe detected by the short detection loop. When
a signals turns green, it stays green for a minimum amount of time. After this time it stays green until the
short loop (D1.1, D2.1, D3.1) has detected a gap time of duration at leastγ . When no vehicles are detected
by the short loop, it stays green until the long loop doesn’t detect any vehicles. The effective green-time is
bounded by a maximum time, when the signal (no matter what) turns red.
A special form of fully-actuated control is adaptive control. In normal fully-actuated control, the duration
of the gap time and the maximum effective green-times are fixed and have to be specified by the traffic
engineer. As traffic situations and conditions change, these timings should be changed as well. In Eind-
hoven, this is done not very frequently and certainly not systematically. With adaptive control, methods
and algorithms are derived to automatically adjust these timings.
Results have shown that fully-actuated control is effective in case queues are short. It avoids that cars stop
soon after the effective green-time is finished.
In the past, fully-actuated control strategies have been limited. The reason for this is that traffic engineers
are sceptic about this type of control, because a characteristic of this sort of strategy is the reliance on
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heuristics rather than formal mathematical techniques to control the signals. But because of the increas-
ing amount of vehicles on the road, most of the traffic engineers agree that in the future more and more
intersections have to be regulated by fully-actuated control.

1.5 Performance criteria in traffic control

The main target of this thesis is to find good methods for adjusting traffic signals. Many performance
criteria to evaluate traffic control systems can be proposed. Some of these criteria are listed below.

• (Weighted) average delay per vehicle.

• Maximum individual delay.

• (Weighted) average queue length.

• Maximum individual queue length.

• Throughput of the system.

• Percentage of the vehicles that are stopped as they go through the system.

• Average number of stops before a vehicle goes through the system.

The (weighted) average delay is commonly used as performance criterion, since this also expresses in some
way the other criteria.

1.6 Assumptions

For clarity and simplicity, we make the following simplifying assumptions, valid for all the different prob-
lems handled in this thesis:

• All vehicles are identical.

• When driving, the vehicles travel with a constant speed.

• Queued vehicles accelerate instantaneously to their normal speed when activated and, vice versa,
vehicles stop instantaneously when arriving at a queue.

• Vehicles waiting in the queue drive off with a fixed succession time that remains constant while
driving.

• Vehicles (not in a network) arrive one by one according to a Poisson process.

1.7 Overview of literature

In this section we will discuss the literature already published about traffic control management. In each of
the subsections literature about different traffic controlsystems will be handled separately.
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1.7.1 Fixed-time control on a single intersection

The problem of optimizing signal control problems has been addressed by several researchers. One of the
earliest results is the well known Webster’s formula that relates the average delay at an intersection with
the effective green-time. Based on this approximation, Webster [26] has developed a technique for finding
a fixed-time control scheme.

Ramanathan et al. [20] presented a mathematical formulation for the problem of optimizing the operations
of a modern traffic signal. The proposed formulation is a Mixed Integer Non-Linear program, which is
solved with Branch and Bound techniques.

Riedel and Brunner [21] found a new approach for designing traffic control systems. First, the model of
an intersection is derived by considering a simple intersection. Then, using a combination of Dynamic
Programming and Branch and Bound, a control algorithm is developed.

1.7.2 Fully-actuated control on a single intersection

Fedotkin and Litvak [9] have studied a fully-actuated traffic control at an intersection. A new algorithm
is introduced and analyzed. Connections between the new algorithm and already known algorithms are
established.

In subsection 1.4.3 of this thesis the most commonly used fully-actuated control is described. A traffic
signal stays green until the short loop has detected a headway of duration at leastγ . Darroch et al. [7]
investigated how one should choose theγ so as to minimize the average delay per vehicle at the intersection.

Taale [23] has presented two approaches to determine the settings in an adaptive traffic control and has
compared the two of them. The first approach is based on Webster’s formulas for the cycle time and the
effective green-times. The second approach is based on evolutionary algorithms. By means of random
mutations within solutions, random combinations of solutions and selection of the best solutions, a pre-
defined performance function is optimized.

1.7.3 Signal control in a network

Improta [15] has given a good overview about basic arterial system control and network control. It deals
with phasing intersections of an arterial. Furthermore a mathematical model for synchronizing the inter-
sections within a network is given.

Finally, Shimizu et al. [22] have studied a signal control method which controls congestion lengths in a
two-way traffic network systematically. A network control algorithm is presented, in which the three signal
control parameters consisting of the cycle length, green split and offset are searched systematically so as to
minimize the sum of congestion lengths in the traffic network.

1.8 Subjects of research

As we have seen in the previous section, a lot of research had been done in the field of traffic signal control.
However, many improvements of existing techniques and development of new techniques are possible. In
this section the subjects of interest in this thesis are described.

The main object of this thesis is to find good and efficient methods for adjusting traffic signals. This can be
done for different types of systems and controls. Ramanathan et al. [20] formulated the problem of finding
an optimal fixed control for a single intersection as a Mixed Integer Non-Linear program. We formulate
the same model in a different way and solve the resulting Mixed Integer Program using new techniques.
This results in a high quality fixed-time control.

The objective in this optimization program is given by the weighted average delay of vehicles on the
intersection. But to calculate this average delay, and because no exact analytical expressions are known we
have to make use of approximation formulas. There is a variety of approximation formulas that can be used,
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but in this thesis we will derive another accurate approximation formula of the average delay depending on
different parameters.

A different view on the traffic signal issues can be obtained by modelling the traffic system as a polling
system. The basic polling system is a system of multiple queues, attended to by a single server in a cyclic
order. Many resemblances between a polling and a traffic system can be found. So methods used to
optimize polling systems can be translated and used to optimize traffic systems. As we have mentioned in
the previous section, Darroch et al. [7] have investigated the most commonly used fully-actuated control
outlined in subsection 1.4.3. In this control, the effective green-time is bounded by a maximum time, when
the signal (no matter what) turns red. Nowadays this maximumtime is based on a fixed-time control,
developed for the intersection. In this thesis we will investigate a new method of finding these maximum
times based onk-limited polling.

When we take these maximum effective green-times to be infinite, the fully-actuated control corresponds
to the exhaustive control. With exhaustive control, the effective green-time for each approach lasts until the
queue has become empty. Exhaustive control is effective at intersections, where queues are not so long. It
is a precursor of the current fully-actuated control as described in this chapter. In this thesis we will analyze
this type of control mathematically and compare these results with results obtained via simulation.

There is an extensive literature on traffic signal control, but in the area of traffic networks the results are
disappointing. A specific type of a network will be investigated: the arterial system. This type of system
is less complex than the generical network by the absence of difficult routing issues. An additional reason
for investigating an arterial system, is the fact that in Eindhoven a large project has been started at the
beginning of 2004 to reschedule the main arterial in the cityof Eindhoven. In this thesis we will compare
two different methods of phasing the intersections of an arterial.

1.9 Outline of the thesis

In the previous section, we have described the subjects of research. In this section the main topics of this
thesis are outlined. The remainder of this thesis is structured as follows.

In chapter 2 a method for finding a fixed-time control for an isolated single intersection is given. In the
next chapter, we apply this method to an intersection in the city of Eindhoven. The results are compared
with the current situation. In chapter 4 we shall determine an approximation formula for the average delay
of vehicles on an isolated intersection, with a fixed-time control. Furthermore we compare the results of
this new formula with existing formulas, that are nowadays world-wide used in traffic signal management.
The exhaustive control system is analyzed by means of momentfitting techniques in chapter 5. For a
simple isolated intersection we shall approximate the average effective green-time and the average delay
and compare these results with results obtained via simulation. Subsequently, in chapter 6 we shall give a
method for finding a good dynamic traffic control system. Thismethod is applied to an intersection in the
city of Eindhoven and the results are compared with results of the current situation. In the area of multiple
intersections, we investigate in chapter 7 different ways how to phase the signals of different intersections.
Finally, in the last chapter a practical case of phasing traffic signals in the city of Eindhoven is investigated.
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CHAPTER2

OPTIMIZING FIXED-TIME CONTROL

This chapter presents a solution method to find a fixed-time control for an isolated single intersection. The
problem is formulated as a Mixed Integer Programming (MIP) problem. The objective to be minimized
is the weighted average delay of vehicles on the intersection. This average delay is approximated by the
formula of Webster, which is nonlinear. These nonlinear functions can be approximated by linear functions,
the so-called piecewise linear formulation. The objectivecurve is divided into pieces that are approximated
by straight lines. These straight lines are added in an iterative process described in this chapter.

The outline of this chapter is as follows: In section 2.1 the problem of determining a fixed-time control for
an isolated single intersection is described. In section 2.2 a simplified problem is translated into a Mixed
Integer Program. To find better and faster solutions an algorithm is introduced in section 2.3. In the next
chapter we will apply the method described in this chapter toan intersection in the city of Eindhoven.

2.1 Problem description

This section introduces the problem of finding an optimal fixed-time control for an isolated single inter-
section. Consider a single intersection in a city. This intersection has no interactions with surrounding
intersections. To regulate the traffic on this intersection, traffic signals are placed. These signals have a
fixed-time cyclic control, that means that the effective green-times and the order in which signals turn green
are fixed.

Some approaches on the intersection are incompatible. The signals cannot turn green at the same time
because of safety reasons. For each pair of incompatible signals clearance-times are given. When signali
and signalj are incompatible, two clearance timessi j andsj i are introduced. For examplesi j indicates the
minimum time between the end of the effective green-time of signal i and the beginning of the effective
green-time of signalj .

When a signal switches from red to green, vehicles start to accelerate. Drivers don’t pay attention to
traffic signals during their acceleration. That’s why the length of the effective green-time is bounded by a
minimum value. When the signal of an approach turns green, allthe incompatible approaches have to wait
until the green-period is finished. To limit this waiting time, or delay, the length of the effective green-time
is bounded by a maximum as well.

Only traffic control systems that yield a stable system are determined. The system is called stable, if for
each approach the average amount of vehicles that can move onduring the effective green-time is larger
than the total average number of vehicles that arrives during a whole cycle.
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Due to the fact that some approaches on an intersection are incompatible, not all signals can be turned
green at the same time. Vehicles on an approach wait until signals of incompatible approaches turn red and
by that reason are delayed. The delay as a function of the effective green-time can be approximated by the
formula of Webster [26]. The main objective is to find a fixed-time control in such a way that the weighted
average delay of vehicles on the intersection is minimized.

2

5

8

11

Figure 2.1: Example of a simple intersection

Example:
Consider the intersection as given in figure 2.1. Here the signals of the approaches 2 and 8 are green at the
same time. The same holds for the signals of the approaches 5 and 11. Signals 2 and 8 are incompatible
with signals 5 and 11. Note, that the approaches 2 and 8 are ‘sub-incompatible’. This means that for
example, vehicles turning left on approaches 2 and 8 have right of way together, but can come into conflict
with each other. These vehicles have to obey the common traffic rules.

2.2 The initial model formulation

In this section the description of the problem in section 2.1is translated into an optimization model. First,
an informal verbal presentation of the model is provided, followed by the extensive notation needed to
describe all aspects of the model. The objective function and each constraint is developed separately. A
model summary is listed at the end.

2.2.1 Verbal model statement

The objective function and constraints are expressed in thefollowing qualitative model formulation:

Minimize: Weighted average delay of vehicles on the intersection.
Subject to:

1. For all traffic signals: Length of the effective green-time must be smaller than or equal to the maxi-
mum green-time and must be greater than or equal to the minimum green-time,

2. For all traffic signals: The beginning and the end of the effective green-times must fall in the range
[0, Cycle),

3. For all traffic signals: The delay of vehicles as a function ofthe length of the effective green-time is
given by the formula of Webster,

4. For all traffic signals: The green-period cannot overlap thegreen-periods of incompatible signals
and incompatible approaches have to take into account a clearance-time for safety,

5. For all traffic signals: The length of the effective green-time must be large enough to handle all the
arriving vehicles at that signal,

6. For one traffic signal: The beginning of the effective green-time is equal to zero.
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2.2.2 Notation

The verbal model statement of the problem can be specified as amathematic model using the following
notation.

Indices:
I set of traffic signals, indexi (second indexj )

Qi set of incompatible traffic signals of signali
Parameters:

n number of traffic signals on the intersection
c cycle time (integer)
λi arrival rate of vehicles at traffic signali
µi departure rate of vehicles at traffic signali
ρi occupation rate of traffic signali (ρi = λi /µi )
wi load/weight of traffic signali
mgi minimum effective green-time of traffic signali
Mgi maximum effective green-time of traffic signali
si j necessary time between the end of the green period of signali and the beginning of signalj

Variables:
bi time when signali turns green (range[0, c))
ei time when signali turns red (range[0, c))
gi length of effective green-time of signali (gi = (ei − bi ) modc)
di average delay of vehicles at traffic signali
D weighted average delay of vehicles at the intersection (D = ∑n

i=1 wi di )
zi j 1 if ei − b j < 0

0 otherwise

2.2.3 Mathematical model

The constraints as formulated in the first section of this chapter can be translated into mathematical con-
straints, using the notation above. The constraints formulated in this subsection have the same numbers as
the constraints in the verbal model statement earlier.

Constraint 1

The length of the effective green-time is bounded by a maximum and minimum. The resulting constraint
assumes a simple format.

mgi ≤ gi ≤ Mgi , i = 1, . . . , n

Constraint 2

The variablezi j is used to circumvent difficulties that appear by the cyclic behavior of the control. The
lengths of specific intervalsei − b j have to be calculated. Whenei occurs afterb j in the cycle there is
no problem. On the other hand, ifb j occurs afterei , the duration of the interval will be negative. In the
latter case a cycle length has to be added to the solutionei − b j . This can be realized by always computing
ei − b j + czi j when a length of time has to be computed. The following holds for variablezi j :

zi j =
{

1 if ei − b j < 0
0 otherwise

, i, j = 1, . . . , n

This is realized by adding the following constraints.

b j − ei ≤ czi j , i, j = 1, . . . , n
ei − b j < c(1 − zi j ), i, j = 1, . . . , n

13
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So the length of the effective green-time is then given by:

gi = ei − bi + czi i , i = 1, . . . , n

Furthermore, we have to claim that the beginning as well as the end of the effective green-period has to lie
in the interval[0, c). This is guaranteed by the following constraint:

0 ≤ bi < c, i = 1, . . . , n
0 ≤ ei < c, i = 1, . . . , n

Constraint 3

The average delaydi of traffic signali depends on the length of the effective green-timegi of signali . This
function is not linear, because thedi decreases slower whilegi increases. The first derivative is negative,
while the second derivative is positive. A good approximation of the average delay of vehicles can be
obtained by the formula of Webster. The formula given below is a part of the original formula, without
correction term. In chapter 4 this formula is discussed and alternative and better formulas are derived.

dW E B
i (gi ) := (c − gi )

2

2c(1 − ρi )
+ ρi c2

2gi (µi gi − λi c)
, i = 1, . . . , n

This function is not linear and needs to be approximated by a number of piecewise linear equations (Ni ).
An example of the Webster function is given in figure 2.2. In this example, the function is bounded from
below by four line pieces. Because of the fact that the objective function has to be minimized, the following
constraints have to be added to the program.

g i

d i

c0

Figure 2.2: Example of delaydi versus the effective green-timegi according to Webster’s formula

di ≥ αikgi + βik, k = 1, ..., Ni , i = 1, . . . , n

Constraint 4

For each pair of incompatible traffic signals the green-periods cannot overlap. This corresponds to the fact
that theb j or theej cannot fall in the effective green-time of signali . The translation of this requirement
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into mathematics is symbolized in figure 2.3. This is only true, when the dashed line plus the dotted line
minus the solid lines are equal to a whole cycle length. This results in the following constraint:

(ei − b j + czi j ) + (ej − bi + czj i ) − (ei − bi + czi i ) − (ej − b j + czj j ) = c, i, j = 1, . . . , n

which can be simplified to:

zi j + z j i − zi i − z j j = 1, i, j = 1, . . . , n

b i

e i

b j

e j

Figure 2.3: Explanation of constraints belonging to incompatible signals

Between the end of the effective green-time of traffic signali and the beginning of the effective green-time
of traffic signal j must be at least a clearance-timesi j . This can be written as follows:

b j − ei + czi j ≥ si j , i, j = 1, . . . , n

Constraint 5

We require that the traffic control leads to a stable system. The system is called stable, if for each approach
the average amount of vehicles that can leave the approach during the effective green-time is (strictly) larger
than the total average amount of vehicles that arrive duringa whole cycle. In other words, the number of
vehicles does not explode. This can be easily translated into the following constraint:

µi gi > λi c, i = 1, . . . , n

Constraint 6

The fixed-time control produces a cyclic scheme of times whensignals turn green and red. When to all
these times the same numberδ ∈ [0, c) is added, the resulting scheme is identical to the first, withthe
small difference that all points of time are moved over a period δ. To reduce the computation time, we can
simply fix the beginning of the effective green-time of the first signal to 0. The resulting constraint assumes
a simple format:

bsignal1 = 0
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Objective

The objective function being the weighted average delay of all vehicles on the intersection, has to be
minimized

Minimize:
∑n

i=1 wi di

The mathematical description of the model can now be summarized as follows. The constraints in the
model hold for alli and j

Minimize:
∑n

i=1 wi di

Subject to:
b j − ei ≤ czi j

ei − b j < c(1 − zi j )

gi ≤ mgi

gi ≥ Mgi

di ≥ αikgi + βik, k = 1, ..., Ni

zi j + z j i − zi i − z j j = 1
b j − ei + czi j ≥ si j

µi gi > λi c
bi < c
ei < c
gi < c
bi ≥ 0
ei ≥ 0
gi ≥ 0
di ≥ 0
zi j ∈ {0, 1}

bsignal1 = 0

The program described above (MainProgram) is called a MixedInteger Program, because some of the
variables used to formulate the problem are continuous and some of them are integer (binary). The Main-
Program can be solved with AIMMS, a linear and mixed integer program solver.

2.3 Adding piecewise linear constraints

In this section, we present an algorithm to find more accurateand faster optimal solutions of the mathe-
matical problem described in the previous section. For eachsignali the delay as a function of the length
of the effective green-time is approximated byNi linear equations (see figure 2.2). The number of linear
equations is given as a parameter. The problem is to find the number of linear approximation equations so
that the accuracyε of the solution is high enough. This number is hard to find, andthe accuracyε can only
be achieved by trial and error.

2.3.1 Concept

As we have seen in the previous section, an optimal solution of the Mixed Integer Program can be deter-
mined given the linear constraints that approximate the Webster function. Here we assume thatNi = 2
for all i . To be more specific: The Webster function is approximated bytwo linear equations given by the
tangent line of the Webster function at two chosen values. These values are chosen in the following way:

gMin
i := λi c

µi
+ 1, i = 1, . . . , n

gMax
i := c, i = 1, . . . , n
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So, the linear approximation constraints (given in the previous section) are of the form:

di ≥ αikbi + βik, k = 1, 2

Theαik andβik are given by:

αi 1 = dW E B ACC
i (gMin

i ), i = 1, . . . , n
βi 1 = dW E B

i (gMin
i ) − gMin

i αi 1, i = 1, . . . , n
αi 2 = dW E B ACC

i (gMax
i ), i = 1, . . . , n

βi 2 = dW E B
i (gMax

i ) − gMax
i αi 2, i = 1, . . . , n

The derivative of the Webster function (dW E B ACC
i (gi )) is given in Appendix A.

A pseudo-optimal solution can be easily determined. So the pseudo-optimalgi denoted bȳg∗
i are known.

Because the Webster function is bounded from below by the linear constraints, a lower bound (L B) for
the real optimal solution is given by the objective functionvalue of the Mixed Integer Program. An upper
bound (U B) is given by the weighted sum of the Webster functions, with the ḡ∗

i filled in. Now a new
constraint can be added to the set of old constraints (soNi := 3):

di ≥ αi 3gi + βi 3, i = 1, . . . , n,

whereαik andβik are given by:

αi 3 = dW E B ACC
i (ḡ∗

i ), i = 1, . . . , n
βi 3 = dW E B

i (ḡ∗
i ) − ḡ∗

i αi 3, i = 1, . . . , n

In figure 2.4 the process of adding constraints is shown.

g i

d i

cl i c / m i0 g i *

Figure 2.4: Piecewise linear approximation of the Webster function

By adding these new constraints the approximation of the Webster function by these linear equations will
be better in the neighborhood of the optimal solution. The resulting Mixed Integer Program can again be
solved. This procedure can be repeated untilU B− L B is small enough. So, we proceed with the algorithm
until U B − L B is smaller than a valueε timesU B. We have chosenε equal to 0.001. The iterative
algorithm is summarized in the next subsection.
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2.3.2 Algorithm

The algorithm described in the previous subsection is outlined below and determines the optimal sequence
and durations of effective green-times.

Ni := 0;

Generate approximation constraints;

Solve MainProgram;

L B =MainProgram.Objective;

U B = ∑n
i=1 wi d

W E B
i (ḡ∗

i );

WHILE (U B − L B) > εU B DO

FOR each traffic signal DO

Ni := Ni + 1;

αi Ni = dW E B ACC
i (ḡ∗

i );

βi Ni = dW E B
i (ḡ∗

i ) − ḡ∗
i αi Ni ;

Add Constraint di ≥ αi Ni gi + βi Ni ;

ENDFOR;

Solve MainProgram;

L B =MainProgram.Objective;

U B = ∑n
i=1 wi d

W E B
i (ḡ∗

i );

ENDWHILE.

The proposed algorithm relies on formal mathematical techniques rather than heuristics. Under the as-
sumptions, it is expected that the optimal solution found bythe algorithm is globally optimal. Since the
algorithm is mathematically based, it may be shown that the solution produced is optimal for the conditions
and within the constraints imposed. The solution can thus beused with confidence that there is no better
alternative under the given circumstances.

18



CHAPTER3

OPTIMIZING FIXED-TIME CONTROL: EXAMPLE

The intersection that is investigated in this chapter, is one of the busiest intersections in Eindhoven. During
day time almost 30000 motorized vehicles pass the intersection. The intersection is part of the main arterial
around the center of Eindhoven. Especially during the rush hours, in the morning from 7.45 AM until 8.45
AM and in the afternoon from 4.45 PM until 5.45 PM, the approaches are filled with vehicles. In this
chapter we will investigate a fixed-time signal control during the rush hour in the late afternoon.
The outline of this chapter is as follows: First, in section 3.1 the input, as well as some background informa-
tion of the intersection is given. The method described in chapter 2 is implemented with the optimization
software package AIMMS. The current signal scheme and the new found signal scheme are presented in
section 3.2 and 3.3 respectively. In section 3.4 the structure of the simulation program is discussed. In
section 3.5 the newly found signal scheme is compared with the current scheme by simulation. Finally, a
sensitivity analysis of the results is done in the last section.

3.1 Introduction

In this section all the necessary input and information of the investigated intersection is given.

3.1.1 Notation

The following notation is used in the rest of this chapter.

I = Set of traffic signals (indexi )

c = Cycle time

λi = Arrival rate of vehicles at traffic signali

µi = Departure rate of vehicles at traffic signali

bi = Time when signali turns green (range[0, c))

ei = Time when signali turns red (range[0, c))

gi = Length of the effective green-time of signali

wi = Weight of signali (used in the objective)

di = The average delay of vehicles at signali

ρ∗
i = Degree of saturation of signali
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3.1.2 Input and background information

The investigated intersection is schematically presentedin figure 3.1. As can be seen in this figure, there

8
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1 1 1 21 0

2
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2 7 2 8

2 1

2 2
2 32 4

2 5

2 6

7 1

Figure 3.1: Overview of intersection (Scale 1:700)

are seven car signals (numbered 2, 5, 8, 9, 10, 11, 12). Furthermore, there are sixteen other signals for cy-
clists (numbered 21, 22, 23, 24, 25, 26, 27, 28) and pedestrians (numbered 31, 32, 33, 34, 35, 36, 37, 38).
Finally, there is one special signal 71 for busses. The length of the effective green-time of the cyclist
and pedestrian signals is fixed, and is based on the design of the intersection. When the average speed of
the road user and the length of the traversed way is known, thefixed effective green-time can be easily
computed. In table 3.1 the average speed of the different road users is given.

Road user Average speed (m/s)
Car (to the left) 8.0
Car (to the right) 8.0
Car (straight on) 12.0
Bus 8.0
Cyclist 4.0
Pedestrian 1.2

Table 3.1: Average speed of different types of road users

In 1999 the number of arriving vehicles during one hour was counted at all signals. The arrival rateλi of
signali , is the traffic intensity given in number of arriving cars persecond and can be directly calculated
from this counting. The drive off capacity, given in the maximum number of cars leaving per hour, of
vehicles for the different signals can be easily computed, based on the design of the approaches, resulting
in the total amount of vehicles leaving the approach per second (departure rateµi ). The objective that
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i wi λi µi

2 0.121 0.0731 0.4722
5 0.158 0.0956 0.4722
8 0.153 0.0922 0.4722
9 0.175 0.1058 0.4722
10 0.068 0.0411 0.4722
11 0.203 0.1228 0.4722
12 0.119 0.0717 0.4722

Table 3.2: Input of intersection

is minimized is the weighted average delay of vehicles on theintersection. In table 3.2 the input of this
intersection is given.

As the computation time of the AIMMS program increases exponentially with the number of traffic signals,
we try to minimize this number. The intersection can be simplified by taking one cyclist/pedestrian signal
instead of four signals. For example, signals 21, 22, 31 and 32 can be represented by signal 21, having the
same set of incompatible signals. Later on, we can fit signals22, 31 and 32 in the signal scheme manually.

From figure 3.1, we can derive which approaches (and signals)are incompatible. At this intersection,
partial conflicts are permitted. For example, approach 8 and24 can have right of way simultaneously.
Possible conflicts between road users are solved by following the normal traffic rules. In Appendix C can
be found, which signals are incompatible with each other. Inthe same Appendix the clearance-times of
these incompatible signals are given.

3.2 Current situation

The current signal scheme is presented in table 3.3. The cycle time is 90 seconds.

i bi (s) ei (s) gi (s) i bi (s) ei (s) gi (s)
2 16.5 32.5 16.0 25 62.0 80.5 18.5
5 67.0 85.0 18.0 26 57.0 73.5 16.5
8 23.5 55.0 31.5 27 17.0 33.0 16.0
9 36.0 57.0 21.0 28 12.0 26.5 14.5
10 78.0 12.0 24.0 31 - - -
11 65.0 11.5 36.5 32 - - -
12 0.0 12.0 12.0 33 24.0 48.0 24.0
71 64.0 17.0 43.0 34 26.0 47.5 21.5
21 70.0 85.0 15.0 35 - - -
22 69.0 75.5 6.5 36 - - -
23 23.5 61.0 37.5 37 16.5 31.0 14.5
24 23.5 51.5 28.0 38 12.0 22.0 10.0

Table 3.3: Current signal scheme

The intersection is part of the main arterial of the city. Fora good circulation, the traffic signals of the
intersections of this arterial are phased. As a result all intersections of this arterial have the same cycle time
of 90 seconds. In table 3.3 no settings for traffic signals 31, 32, 35 and 36 are given. These signals for a
pedestrian crossing turn green, when someone pushes a button.
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3.3. Results CHAPTER 3. Optimizing fixed-time control: Example

3.3 Results

In figure 3.2 the output screen of the AIMMS program is displayed. On this screen, the input is given at
the left-hand side. At the other side, the output is presented. A bar chart of the optimal signal scheme with
a cycle time of 57 seconds is given. Furthermore, a graph as well as a table of the objective as function of
the cycle time can be seen at the bottom of the screen. Increasing the optimal cycle time of 57 seconds,
will gradually increase the objective. On the other hand, decreasing the cycle time will lead to much higher
objective values.

Figure 3.2: Print of AIMMS output screen

In table 3.4 the optimal signal scheme with a cycle time of 57 seconds is given.

i bi (s) ei (s) gi (s) i bi (s) ei (s) gi (s)
2 0.0 15.0 15.0 25 45.0 57.0 12.0
5 27.5 43.6 16.1 26 45.0 57.0 12.0
8 5.0 20.5 15.5 27 0.0 15.0 15.0
9 16.0 33.6 17.6 28 53.6 15.0 18.4
10 23.0 43.0 20.0 31 30.5 43.6 13.1
11 36.6 57.0 20.4 32 30.5 43.6 13.1
12 44.6 57.0 12.4 33 11.5 20.5 9.0
71 36.1 4.0 24.9 34 11.5 32.1 20.6
21 30.5 43.5 13.0 35 45.0 57.0 12.0
22 30.5 43.5 13.0 36 47.0 57.0 10.0
23 11.5 25.5 14.0 37 0.0 15.0 15.0
24 11.5 36.1 24.6 38 53.6 15.0 18.4

Table 3.4: Optimal signal scheme
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3.4 Simulation program

To test whether the developed solution method works well, a simulation program has been written. It sim-
ulates a fixed time control of an isolated single intersection. In this section the structure of this simulation
program is explained.

3.4.1 Input

The input needed to simulate the system is summarized below:

I = Set of traffic signals (indexi )

c = Cycle time

λi = Arrival rate of vehicles at traffic signali

µi = Departure rate of vehicles at traffic signali

bi = Time (modc) when signali turns green (range[0, c))

ei = Time (modc) when signali turns red (range[0, c))

The vehicles at signali arrive according to a Poisson process with parameterλi . The departure process
consists of deterministic departures. Each 1/µi seconds a vehicle leaves approachi . Thebi andei are
chosen in such a way that incompatible approaches don’t haveright of way simultaneously.

3.4.2 Discrete-event simulation

We have written a discrete-event simulation with an event scheduling approach. The event scheduling ap-
proach concentrates on the events and how they affect the system. The three events that can be distinguished
are:

1. Arrival of a vehicle

2. Beginning of the effective green-time

3. End of the effective green-time

The departure of a vehicle can be seen as event four. But to obtain a value for the delay of a vehicle, the
order in which vehicles have arrived needs to be stored. We didn’t make use of this departure-event, but
kept track of the amount of ‘work’, c.q. the time to clear the vehicles, waiting in the queue. Out of the
amount of departure time waiting at the signal and the beginning and end of the effective green-times, the
departure time and subsequently the delay can immediately be calculated when a vehicle arrives.

When for example, two approaches belong to the same traffic signal, we doubled the departure rate of this
signal. This is not valid when a vehicle arrives and there is no waiting queue. In that case the departure
rate is equal to the original departure rate instead of the doubled one.

We keep track of the time points at which the next events of thedifferent types occur. To record these time
points we make use of a binary search tree. In a tree, the time points are not ordered in a straight line, like
earliest event first, and so on. Instead, the starting time point, called the root, is linked to two other nodes,
called its children, and those nodes in turn are linked to other children, and so on. Formally, a tree is either
empty, or a root, which is connected to one or more other trees, called the subtrees of the root. The order
of all time points in this tree is important. Formally, in a binary search tree the following holds:

• All the time points in the left subtree take place earlier than the time point of the root

• All the time points in the right subtree take place later thanthe time point of the root

• The left and right subtrees are also binary search trees
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We can conclude, that the event that takes place first, is the leftmost node in the tree. We use a binary
search tree in order to minimize the distance we have to go to reach any given element. Searching for an
element in a binary tree containingn nodes is anO(logn) process and building the tree in the first place is
an O(nlogn) process, if the tree is reasonably well balanced.

The simulation then consists of finding the smallest time point in this tree, setting the current time to this
event time and executing the corresponding activities. Here we will describe how these events affect the
system and what activities are carried out.

1. Arrival of a vehicle

With an arrival, the total amount of vehicles waiting at thatapproach is increased and a new arrival at the
same approach is simulated.

2. Beginning of the effective green-time

When a traffic signal turns green, the state of this signal changes. Vehicles at the approach have right of
way until the end of the effective green-time. A new event, the beginning of the effective green-time in the
next cycle, is generated and added to the binary search tree.

3. End of the effective green-time

When a traffic signal turns red, the state of this signal changes. A new event, the end of the effective green
time, so the beginning of the effective red-time, is generated and added to the binary search tree. When
the signal turns red and a vehicle is not completely driven off, two different scenarios can be followed.
We have chosen for preemptive resume, that means, the drive-off time of the vehicle is preempted, but is
continued at the beginning of the next effective green-time.

After each event the total number of waiting vehicles at the approaches is updated. As stopping criterium
for this simulation the runlength is taken. When the current simulation time exceeds this runlength the
simulation is ended.

3.4.3 Overview

The simulation described in the previous subsection is outlined below.

Simulation time:= 0;
Initialize system and statistics;

Initialize event list;

WHILE simulation time<runlength DO

Determine next event type in binary search tree;

Remove first event;

Update simulation time;

Update system state and statistics;

Generate and add future events;

ENDWHILE;

Compute and print statistics.

3.5 Analysis versus simulation

In this section three signal schemes for the intersection are simulated with the program, described in the
previous section. The objective to be minimized is equal to the weighted sum of the average delays. First,
the current situation, with a cycle time of 90 seconds is investigated. Because the investigated intersection
is part of an arterial in which the intersections are phased,it is probably desired that the current cycle
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length is preserved. Therefore, in the second case the newlyfound signal scheme with a chosen cycle time
of 90 seconds is investigated as well. Finally, the optimal signal scheme with a cycle time of 57 seconds
is tested. For each case the average delay is calculated. From this, the objective given by the weighted
average delay immediately follows. In the second and third table, the approximation of the average delay
based on Webster’s formula without correction term, is given as well.

Besides this, the degree of saturation (ρ∗
i ) is calculated. This degree indicates the fraction of the maximum

capacity that is utilized and can be computed as follows:

ρ∗
i = λi c

µi gi

For reliability of the results and small confidence intervals, the system is simulated for 24 hours= 86400
seconds and with 100 repetitions. Then a 95%-confidence interval for the average delay is constructed.

3.5.1 Current situation - Cycle time90seconds

In table 3.5 the simulation results as well as the input and saturation degree of the current situation are
presented.

i λi µi gi (s) ρ∗
i di (s)

2 0.0731 0.4722 16.0 0.870 64.58(± 1.183)
5 0.0956 0.4722 18.0 1.012 862.73(± 70.470)
8 0.0922 0.4722 31.5 0.558 26.62(± 0.059)
9 0.1058 0.4722 21.0 0.961 131.73(± 8.100)
10 0.0411 0.4722 24.0 0.326 28.86(± 0.074)
11 0.1228 0.4722 36.5 0.641 24.88(± 0.058)
12 0.0717 0.4722 12.0 1.138 6048.36(± 133.163)
Objective: 898.77 seconds

Table 3.5: Output of current situation

3.5.2 New signal scheme - Cycle time90seconds

In table 3.6 the simulation results of the new signal scheme with a cycle length of 90 seconds are presented.

i λi µi gi (s) ρ∗
i di (s) dapp

i (s)
2 0.0731 0.4722 21.0 0.663 36.19(± 0.120) 41.17
5 0.0956 0.4722 28.2 0.646 30.16(± 0.072) 33.59
8 0.0922 0.4722 27.3 0.644 30.90(± 0.073) 34.25
9 0.1058 0.4722 29.9 0.675 29.72(± 0.076) 33.37
10 0.0411 0.4722 47.0 0.167 13.60(± 0.055) 12.06
11 0.1228 0.4722 35.1 0.667 26.27(± 0.061) 28.81
12 0.0717 0.4722 21.4 0.638 34.73(± 0.092) 39.41
Objective: 29.55 seconds

Table 3.6: Output of new situation withc = 90 seconds
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3.5.3 Optimal signal scheme - Cycle time57seconds

In table 3.7 the simulation results of the optimal signal scheme with a cycle length of 57 seconds are
presented.

i λi µi gi (s) ρ∗
i di (s) dapp

i (s)
2 0.0731 0.4722 15.0 0.588 21.83(± 0.061) 24.92
5 0.0956 0.4722 16.1 0.716 24.62(± 0.107) 29.45
8 0.0922 0.4722 15.5 0.718 25.25(± 0.119) 30.01
9 0.1058 0.4722 17.6 0.824 23.57(± 0.115) 28.03
10 0.0411 0.4722 20.0 0.248 15.53(± 0.049) 14.67
11 0.1228 0.4722 20.4 0.726 21.34(± 0.087) 25.01
12 0.0717 0.4722 12.4 0.698 28.09(± 0.131) 33.25
Objective: 23.32 seconds

Table 3.7: Output of optimal situation withc = 57 seconds

3.5.4 Discussion of results

From the simulation results in the previous subsection we conclude, that the newly found signal scheme
with a cycle time of 90 seconds will lead to an enormous improvement of the objective function, compared
to the current situation. With the estimates of the traffic intensity used in this chapter, the degree of sat-
uration is in some cases even more than 1. This leads to unacceptable delays. In these cases the queue
length will increase constantly during rush-hour. When the rush-hour is finished and the traffic intensities
decrease, then the problem will be solved. That is the reason, why it is difficult to compare the new situa-
tions with the current situation in a quantitative way. Because, the longer the runlength of the simulation
is, the larger the average delay of these over-saturated signals will be. As a result, the larger the objective
will be.

The objective will even more improve, when other cycle timesare permitted. The optimal cycle time is 57
seconds. In this case an improvement of the objective of 6.23 seconds (= 21.1%) in comparison with the
signal scheme with a cycle length of 90 seconds is achieved.

In table 3.6 and 3.7 the approximations of the average delay,based on Webster’s formula without correc-
tion term are given. These approximations differ sometimesquite a lot from the simulation results. The
reason therefore is, that we didn’t make use of Webster’s formula with correction term. In chapter 4 more
information about this formula and better alternatives is given.

3.6 Sensitivity analysis

In this section, we do a sensitivity analysis of the results presented in the previous section. Out of this
analysis, we would like to conclude whether the good resultsare maintained, when the occupation rate of
the vehicles at the approaches is varied. This is done, because the signal schemes found in the previous
section are based on estimations of the arrival rate and departure rate. Therefore, the effects of an increase
and decrease of the arrival rate on the results in case the signal schemes are given as in table 3.6 and 3.7 are
investigated. An increase and decrease of the departure rate will give almost the same results. We cannot
only see the effect of possible wrong estimations of the arrival and departure rates, but we can also see how
these signal schemes will perform in the future, when the amount of traffic will increase.

In the following two tables, the results of this analysis arepresented. We have simulated cases for which
the arrival rates are decreased with 5% and 10% and increasedwith 5%, 10%, 20%, 30% and 50%. In these
tables the average delay and the objective value are given (in seconds) for the seven different cases as well
as for the original case (= 0%).
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i λi µi gi (s) −10% −5% 0% +5% +10% +20% +30% +50%
2 0.0731 0.4722 21.0 34.35 35.19 36.19 37.34 38.99 43.58 53.58 >300
5 0.0956 0.4722 28.2 28.98 29.48 30.16 30.97 31.94 34.88 40.52 109.66
8 0.0922 0.4722 27.3 29.61 30.23 30.90 31.76 32.82 35.74 40.60 123.39
9 0.1058 0.4722 29.9 28.46 28.93 29.72 30.49 31.90 35.36 44.15 >300
10 0.0411 0.4722 47.0 13.59 13.56 13.60 13.70 13.70 13.82 14.01 14.21
11 0.1228 0.4722 35.1 24.96 25.59 26.27 27.17 28.01 31.33 37.79 >300
12 0.0717 0.4722 21.4 33.27 33.83 34.73 35.52 36.64 40.02 45.94 124.31
Objective: 28.28 28.83 29.55 30.38 31.44 34.60 41.03 >300

Table 3.8: Sensitivity analysis of new situation -c = 90 seconds

i λi µi gi (s) −10% −5% 0% +5% +10% +20% +30% +50%
2 0.0731 0.4722 15.0 21.04 21.38 21.83 22.45 23.04 24.86 27.87 43.60
5 0.0956 0.4722 16.1 22.33 23.55 24.62 26.17 28.57 35.94 66.83 >1000
8 0.0922 0.4722 15.5 23.02 23.85 25.25 26.99 29.67 38.48 68.40 >1000
9 0.1058 0.4722 17.6 21.43 22.39 23.57 25.45 27.29 36.64 67.25 >1000
10 0.0411 0.4722 20.0 15.33 15.47 15.53 15.57 15.65 15.82 15.95 16.35
11 0.1228 0.4722 20.4 19.45 20.29 21.34 22.94 25.39 33.12 57.32 >1000
12 0.0717 0.4722 12.4 25.61 26.75 28.09 30.02 32.54 40.21 64.51 >1000
Objective: 21.44 22.29 23.32 24.79 26.78 33.66 56.73 >300

Table 3.9: Sensitivity analysis of optimal situation -c = 57 seconds

In both cases an increase of the arrival rate with 50% alreadyyields an unstable situation. The higher the
occupation rate, the larger the cycle time must be. So in cases where the occupation rate is increased with
50%, even a larger cycle time than 90 seconds has to be taken. In figure 3.3 the objective values of the
two different adjustments are plotted as a function of the percentage of the arrival rate. If the arrival rate is
increasing, the objective value forc is 57 seconds is indeed increasing much faster, than the objective value
for c is 90 seconds. With an increase of 20% the objective values ofboth cases are practically the same.
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Figure 3.3: The objective value plotted as a function of the percentage of the originalarrival rate
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CHAPTER4

APPROXIMATION OF THE AVERAGE DELAY

In 1958 Webster [26] developed an approximating formula forthe average delay of vehicles in a fixed-time
control as function of the effective green-time, the cycle time, the arrival rate and the departure rate. There
has been a broad effort to obtain good approximations for theaverage delay of vehicles, but until now,
researchers didn’t succeed. In this chapter we try to find a more accurate approximation of this average
delay.

The outline of this chapter is as follows: In the first sectiona short model description is given. A sum-
mary about the literature already published about this subject is presented in section 4.2. In section 4.3,
4.4 and 4.5 some information is given about Webster’s, Miller’s and Newell’s formula, which are most
commonly used in mathematical models. The basic idea of our new approximation formula is worked out
in section 4.6. In section 4.7 an improvement of the originalformula is proposed and a correction term
is determined, which is added to the original approximationformula, found in section 4.6. A second im-
provement of the original approximation formula is outlined in section 4.8. In section 4.9 the results of
the new approximation formula are given and compared with the formula of Webster. Finally, in the last
section conclusions are drawn and recommendations are made.

4.1 Model description

In this chapter we try to find an approximation formula for theaverage delay of vehicles in a fixed time
control. This formula depends on four parameters: the length of the effective green-time, the cycle time,
the arrival rate and departure rate.

In all approximation formulas discussed in this chapter a number of assumptions are made. Vehicles arrive
at approachi according to a Poisson process with rateλi . This assumption is valid because an isolated
intersection is considered, where the vehicles will not arrive in platoons. The arrival rate is constant, that
means that no periods of long over- or underload can occur. Vehicles arrive during the whole cycle of length
c, but can only drive off during the effective green-timegi . The effective green-time as well as the cycle
time is fixed. The service time (drive-off time) of vehicles on approachi during the effective green-time is
constant, with mean 1/µi . In practice, the drive off time is not constant, but depending on the acceleration
and size of the vehicle.

When the signal turns red and the service is not completely finished, two different scenarios can be fol-
lowed. We have chosen for preemptive resume, that means, theservice of the vehicle is preempted, but is
continued at the beginning of the next effective green-time.
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4.2 Overview of literature

An exact expression for the average delay at fixed-time signals was first derived by Beckman et al. [2]
in 1956 with the assumption of a binomial arrival process anddeterministic service. But this restrictive
assumption of a binomial arrival process reduced the practical usefulness. The difficulty in obtaining exact
expressions for this delay, was the reason for a broad effortfor signal delay estimation using approximation
models and bounds.

The first widely used approximation formula was developed byWebster [26] from a combination of the-
oretical and numerical simulation approaches. After that,Miller [18] obtained an approximate formula
under Poisson arrivals and fixed service time during the effective green-time. Newell [19] aimed at devel-
oping an approximation formula for general arrival and departure distributions. He derived a very complex
expression for the expected number of waiting vehicles at the beginning of the effective red-time. Newell’s
expression appears to be more accurate than Miller’s. On theother hand Miller’s formula yields in some
cases better results than Webster’s formula.

In the next three sections we will therefore discuss Webster’s, Miller’s and Newell’s approximation formu-
las.

4.3 Webster’s formula

It was found by Webster that the average delay of vehicles at approachi can be approximated by:

E[Di ] = (c − gi )
2

2c(1 − ρi )
+ ρi c2

2gi (µi gi − λi c)
− 0.65

(

c

λ2
i

)1/3
(

λi c

µi gi

)2+5gi /c

(4.1)

whereE[Di ] = average delay per vehicle on approachi

c = cycle time

gi = effective green time of traffic signal at approachi

λi = arrival rate of vehicles at approachi (the interarrival time is exponential)

µi = departure rate of vehicles at approachi (the departure time is deterministic)

ρi = λi /µi

andE[Di ], c andgi are in seconds andλi andµi are in vehicles per second.

The formula of Webster is based on an M/D/1 system, where the interarrival times and service times are
respectively exponentially and deterministically distributed and where the server is periodically on and off
alternatingly. The expression for the delay was not derivedentirely theoretically. The first two terms have a
theoretical meaning, but the last term is purely empirical.The first term of equation (4.1) is the expression
for the delay when the traffic can be considered to be arrivingdeterministically at a uniform rate as a fluid.
Although the agreement between computed delays and those derived from this term is fairly good at low
arrival rates, it is not so at higher rates. The second term ofequation (4.1) makes some allowance for the
random nature of the arrivals. It is the average delay for an M/D/1 system, when the service times are
stretched with a factorc/gi . Then we assume that the traffic signal is always green, and the vehicles have
a service time with meanc

µi gi
. The third term based on simulation results, the so-called correction term,

corrects the first two terms. The value of this term is in the range 5 to 15 percent of the original formula of
Webster. In figure 4.1 the mean waiting timeE[Di ] according to Webster’s formula is plotted for certain
gi .
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Figure 4.1: Webster’s formula of the average delay function as function of the effective green-timegi for λi = 0.19,
µi = 0.5 andc = 100; the dotted line is the first term of equation (4.1), the dashed line is the second term of equation
(4.1) and the solid line is the sum of these two terms.

4.4 Miller’s formula

It was found by Miller that the average delay of vehicles at approachi can be approximated by:

E[Di ] = (c − gi )

2c(1 − ρi )

(

(c − gi ) + 2E[XB R
i ]

λi
+ 1

µi

(

1 + 1

1 − ρi

)

)

(4.2)

whereE[XB R
i ] = expected number of waiting vehicles at the beginning of the effective red-time

andE[Di ], c andgi are in seconds andλi andµi are in vehicles per second.

An expression forE[XB R
i ] is given by:

E[XB R
i ] = exp

[

−1.33
√

µi gi (1 − ρ∗
i )/ρ∗

i

]

2(1 − ρ∗
i )

whereρ∗
i = degree of saturation given by(λi c)/(µi gi )
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Figure 4.2: Miller’s formula of the average delay function as function of the effective green-timegi for λi = 0.19,
µi = 0.5 andc = 100
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4.5 Newell’s formula

Newell assumes the same average delay formula as Miller, given in equation (4.2), but gives another ap-
proximation forE[XB R

i ]:

E[XB R
i ] = λi c(1 − ρ∗

i )

π

∫ π/2

0

tan2θ

−1 + exp[µi gi (1 − ρ∗
i )/(2cos2θ)]dθ

In figure 4.3 the mean waiting timeE[Wi ] according to Newell’s formula is plotted for certaingi .
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Figure 4.3: Newell’s formula of the average delay function as function of the effective green-timegi for λi = 0.19,
µi = 0.5 andc = 100

Because the expression of Newell forE[XB R
i ] is difficult, the formulas of Webster and Miller are used

more often nowadays than Newell’s approximation formula. Therefore we will compare the results of the
new found formula in section 4.9 only with results of Websterand Miller.

4.6 New approximation formula

In this section, the newly developed formula will be derived.
Let the number of waiting vehicles at approachi be Xi . When an expression for the average number of
waiting vehicles can be found, the average delay can easily be found with Little’s Law [1].

4.6.1 Number of waiting vehicles

During the whole cycle vehicles arrive, but only during the effective green-time they can leave the queue
with a constant rate. During the effective green-time the number of waiting vehicles will gradually de-
crease, as long as there are waiting vehicles.
A discrete-event simulation program has been written to seehow the average number of waiting vehicles
decreases during the effective green-time. The only two events of this simulation program are:

1. Arrival of a vehicle

2. Measurement of number of waiting vehicles

When a vehicle arrives the total number of waiting vehicles increases with one and a new arriving event
will be generated. At regular points of time the total numberof vehicles is measured. The events of these
measurements are generated at the beginning of the simulation. The system will be simulated until the total
simulation time is exceeded. The reliability of the resultscan be improved by increasing the total number
of simulations. In figure 4.4 the results of an example are graphically represented.
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Figure 4.4: The mean number of customers as a function of time (time=0 is the beginning of the effective green-time),
for λi = 0.19,µi = 0.5, c = 100 andgi = 50

4.6.2 Approximation

The curve of figure 4.4 can be approximated by two straight lines. When the signal turns green, the average
number of waiting vehicles will decrease from a start-levelto another end-level withµi − λi per second
as long as there are waiting vehicles. As can be seen in figure 4.4 the average number of waiting vehicles
(E[Xi ]) is stable after some time, corresponding to the end-level.This stable levell i , is equal to the
expected number of customers in anM/D/1 system given by:

l i = ρi + ρ2
i

2(1 − ρi )

When the traffic signal turns red, the total number of waiting vehicles will gradually increase (fluid ap-
proach), with an average speed ofλi vehicles per second until the signal turns green again. At the same
time, this reached level is the start-level again. The increase in the average number of waiting vehicles
during the effective red-time is equal to:

(c − gi )λi

and the new start-level is then given by:

l i + (c − gi )λi

The cyclic behavior of the average number of waiting vehicles is depicted in figure 4.5.

The intersection of the two dotted lines is called the relaxation time and is indicated withr i . This relaxation
time is given by:

r i = (c − gi )λi

µi − λi

The surface under the diagram from 0 toc seconds, approximated by the straight lines as given in figure 4.5
can be easily computed:

Surface = l i c + 1

2
r i (c − gi )λi + 1

2
(c − gi )

2λi
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Figure 4.5: Cyclic behavior of the average number of waiting vehicles

The average number of waiting vehicles at approachi is now given by:

E[Xi ] = Surface

c

= l i + r i (c − gi )λi

2c
+ (c − gi )

2λi

2c

= l i + (c − gi )
2λ2

i

2c(µi − λi )
+ (c − gi )

2λi

2c

With Little (E[Xi ] = λi E[Di ]), the average delay is now given by:

E[Di ] = l i
λi

+ (c − gi )
2λi

2c(µi − λi )
+ (c − gi )

2

2c

Rewriting yields:

E[Di ] = l i
λi

+ (c − gi )
2

2c(1 − ρi )
(4.3)

where the second term of formula (4.3) corresponds to the first term of formula (4.1).

4.7 First improvement of approximation formula

In this section we determine a correction term to improve theapproximation formula developed in the
previous section. First we mention three important things:

Remark 1

The curve of the average number of waiting vehicles during the effective green-time is approximated by
two straight lines. This yields an underestimation of the average number of waiting vehicles resulting in
an underestimation of the average delay. Whenµi >> λi , the approximation of the curve by two straight
lines is justified more than in other cases. And as a result theapproximation in equation (4.3) will be more
accurate than in other cases.
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Remark 2

When the system is close to unstability (the degree of saturation is almost 1) the approximation is very
inaccurate. For stability of the number of vehicles at approachi , we require that:

λi c < µi gi

Hence ifµi gi − λi c is close to 0 the approximation is bad. The fluctuation in arrivals is the reason for
this. The effective green-time is just long enough, for all vehicles to drive off. When a more than average
number of arrivals has taken place, these extra vehicles cannot drive off, during the next effective green-
time and will affect the average number of waiting vehicles.In the original formula we do not take into
account the random nature and fluctuation of the arrivals of vehicles.

Remark 3

Whengi ≈ c, the correction term has to be small, because in almost all cases wheregi ≈ c, the degree of
saturation is relatively small. The original formula yields already good results in this case. On the other
hand, whengi is much smaller thanc, it will be more likely, that the queue at the end of the effective green-
time is not empty because of stochastic reasons (more arrivals during a cycle than the average amount).

In all cases the original approximation formula yields an underestimation of the actual delay. Therefore
we want to add a correction term to improve the approximationformula. The correction term we found is
based on the three remarks above, where we also have to take inmind, that the unit of this correction term
has to be ‘seconds’.

As educated guess for a correction term we try:

(c − gi )ρi

µi gi − λi c
(4.4)

• Whenc − gi is large the correction term has to be large.

• Whenµi gi − λi c is small the correction term has to be large.

• Whenρi is large the correction term has to be large.

Combining the correction term above and the original approximation formula as in (4.3) yields the follow-
ing improved approximation:

E[Di ] = l i
λi

+ (c − gi )
2

2c(1 − ρi )
+ (c − gi )ρi

µi gi − λi c
(4.5)

In figure 4.6 we have plotted the absolute difference (the difference between the average delay of the
simulation results and the approximation obtained by equation (4.3)) against the correction term in equation
(4.4). Indeed a linear relation can be seen between this difference and the correction term. For (almost) all
values of the absolute difference the correction term will be too small, as can be seen in this figure.

4.8 Second improvement of approximation formula

We can see the model described in this section as an M/D/1 model with vacations. We define a server
vacation as an effective red-time period, as well as periodsduring the effective green-time when no vehicles
are waiting at the queue. From Fuhrmann & Cooper [11] we know:

X
d= XM/D/1 + X I (4.6)

34



CHAPTER 4. Approximation of the average delay 4.8. Second improvement of approximation formula

0 , 0 0

1 0 0 , 0 0

2 0 0 , 0 0

3 0 0 , 0 0

4 0 0 , 0 0

5 0 0 , 0 0

6 0 0 , 0 0

0 , 0 0 2 0 0 , 0 0 4 0 0 , 0 0 6 0 0 , 0 0

A b s o l u t e  d i f f e r e n c e
C o r r e c t i o n  t e r m

Figure 4.6: Scatterplot of the absolute difference against the correction term given in equation (4.4); on the x-axis the
correction term (in seconds); on the y-axis the absolute difference (in seconds)

whereX I is the number of vehicles waiting on an arbitrary vacation period. FurthermoreXM/D/1 andX I

are mutually independent.

So using equation (4.6), the following equation for the expected number of vehicles at approachi can be
found:

E[Xi ] = ρi + ρ2
i

2(1 − ρi )
+ E[X I

i ] (4.7)

As said earlier, we distinguish two sorts of server vacations. LetZi be the total idle time during the effective
green-time. Out of the following balance equationZi can be determined easily:

ρi c = gi − Zi (4.8)

So to determineE[X I
i ] we distinguish two cases:

E[X I
i ] = Zi

Zi + (c − gi )
· 0 + c − gi

Zi + (c − gi )

(

E[XB R
i ] + λi (c − gi )

2

)

with E[XB R
i ] the number of waiting vehicles at the beginning of an arbitrary effective red-time. So using

the balance equation (4.8) the following formula results:

E[X I
i ] = c − gi

c(1 − ρi )

(

E[XB R
i ] + λi (c − gi )

2

)

(4.9)

Combining equation (4.7) and (4.9) the followingexactformula can be obtained:

E[Xi ] = ρi + ρ2
i

2(1 − ρi )
+ λi (c − gi )

2

2c(1 − ρi )
+ c − gi

c(1 − ρi )
E[XB R

i ] (4.10)

It should be observed that the first three terms of this last equation correspond to equation (4.3). The last
term, is the so called correction term. An approximation of this term is determined in the rest of this section.
The average delay formula is then given by:

E[Di ] = 1

µi
+ ρi

2µi (1 − ρi )
+ (c − gi )

2

2c(1 − ρi )
+ c − gi

λi c(1 − ρi )
E[XB R

i ] (4.11)
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Remark

Note that equation (4.11) can be directly derived with PASTAand Little’s law [1]. An arriving vehicle
finds on averageE[Lq

i ] vehicles in the queue and each of them has a deterministic service time with mean
1/µi . A vehicle can arrive during the service of another vehicle.By PASTA we know that the probability
a vehicle finds the server busy is equal toρi . Vehicles can also arrive during the effective red-time of
the signal and therefore have to wait a residual effective red-time. Again by PASTA we know that the
probability a vehicle arrives in the effective red-time is equal to the fraction of time the signal is red during
a cycle. This fraction is given by(c − gi )/c. It is possible that an arriving vehicle cannot be served in that
same effective green-time (when it arrives during the effective green-time) or in the next effective green-
time (when it arrive during the effective red-time). For theaverage number of effective red-times a vehicle
has to wait an expression can be found. With the same argumentas for Little the following relation holds:
the number of vehicles waiting at the beginning of the effective red-time is equal to the average number
of arrivals during a cycle times the average number effective red-times a vehicle has to wait before being
served.
So an expression for the average delay can be formulated based on the four terms described above. This
expression depends on the average number of vehicles in the queue and again with Little we can derive the
same expression for the average delay as in equation (4.11).
Now we only have to determine an approximation ofE[XB R

i ]. Therefore we examine the behavior of
E[XB R

i ] in heavy and light traffic.

4.8.1 Heavy traffic approximation

In heavy traffic we assume that the effective green-time is onaverage just long enough to handle all the
traffic and let it drive off.
Define XB R

i,n as the number of waiting vehicles at the beginning of then’th effective red-time. Then the
following equation holds:

XB R
i,n+1 = XB R

i,n + N(c) − µi gi (4.12)

with N(t) a Poisson process with rateλi , indicating the number of arrivals during interval[0, t]. For the
first and second moment of the Poisson Process we know:

E[N(t)] = λi t

E[N2(t)] = (λi t)
2 + λi t

Computing the second moment ofXB R
i,n+1 in equation (4.12) yields the following:

E[(XB R
i,n+1)

2] = E[(XB R
i,n,)

2] + 2E[XB R
i,n ]E[N[c] − µi gi ] + E[N(c) − µi gi ]2

Now letn go to infinity. ThenE[(XB R
i,n+1)

2] is equal toE[(XB R
i,n )2]. So in the formula above these to terms

cancel each other whenn goes to infinity.
DefineE[XB R

i ] asE[XB R
i,n ] with n → ∞. Then we can determine the following expression forE[XB R

i ]:

E[XB R
i ] = 1

2(µi gi − λi c)

(

(λi c)
2 + λi c + (µi gi )

2 − 2λi cµi gi

)

= 1

2(µi gi − λi c)

(

λi c + (λi c − µi gi )
2
)

= λi c

2(µi gi − λi c)
− 1

2
(λi c − µi gi ) (4.13)

In heavy traffic the last term in equation (4.13) can be neglected. So the heavy traffic approximation for the
number of vehicles at the beginning of an arbitrary effective red-time is given by:

E[XB R
i ] ≈ λi c

2(µi gi − λi c)
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4.8.2 Light traffic approximation

In light traffic we assume that the effective green-time is much too long to let the vehicles drive off. After
a fraction of the effective green-time the small number of waiting vehicles has driven off. So the number
of vehicles at the end of the effective green-time and the beginning of the effective red-time is given by the
average number of vehicles in an M/D/1 system.

So the light traffic approximation for the number of vehiclesat the beginning of an arbitrary effective
red-time is given by:

E[XB R
i ] ≈ l i = ρi + ρ2

i

2(1 − ρi )

4.8.3 Interpolation

To find a good approximation of the average number of waiting vehicles at the beginning of an arbitrary
effective red-time in heavy traffic as well as in light traffic, we can interpolate the results of the heavy and
light traffic approximation. In case of heavy traffic the degree of saturation(ρ∗

i := (λi c)/(µi gi )) will
approach 1. On the other hand, in case of light traffic this same variable is almost 0.

So first we approximateE[XB R
i ] with ρ∗

i times the heavy traffic approximation plus 1− ρ∗
i times the light

traffic approximation:

ρ∗
i

λi c

2(µi gi − λi c)
+ (1 − ρ∗

i )l i

From the results in research not presented here, we have seenthat the approximation forE[XB R
i ], as given

in the equation above is too large. Probably the heavy trafficapproximation weighs too much. We can
correct this a little bit, by taking the light traffic approximation forE[XB R

i ] to be 0 instead ofl i .

So then we approximateE[XB R
i ] with ρ∗

i times the heavy traffic approximation:

ρ∗
i

λi c

2(µi gi − λi c)

From this, the correction term (equal to the last term in equation (4.10)) can be easily computed:

ρ∗
i

c − gi

2(1 − ρi )(µi gi − λi c)
(4.14)

In figure 4.7 we have plotted the absolute difference (the difference between the simulation results and the
approximation obtained by equation (4.3)) against this last correction term in equation (4.14).

But maybe other weight factors ofρ∗
i yield better results then this first correction term. We examined other

correction terms of the form:

(ρ∗
i )a c − gi

2(1 − ρi )(µi gi − λi c)
(4.15)

with a a positive integer.

We have tried various values ofa and found the best results fora = 4.

In figure 4.8 we have plotted the absolute difference againstthis last correction term in equation (4.15). It
should be observed that the correction term in figure 4.8 better corresponds to the absolute difference as
the correction term in figure 4.7.

So our new and final approximation formula is given by:

E[Di ] = l i
λi

+ (c − gi )
2

2c(1 − ρi )
+ (ρ∗

i )4 c − gi

2(1 − ρi )(µi gi − λi c)
(4.16)
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Figure 4.7: Scatterplot of the absolute difference against the correction term given in equation (4.14); on the x-axis the
correction term (in seconds); on the y-axis the absolute difference (in seconds)
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Figure 4.8: Scatterplot of the absolute difference against the correction term given in equation (4.15), witha = 4; on
the x-axis the correction term (in seconds); on the y-axis the absolute difference (in seconds)

4.9 Results

In this section, the accuracy of the three approximation formulas (the original formula, the first improved
formula and second improved formula) is tested by simulation. The simulation program that is used, will
be explained in section 3.4. We have simulated 3000 cases, where we have taken the degree of saturation
ρ∗

i (given by λi c
µi gi

) randomly between 0 and 1. The values of the other variables are determined in the
following order:

• Cyclec: The cycle length (integer value) is randomly chosen between 60 and 140 seconds.

• Departure rateµi : The departure rate is randomly chosen between 0.44 and 0.66.
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• Effective green-timegi : The length of the effective green-time is randomly chosen between 5 and
c − 10 seconds.

• Arrival rateλi : The arrival rate is then given byρ∗
i µi gi /c.

To gain reliable simulation results, for each case the runlength was chosen 24 hours and was repeated 100
times.

For each of the 3000 cases, the width of the 95%-confidence interval will be different. Nevertheless, to
give an indication for the accuracy of the results, we will give the simulation results (with 95%-confidence
interval) for a light traffic, medium traffic and high traffic case in the following table. In the heavy traffic
case, the 95%-confidence interval is very large, so in this cases it is difficult to compare the simulation
results with the approximation.

λi µi c gi ρ∗
i E[Di ]

light 0.027 0.500 100 45 0.123 18.13(± 0.075)
medium 0.194 0.500 100 45 0.864 34.08(± 0.225)
heavy 0.222 0.500 100 45 0.988 156.50(± 12.538)

Table 4.1: Simulation results for a light traffic, medium traffic and heavy traffic case

4.9.1 Accuracy of the approximation

Now that we have found two approximation formulas (given in equation (4.5) and (4.16)) for the average
delay of vehicles at a fixed-control intersection, we would like to investigate the accuracy of the original
and improved approximations. To investigate this, we use two criteria. The first criterium, is the absolute
difference (in seconds) and is given by the absolute value ofthe difference between the average delay
determined by simulation and by approximation. But we will not only investigate the absolute difference,
but also the difference with respect to the average delay, the so called difference in terms of percentage
(in percents). This difference in terms of percentage is defined by the absolute difference divided by the
average delay determined by simulation times 100.

The absolute difference is on average 6.7 (sec) for the original formula (without correction term). For the
first improvement and the second improvement this absolute difference is 3.2 (sec) and 2.6 (sec) respec-
tively. So the improved approximation formulas cause a reduction of the absolute difference of 52.0% and
61.1%. The difference in terms of percentage is on average 10.2% for the original approximation. For both
improved formulas as given in equation (4.5) and (4.16) thisdifference in terms of percentage is 4.9% and
2.4%.

The improvement found in section 4.7 yields reasonably goodresults in cases where the saturation degree
is high and the effective green-time is large in comparison with the cycle time. On the other hand, when
the saturation degree is high and the effective green-time is small compared with the cycle time, the results
of this formula are bad. But when the saturation degree is small, the results are very accurate. This formula
yields (even with the added correction term) in most cases still an underestimation of the actual delay.

The improvement found in section 4.8 yields very bad resultswhen the saturation degree approaches 1. In
these cases the approximation formula gives an overestimation of the actual delay. When the saturation
degree is not that high the approximation is very accurate.

For the original formula as well as for both improved approximation formulas the histogram of the differ-
ence in terms of percentage (with class interval 1) is given in figure 4.9. The first three bars represent the
number of cases for which the difference in terms of percentage lies between 0% and 1%. The second three
bars represent the number of cases for which the difference in terms of percentage lies between 1% and
2%, and so on.

From this histogram we conclude that the second improved formula yields the best results. For 25.2%
of all 3000 cases, the difference in terms of percentage is more than 10% for the original formula versus
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Figure 4.9: Histogram (based upon 3000 cases) of the difference in terms of percentage of the original and improved
approximation formulas

11.0% and 1.9% for the first and second improvement respectively. The percentage of all cases for which
the difference in terms of percentage is less than 3% is 54.0% for the original formula. For the first and
second improvement these percentages are respectively 66.4% and 77.8%.

4.9.2 New formula versus Webster and Miller

To test whether the new approximation formula is more accurate than the existing formula of Webster (with
correction term) and Miller, we will compare the results of the three formulas (4.1), (4.2) and (4.16) with
the results of simulation.

The average absolute difference of Webster’s formula and Miller’s formula is on average 3.3 (sec) and 4.0
(sec) respectively, compared with 2.6 (sec) for the newly developed approximation formula. In more than
78% of all cases our approximation formula yields better results than Webster’s formula. This percentage is
even better when we compare the newly developed formula withMiller and is given by 86%. The average
difference in terms of percentage is given by 11.5%, 7.9% and 2.4% for Webster’s formula, Miller’s formula
and the new approximation respectively.

In figure 4.10 the histogram of the difference in terms of percentage is given for the three approximation
formulas (with class interval 1). The first three bars represent the number of cases for which the difference
in terms of percentage lies between 0% and 1%. The second three bars represent the number of cases for
which the difference in terms of percentage lies between 1% and 2%, and so on.
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Figure 4.10: Histogram (based upon 3000 cases) of the difference in terms of percentage of the improved approxima-
tion formula, Webster’s formula and Miller’s formula
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CHAPTER 4. Approximation of the average delay 4.10. Conclusions and recommendations

Overall the newly developed approximation formula yields much better results as can be concluded from
the histogram. In 35.1% of all cases Webster’s formula had a difference in terms ofpercentage of more
than 10%. This percentage is 18.3% for Miller’s formula, compared with 1.9% for the new approximation.
So the number of cases that has big difference will be less. Onthe other hand our approximation yields
more accurate results as well. In 33.8% and 22.6% of all 3000 cases Webster’s and Miller’s formula has a
difference in terms of percentage that is less than 3%. For the new approximation formula (as was already
given in the previous subsection) this percentage is given by 77.8%.
Especially in case the degree of saturation is almost 1, Webster’s formula yields better results than Miller’s
formula and our new approximation formula. But in these cases the average delay is large, and the differ-
ence in percentage of Webster’s formula will not deviate that much from the difference in percentage of
the newly developed approximation. In case the degree of saturation is not that high (< 90%), the results
of our formula are very accurate in contrast with the resultsof Webster and Miller. Miller’s formula is very
accurate (compared with both other formulas) in cases wherethe expressionµi gi − λi c is large.
All statistics are summarized in table 4.2.

Webster’s formula Miller’s formula New formula
Average absolute difference 3.3 sec 4.0 sec 2.6 sec
Difference in percentage 11.5% 7.9% 2.4%
Difference in percentage> 10% 35.1% 18.3% 1.9%
Difference in percentage< 3% 33.8% 22.6% 77.8%
Percentage new formula is better than webster 78.7% 86.2% -

Table 4.2: Summary of statistics of Webster’s and Miller’s formula and the newly developed approximation formula

4.10 Conclusions and recommendations

From the results in section 4.9, we can conclude that the newly developed approximation formula yields
better results than Webster’s and Miller’s approximation.When the saturation degree is high (> 98%)
Webster’s formula will give better results than our new formula. When the expressionµi gi − λi c is large
Miller’s formula will give better results in most cases. On the other hand, when the saturation degree is not
high (< 90%), the new formula yields much better results than both other formulas. In practice there are
no adjustments of traffic signals for which the saturation degree is higher than 90%, because in these cases
it is most likely that there will form traffic jams. So the newly developed approximation will yield very
good results in almost all practical cases.
Probably the newly developed formula can be improved. For example by trying to give a better estimate
for E[XB R

i ]. But we prefer the simplicity of this formula to more accurate results.
Further research can be done on the behavior of approximation formulas of the average delay when the
saturation degree is temporarily more than 100% (situationof overload). In these cases the queue will
continuously grow. So the average delay will depend on the timelength of overload. On these so-called
time-dependent delay models research has been done already, but this may still be improved.
In this chapter we have determined an approximation formulafor an isolated intersection. The assumption
that the vehicles arrive one by one according to a Poisson process is then validated. But for most intersec-
tions within a city this assumption doesn’t hold, because the arrival process of vehicles is affected by other
intersections. Then vehicles pass the signals in platoons that are separated by a time-interval of which the
length is equal to the effective red-time. The platooning effect on average delay functions can be researched
as well.
The formula presented in this chapter assumed fixed-time signal control. The introduction of fully-actuated
control requires new delay formulas that are sensitive to this process. In subsection 1.4.3 this control is
thoroughly described. Delays at these intersections depend on different aspects: maximum and minimum
effective green-time and the gap time. Because nowadays most of the intersections use fully-actuated
control, research on this topic will be of great importance.
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CHAPTER5

ANALYZING EXHAUSTIVE CONTROL

This chapter presents an approximation algorithm to find theeffective green-times of traffic signals and
average delays of vehicles when exhaustive control is used.With exhaustive service, the effective green-
time of an approach lasts until no vehicles are present at that approach anymore. The approaches of
one intersection are grouped, so that in each group the vehicles on the approaches have right of way
simultaneously. The effective green-time of a group of approaches lasts until no vehicles are present at
any of the approaches within that group. In this chapter an algorithm is determined to approximate these
effective green-times.

The outline of this chapter is as follows: In the first sectiona short introduction of the problem and a model
description is given. In section 5.2 the concept of the approximation algorithm is explained. The algorithm
is based on moment fitting. On the busy period we will fit a distribution. In section 5.3 some background
information about the busy period is given. On the busy period we will fit a distribution to approximate
the time needed to empty the queues within the same group. Thecomputation of these times is done in
section 5.4. We also use moment fitting in section 5.5 to approximate the number of waiting vehicles when
the signals turn green. In section 5.6 a first approximation algorithm, based on a one-moment fit is given.
An improvement of the developed algorithm, based on a two-moment fit is given in section 5.7. When the
first two moments of the effective green-time are known, we can approximate the average delay of vehicles
in section 5.8. These approximations are compared with simulation results. Some information about the
speed of convergence is given in section 5.9. In section 5.10, the discrete event simulation is described.
The results of the approximation developed in this chapter are presented in section 5.11. Finally, in the last
section conclusions are drawn and recommendations are made.

5.1 Model description

In this chapter we consider a simple intersection as given infigure 5.1.

The four approaches (2, 5, 8 and 11) are grouped in two pairs: Group G1 consists of approach 2 and
8; GroupsG2 consists of approach 5 and 11. The groups are served in a cyclic order. In this simple
problem, the order in which the groups have right of way will be {G1, G2, G1, G2, . . .}. On more complex
intersections, the way of grouping approaches is a problem by itself. The vehicles on the approaches in
one group have right of way simultaneously. The effective green-time of approaches in that group, lasts
until no vehicles are present at any of the approaches withinthat group anymore. Because of the exhaustive
control, vehicles that arrive during the red period of a traffic signal will be served during the next green
period. Vehicles that arrive during a green period, will be served during that same green period.
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2

5

8

11

Figure 5.1: Example of a simple intersection

Vehicles on approachi are assumed to arrive according to a Poisson process with intensityλi . Because
the departure process of vehicles at the approaches is not exactly known, we will investigate three different
departure processes in this chapter, namely Exponential (M/M/1), Deterministic (M/D/1) and Erlang-4
(M/E4/1). The method described in this chapter only uses the first two moments of the departure times,
so different departure processes don’t result in differentmethods. For all three different processes the first
moment of the departure time is equal to 1/µi .
When the traffic signals of groupG1 turn red, for safety reasons, a deterministic clearance time sG1G2 is
needed before the traffic signals of groupG2 turn green, and vice versa. In this chapter, we assume (for
simplicity) that the clearance timessG1G2 = sG2G1 = 0. So right after groupG1 was turned red, groupG2
is turned green.
We want to estimate the first and second moment of the effective green-timesTi of approachi . Note that,
in this particular example,T2 = T8 andT5 = T11.

5.1.1 All empty situation

There is a special situation when the traffic signals of a group turn red, but no vehicles are waiting at both
approaches of the other group. So, at that moment, no vehicles are waiting at each of the approaches of the
intersection. In this case three possible control strategies can be followed:

• The signals of the main group, that means the group which contains the signal with the highest
occupation rate, are turned green. When a vehicle at any of thesignals of the other group arrives,
before a vehicle at any of the signals of the main group arrives, the signals are switched. This strategy
is called themain stream greenstrategy.

• All signals are turned red until at any of the approaches on the intersection a vehicle arrives. Then
the corresponding signal and the signals in the same group are turned green. This strategy is called
theall red strategy.

• The signals that have just turned green, stay green until at one of the approaches in that group a
vehicle arrives. When no vehicles are present at any of the twoapproaches, the signal is turned red.
This strategy is called thestay greenstrategy.

In this chapter, we have implemented the latter two strategies, but in future research the first strategy can
be investigated as well.

5.1.2 Stability

For stability we require that the total number of arriving vehicles during one cycle is strictly less than the
number of vehicles that can drive off during the effective green-time. WhensG1G2 = sG2G1 = 0 we state
the following theorem (without proof):
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5.2. Stochastic process CHAPTER 5. Analyzing exhaustive control

Theorem 1. The system is stable, if and only if the following condition holds:

max(ρ2, ρ8) + max(ρ5, ρ11) < 1 (5.1)

whereρi = λi /µi .

5.2 Stochastic process

A well known characteristic of exhaustive service is the fact that when a signal turns red, no vehicles are
waiting at the approaches anymore. So the number of vehicleswaiting at the approach when the signal turns
green again, is equal to the number of vehicles that arrived during the effective red-time of that approach.
The effective green-time of groupG1 corresponds to the effective red-time of groupG2, and vice versa. So
the number of vehicles waiting at the approaches of groupG2, when the signals of this group turn green, is
equal to the number of vehicles that arrived at the approaches during the effective green-time of groupG1.
When the signals of groupG1 turn green, vehicles leave the approaches 2 and 8. We want to determine
the first time when both approaches are empty, that means, when no vehicles are waiting at the approaches
to leave. Therefore we will model the process of the number ofwaiting vehicles at each approach as a
continuous time stochastic process. Define the process as{Xi (t), t ≥ 0} by Xi (t) = the number of waiting
vehicles at approachi at timet , t ≥ 0.
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Figure 5.2: Example of state diagram of groupG1

For groupG1, the stochastic process{X(t) = (X2(t), X8(t)), t ≥ 0} has an infinite state space. The same
holds for the stochastic process of groupG2, {X(t) = (X5(t), X11(t)), t ≥ 0}. In figure 5.2 we have
given the state diagram of the processX(t) = (X2(t), X8(t)). The numbers just below the horizontal lines
indicate the number of waiting vehicles at different pointsof time.

5.3 Busy period

We define the first passage time into stateEj when started in statei as:

Ti Ej = min{t ≥ 0 : X(t) = Ej |X(0) = i }

whereEj is the target state andt = 0 is the beginning of the effective green-time. Att = 0 the first departure
starts. We want to determine the expected value of this random variable. Let:

Mi Ej (n) = E[Tn
i Ej ]

be thenth moment of the first passage time. So the expected value ofTi Ej is given by:

Mi Ej (1) = E[Ti Ej ]

When for example, the traffic signals of groupG1 turn green, the process is in statei = (n2, n8). When no
vehicles are present at the two approaches in groupG1, we have reached the target stateEj = (0, 0) and the
signals turn red. So the expected effective green-time is given by:

M(n2,n8)(0,0)(1) = E[min{t ≥ 0 : X(t) = (0, 0)}|X(0) = (n2, n8)]
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To approximate the first two moments of the effective green-time we make use of the busy period. In-
stead of taking the number of waiting vehicles as different states, we introduce another stochastic process
{Qi (t), t ≥ 0} by Qi (t) =the number of busy periods at approachi at timet , t ≥ 0. Each vehicle waiting
to leave the intersection when the signals have just turned green represents a busy-period. This busy period
starts, when the vehicle starts leaving the intersection. During this departure time, vehicles can arrive at the
intersection. Instead of joining the normal queue, they form a separate queue. When the vehicle has left
the intersection, vehicles in the separate queue have rightof way over vehicles in the normal queue. When
during the departures of (possible) vehicles in the separate queue, other vehicles arrive they also join the
separate queue. The busy period ends when all vehicles of theseparate queue have left. Then the next of
the vehicles in the normal queue starts service and represents again a busy period, and so on. The number
of busy periods is decreasing until no busy periods are present anymore. When the number of busy periods
in the other queue is also zero, we can turn the signals from green to red. Otherwise, we wait anidle period,
before a vehicle arrives. This vehicle brings along one busyperiod. So onceQi (t) has reached the state 0,
it will alternate between the states 0 and 1.

It is difficult to determine the distribution of the busy period exactly. On the mean and the variance of the
busy period, we can fit a distribution. Therefore we try to fit different distributions on the first and on the
first two moments. On the first moment we will fit an exponentialdistribution. Later, we will use a Coxian-
2 distribution for a two-moment fit. Therefore, we first have to calculate the first and second moment of
the busy and idle period.

Kleinrock [16, Section 5.8] derived the distribution for the length of the busy period for theM/G/1 queue.
The departure times are distributed with distribution function FB(·). The first and second moment of the
busy period are given by:

E[B Pi ] = E[B]
(1 − ρi )

(5.2)

E[B P2
i ] = E[B2]

(1 − ρi )3
(5.3)

From (5.2) and (5.3), we can easily derive the first and secondmoment of the busy period of approachi for
the different systems.

M/M/1

E[B Pi ] = 1

µi (1 − ρi )

E[B P2
i ] = 2

µ2
i (1 − ρi )3

M/D/1

E[B Pi ] = 1

µi (1 − ρi )

E[B P2
i ] = 1

µ2
i (1 − ρi )3

M/E4/1

E[B Pi ] = 1

µi (1 − ρi )

E[B P2
i ] = 5

4µ2
i (1 − ρi )3

When one of the approaches within a group reaches state 0, thenthe system passes through alternating
cycles of a busy period (BP), idle period (IP), busy period, idle period, and so on, until both approaches of
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the same group are in state 0 at the same time. The first and second moment of the idle period of approach
i are independent of the departure process of the vehicles andgiven by:

E[I Pi ] = 1

λi

E[I P2
i ] = 2

λ2
i

5.4 Distribution of the busy period

To compute the expected time (and the second moment of this time) from state(Q2(t), Q8(t)) = (n2, n8)

into state(Q2(t), Q8(t)) = (0, 0) we will fit a distribution on the busy period to obtain an approximating
distribution. First we will fit an exponential distributionon the first moment of this busy period. Subse-
quently we will use the Coxian-2 distribution for a two-moment fit on the busy period.

5.4.1 One moment fit

For each state we can fit an exponential distribution on the mean time, spent in that particular state. Then
the process{Q(t) = (Q2(t), Q8(t)), t ≥ 0} becomes a Markov process. In figure 5.3, the rate diagram of
the stochastic process{Q(t) = (Q2(t), Q8(t)), t ≥ 0} is given. So for approachi holds:βi = 1

E[B Pi ] .

l 2

l 2

l 2

l 2

l 8 l 8 l 8 l 8

n 2

b 2

b 2

b 2

b 2 b 2

b 2

b 2 b 2
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b 2 b 2

b 8b 8 b 8 b 8

b 8b 8b 8b 8
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( 1 , 0 ) ( 2 , 0 ) ( 3 , 0 )

n 8

Figure 5.3: Transition rate diagram of the stochastic process{Q(t) = (Q2(t), Q8(t)), t ≥ 0}

For each state(n2, n8) the expected time until state(0, 0) is reached (= M(n2,n8)(0,0)(1)) can be calculated

46



CHAPTER 5. Analyzing exhaustive control 5.4. Distributionof the busy period

by conditioning on the first transition, resulting in the following equations:

M(n2,n8)(0,0)(1) = 1

β2 + β8
+ β2

β2 + β8
M(n2−1,n8)(0,0)(1) + β8

β2 + β8
M(n2,n8−1)(0,0)(1)

M(0,n8)(0,0)(1) = 1

λ2 + β8
+ λ2

λ2 + β8
M(1,n8)(0,0)(1) + β8

λ2 + β8
M(0,n8−1)(0,0)(1)

M(n2,0)(0,0)(1) = 1

λ8 + β2
+ λ8

λ8 + β2
M(n2,1)(0,0)(1) + β2

λ8 + β2
M(n2−1,0)(0,0)(1)

M(0,1)(0,0)(1) = 1

λ2 + β8
+ λ2

λ2 + β8
M(1,1)(0,0)(1) + β8

λ2 + β8
M(0,0)(0,0)(1)

M(1,0)(0,0)(1) = 1

λ8 + β2
+ λ8

λ8 + β2
M(1,1)(0,0)(1) + β2

λ8 + β2
M(0,0)(0,0)(1)

M(1,1)(0,0)(1) = 1

β2 + β8
+ β2

β2 + β8
M(0,1)(0,0)(1) + β8

β2 + β8
M(1,0)(0,0)(1)

M(0,0)(0,0)(1) = 0

Each of the equations above consists of three parts. For example the first equation is built up as follows: The
first part 1/(β2 + β8) indicates the amount of time you have to wait on average before transition to another
state. With probabilityβ2/(β2 + β8) andβ8/(β2 + β8) a transition from state(Q2(t), Q8(t)) = (n2, n8)

to respectively state(Q2(t), Q8(t)) = (n2 − 1, n8) and(Q2(t), Q8(t)) = (n2, n8 − 1) takes place.

This equation system can be solved recursively. First the values ofM(0,1)(0,0)(1), M(1,0)(0,0)(1), M(1,1)(0,0)(1)

andM(0,0)(0,0)(1) (the bottom left corner of figure 5.3) are determined out of the last four equations. When
these values are known, the edgesM(0,n8)(0,0)(1), M(1,n8)(0,0)(1), M(n2,0)(0,0)(1) andM(n2,1)(0,0)(1) can be
solved recursively, using the second and third equation. Finally, the rest of the valuesM(n2,n8)(0,0)(1) can
be determined, using the first equation.

5.4.2 Two-moment fit

In the previous subsection, we approximated the length of a busy period by an exponential distribution. To
obtain a more accurate approximation, we can use a Coxian-2 distribution for a two-moment fit, in case
c2

B Pi
≥ 0.5. In section 5.3 the expressions for the first two moments of the busy period are given for the

three different departure processes. The squared coefficient of variation of the busy periodB P is then
given by:

M/M/1

c2
B Pi

= 1 + ρi

1 − ρi

M/D/1

c2
B Pi

= ρi

1 − ρi

M/E4/1

c2
B Pi

= 1/4 + ρi

1 − ρi

For theM/M/1 this expression is greater than 1, so strictly greater than0.5 for all values 0≤ ρi < 1. For
the M/D/1 andM/E4/1, we have to be careful, because the squared coefficient of variation of the busy
period is not always greater than 0.5. For M/D/1 andM/E4/1 the criteriaρi > 1/3 andρi > 1/6 must
hold.
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For the parameters of the Coxian-2 distribution (explainedin figure 5.4) the following is suggested by Adan
and Resing [1]:

µia = 2/E[B Pi ]
pia = 0.5/c2

B Pi

µib = µia pia

The Coxian-2 distribution consists of one exponential phase with parameterµia with probability(1− pia).
It consists of two exponential phases with parameterµia andµib respectively with probabilitypia . So
besides the number of busy periods waiting at each approach we now also have to keep track of the phase
(a or b) of the Coxian-2 distribution. In figure 5.4 the phase diagram for the Coxian-2 distribution is given.

a b
m a m b

p a

1 - p a

Figure 5.4: Phase diagram for the Coxian-2 distribution

Define now the continuous-time stochastic process{Qi (t), t ≥ 0} by Qi (t)= the number of busy periods
at approachi at timet , t ≥ 0 and{Ri (t), t ≥ 0} by Ri (t) ∈ {a, b}= the phase of the Coxian-2 distribution
(see figure 5.4). For groupG1, the stochastic process{Q(t) = (Q2(t), Q8(t)), t ≥ 0} has an infinite state
space. The same holds for the stochastic process of groupG2, {Q(t) = (Q5(t), Q11(t)), t ≥ 0}. The
stochastic processes{R(t) = (R2(t), R8(t)), t ≥ 0} and{R(t) = (R5(t), R11(t)), t ≥ 0} have a finite state
space. As a result, the stochastic process{S(t) = (Q(t), R(t)), t ≥ 0} has an infinite state space as well.
The process{S(t)} is a Markov process.

Actually, each point in figure 5.3 can be replaced by four points (a, a), (a, b), (b, a), (b, b), representing
the four different states of a two-dimensional Coxian-2 distribution. A simplified rate diagram is given in
figure 5.5. On the edges (whenn2 = 0 orn8 = 0) the rate diagram is more difficult, because an arrival rate
λ is involved then.

When the traffic signals of groupG1 turn green, the Markov process is in state((n2, n8), (a, a)). When no
vehicles are present at the two approaches in groupG1, we have reached the target stateEj := (0, 0) and
the signals turn red. Note that(0, 0) is a short-hand notation of((0, 0), (a, a)).

So the expected effective green-time is given by:

M((n2,n8),(a,a))(0,0)(1) = E[min{t ≥ 0 : S(t) = (0, 0)}|S(0) = ((n2, n8), (a, a))]

In the same way as in the previous section, for each state((n2, n8), (a, a)), ((n2, n8), (a, b)), ((n2, n8), (b, a))

and((n2, n8), (b, b)) the expected time until state(0, 0) is reached can be solved iteratively, by formulating
a number of equations like the equations in subsection 5.4.1. For example:

M((1,1),(a,a))(0,0)(1) = 1

µ2a + µ8a
+ p2µ2a

µ2a + µ8a
M((1,1),(b,a))(0,0)(1) +

(1 − p2)µ2a

µ2a + µ8a
M((0,1),(a,a))(0,0)(1) + p8µ8a

µ2a + µ8a
M((1,1),(a,b))(0,0)(1) +

(1 − p8)µ8a

µ2a + µ8a
M((1,0),(a,a))(0,0)(1)
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( 1 - p 2 ) m 2 a

( 1 - p 2 ) m 2 a

m 2 b

m 8 b

p 8  m 8 a p 8  m 8 a

n 2 , n 8b , a
n 2 , n 8a , a

n 2 , n 8b , b
n 2 , n 8a , b

p 8  m 8 a p 8  m 8 a

n 2 , n 8 - 1b , a
n 2 , n 8 - 1b , a

n 2 , n 8 - 1b , a
n 2 , n 8 - 1b , a

p 2  m 2 a

p 8  m 8 a

p 2  m 2 a

p 8  m 8 a

n 2 - 1 , n 8b , a
n 2 - 1 , n 8a , a

n 2 - 1 , n 8b , b
n 2 - 1 , n 8a , b

p 2  m 2 a

p 2  m 2 a

p 2  m 2 a

p 2  m 2 a

m 2 b

m 8 b( 1 - p 8 ) m 8 a( 1 - p 8 ) m 8 a

Figure 5.5: Part of the rate diagram of the stochastic process{S(t) = ((Q2(t), Q8(t)), (R2(t), R8(t))), t ≥ 0}

This can be rewritten as:

M((1,1),(a,a))(0,0)(1) = p2µ2a

µ2a + µ8a

(

1

µ2a + µ8a
+ M((1,1),(b,a))(0,0)(1)

)

+

(1 − p2)µ2a

µ2a + µ8a

(

1

µ2a + µ8a
+ M((0,1),(a,a))(0,0)(1)

)

+

p8µ8a

µ2a + µ8a

(

1

µ2a + µ8a
+ M((1,1),(a,b))(0,0)(1)

)

+

(1 − p8)µ8a

µ2a + µ8a

(

1

µ2a + µ8a
+ M((1,0),(a,a))(0,0)(1)

)

The second momentM((n2,n8),(a,a))(0,0)(2) can easily be computed. The second moment is given by the
sum of the four probabilities multiplied with the second moment of the terms between brackets. So it is
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then given by:

M((1,1),(a,a))(0,0)(2) = p2µ2a

µ2a + µ8a

(

2

(µ2a + µ8a)2
+ M((1,1),(b,a))(0,0)(2) + 2M((1,1),(b,a))(0,0)(1)

µ2a + µ8a

)

+

(1 − p2)µ2a

µ2a + µ8a

(

2

(µ2a + µ8a)2
+ M((0,1),(a,a))(0,0)(2) + 2M((0,1),(a,a))(0,0)(1)

µ2a + µ8a

)

+

p8µ8a

µ2a + µ8a

(

2

(µ2a + µ8a)2
+ M((1,1),(a,b))(0,0)(2) + 2M((1,1),(a,b))(0,0)(1)

µ2a + µ8a

)

+

(1 − p8)µ8a

µ2a + µ8a

(

2

(µ2a + µ8a)2
+ M((1,0),(a,a))(0,0)(2) + 2M((1,0),(a,a))(0,0)(1)

µ2a + µ8a

)

5.5 Distribution of the number of arrivals

The next step is to find an approximation of the number of vehicles that arrived during the red period.
Especially, we want to determine the joint probability massfunction (pi, j (ni , n j )) of the number of arrivals
at the approaches in one group. To obtain an approximate distribution, we will fit a distribution on the first
two moments of the effective red-time. On the first moment, wecan fit an exponential distribution. We
have seen by simulation that in almost all cases the squared coefficient of variation (c2

Ti
) is greater than

0.5 and in some cases even greater than 1. Therefore we will use aCoxian-2 (in case 0.5 < c2
Ti

≤ 1)

or a hyperexponential distribution (in casec2
Ti

> 1) for a two-moment fit. When the squared coefficient
of variation is less than 0.5 one has to fit anEk−1,k distribution (a mix of anEk−1 and Ek distribution)
with a certain set of parameters. Because only in rare cases (when the arrival rates of vehicles are quite
similar and small)c2

Ti
is smaller than 0.5, we have not implemented the two-moment fit of a mix of Erlang

distributions in this chapter.

5.5.1 One moment fit

To find an approximation of the probability mass functionp2,8(n2, n8) of arriving vehicles at groupG1
during the effective green-time of groupG2, we will fit an exponential distribution on the first moment of
the effective green-time of groupG2. The parameter of this distribution is given byµ := 1/E[T5|T5 >

0] = 1/E[T11|T11 > 0]. The probability mass functionp2,8(n2, n8) can now easily be derived:

p2,8(n2, n8) =
(

λ2

λ2 + λ8 + µ

)n2
(

λ8

λ2 + λ8 + µ

)n8
(

µ

λ2 + λ8 + µ

) (

n2 + n8

n2

)

, n2, n8 ≥ 0

An explanation of the formula above is given by the fact thatn2 andn8 arrivals have taken place at ap-
proaches 2 and 8 respectively, before the effective green-time ends. These arrivals can take place in

(n2+n8
n2

)

different orders.

The probability mass function can also be computed recursively to speed up the algorithm. The recursive-
ness is obtained by conditioning on the first event that will take place.

p2,8(0, 0) = µ

λ2 + λ8 + µ

p2,8(n2, 0) = λ2

λ2 + λ8 + µ
p2,8(n2 − 1, 0), n2 ≥ 0

p2,8(0, n8) = λ8

λ2 + λ8 + µ
p2,8(0, n8 − 1), n8 ≥ 0

p2,8(n2, n8) = λ2

λ2 + λ8 + µ
p2,8(n2 − 1, n8) + λ8

λ2 + λ8 + µ
p2,8(n2, n8 − 1), n2, n8 ≥ 0
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5.5.2 Two-moment fit: Coxian-2

We have seen by simulation, that in almost all casesc2
Ti |Ti >0 ≥ 0.5. So we can use a Coxian-2 distribution

for a two-moment fit. In figure 5.4 the phase diagram for the Coxian-2 distribution is given.
The following is suggested by Adan and Resing [1]:

µa = 2

E[T5|T5 > 0]
pa = 1

2c2
T5|T5>0

µb = µa pa

In this chapter we make use of the set of parameters given by Adan and Resing.
Now (by conditioning), the probability mass functionp2,8(n2, n8) can easily be derived. With probability
(1 − pa) it comes to an end after the first phasea. This results in the same probability mass functions as
the one moment fit. With probabilitypa it goes through, up to the second phaseb.
Where in the first phasea2, with 0 ≤ a2 ≤ x2 anda8, with 0 ≤ a8 ≤ x8 vehicles arrived at approach 2 and
8 respectively, in the second phasex2 − a2 andx8 − a8 vehicles have to arrive. This results in a double
summation, as can be seen below:

p2,8(n2, n8) = (1 − pa)

(

λ2

λ2 + λ8 + µa

)n2
(

λ8

λ2 + λ8 + µa

)n8
(

µa

λ2 + λ8 + µa

) (

n2 + n8

n2

)

+

pa

n2
∑

a2=0

n8
∑

a8=0

(

λ2

λ2 + λ8 + µa

)a2
(

λ8

λ2 + λ8 + µa

)a8
(

µa

λ2 + λ8 + µa

)(

a2 + a8

a2

)

(

λ2

λ2 + λ8 + µb

)n2−a2
(

λ8

λ2 + λ8 + µb

)n8−a8
(

µb

λ2 + λ8 + µb

)(

n2 − a2 + n8 − a8

n2 − a2

)

(5.4)

Because of the double summation in the formula above, the computation time increases enormously, when
n2 andn8 increase. We can solve thep2,8(n2, n8) recursively, which takes a small fraction of the time to
compute these probabilities compared to formula (5.4). Therefore we will first introduce the probability
mass functionp2,8(n2, n8, i ) (i ∈ {a, b}) of the number of arriving vehicles during phasea and phasea
andb together respectively..
The recursiveness is obtained by conditioning on the first event that will take place.

p2,8(0, 0, a) = µa

λ2 + λ8 + µa

p2,8(0, 0, b) = µa

λ2 + λ8 + µa

µb

λ2 + λ8 + µb

p2,8(n2, 0, a) = λ2

λ2 + λ8 + µa
p2,8(n2 − 1, 0, a)

p2,8(n2, 0, b) = λ2

λ2 + λ8 + µb
p2,8(n2 − 1, 0, b) + µb

λ2 + λ8 + µb
p2,8(n2, 0, a)

p2,8(0, n8, a) = λ8

λ2 + λ8 + µa
p2,8(0, n8 − 1, a)

p2,8(0, n8, b) = λ8

λ2 + λ8 + µb
p2,8(0, n8 − 1, b) + µ2

λ2 + λ8 + µb
p2,8(0, n8, a)

p2,8(n2, n8, a) = λ2

λ2 + λ8 + µa
p2,8(n2 − 1, n8, a) + λ8

λ2 + λ8 + µa
p2,8(n2, n8 − 1, a)

p2,8(n2, n8, b) = λ2

λ2 + λ8 + µb
p2,8(n2 − 1, n8, b) + λ8

λ2 + λ8 + µb
p2,8(n2, n8 − 1, b) +

µb

λ2 + λ8 + µb
p2,8(n2, n8, a)
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and p2,8(n2, n8) follows directly:

p2,8(n2, n8) = (1 − pa)p2,8(n2, n8, a) + (pa)p2,8(n2, n8, b)

For examplep2,8(n2, n8, b) is determined as follows: the probability that during phasea andb togethern2
andn8 vehicles have arrived is split up in three different parts:

• The probability that during phasea andb togethern2 − 1 andn8 vehicles have arrived and before
phaseb ends, a vehicle at approach 2 arrives.

• The probability that during phasea andb togethern2 andn8 − 1 vehicles have arrived and before
phaseb ends, a vehicle at approach 8 arrives.

• The probability that during phasea n2 andn8 vehicles have arrived and phaseb ends, before an
arrival has taken place at approach 2 or 8.

5.5.3 Two-moment fit: Hyperexponential

We have seen by simulation, that in some cases evenc2
Ti |Ti >0 ≥ 1. In these cases we can also use a hyper-

exponential (H2) distribution for a two-moment fit instead of a Coxian-2 distribution. A random variable
is hyperexponentially distributed, if it is distributed with probabilitypa (respectivelypb) as an exponential
variable with mean 1/µa (respectively 1/µb). In figure 5.6 the phase diagram for the hyperexponential
distribution is given.

m a

a

b

p a

p b
m b

Figure 5.6: Phase diagram for the hyperexponentialH2 distribution

The following is suggested by Tijms [25, Appendix B]:

pa = 1/2



1 +

√

√

√

√

c2
T5|T5>0 − 1

c2
T5|T5>0 + 1





pb = 1 − pa

µa = 2pa

E[T5|T5 > 0]
µb = 2pb

E[T5|T5 > 0]
So to derive a closed formula for the probability mass function p2,8(n2, n8), we make use of the results
derived in subsubsection 5.5.1. The probability mass function p2,8(n2, n8) is given by:

p2,8(n2, n8) = pa

(

λ2

λ2 + λ8 + µa

)n2
(

λ8

λ2 + λ8 + µa

)n8
(

µa

λ2 + λ8 + µa

) (

n2 + n8

n2

)

+

pb

(

λ2

λ2 + λ8 + µb

)n2
(

λ8

λ2 + λ8 + µb

)n8
(

µb

λ2 + λ8 + µb

) (

n2 + n8

n2

)

(5.5)
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5.5.4 Combination of probability mass functions

With exhaustive service it cannot occur thatn2 or n8 andn5 or n11 are greater than zero. Therefore it is
obvious that we can combine these two probability mass functions to one functionp(n2, n8, n5, n11), indi-
cating the probability thatn2, n8, n5 andn11 vehicles are waiting at approaches 2, 8, 5 and 11 respectively
when the signals are switched. This can be done in the following way:

p(n2, n8, 0, 0) = p2,8(n2, n8)z5,11

p(0, 0, n5, n11) = p5,11(n5, n11)z2,8

p(0, 0, 0, 0) = p2,8(0, 0)z5,11 + p5,11(0, 0)z2,8

with

z2,8 := P(T2 > 0) =
∑

n2+n8>0

p(n2, n8, 0, 0) + p(0, 0, 0, 0)
λ2 + λ8

λ2 + λ5 + λ8 + λ11
(5.6)

z5,11 := P(T5 > 0) =
∑

n5+n11>0

p(0, 0, n5, n11) + p(0, 0, 0, 0)
λ5 + λ11

λ2 + λ5 + λ8 + λ11
(5.7)

with z2,8 as the probability that when the signals are switched the signals of groupG1 are turned green
(after a possible all empty situation). The same holds forz5,11 and groupG2.

5.6 Approximation based on one moment fit

In this section a simple iterative algorithm, developed to approximate the effective green-times in the
exhaustive control will be explained. This algorithm is based on a one moment fit of the busy period,
as well as a one moment fit of the effective red-time. The twoall emptystrategies, i.e.stay greenandall
red, result in slightly different algorithms and will therefore be discussed separately.

5.6.1 Stay green

With the all empty strategystay green, the signals of groupG1 andG2 have right of way alternatingly. We
have determinedM(n2,n8)(0,0)(1) andM(n5,n11)(0,0)(1) for all different values ofn2, n8, n5 andn11. Further-
more we can approximate the probability mass functionp2,8(n2, n8). Now we can derive an expression for
the average effective green-time of traffic signals 2 and 8 ingroupG1 (E[T2] = E[T8]):

E[T2] =
∑

n2+n8>0

M(n2,n8)(0,0)(1)p2,8(n2, n8) +

p2,8(0, 0)

(

1

λ2 + λ8
+ λ2

λ2 + λ8
M(1,0)(0,0)(1) + λ8

λ2 + λ8
M(0,1)(0,0)(1)

)

(5.8)

The effective green-time of traffic signals 2 and 8 corresponds to the effective red-time of traffic signals 5
and 11. So an approximation for the probability mass function p5,11(n5, n11) can be determined. So the
average effective green-time of traffic signals 5 and 11 in groupG2 (E[T5] = E[T11]) is given by:

E[T5] =
∑

n5+n11>0

M(n5,n11)(0,0)(1)p5,11(n5, n11) +

p5,11(0, 0)

(

1

λ5 + λ11
+ λ5

λ5 + λ11
M(1,0)(0,0)(1) + λ11

λ5 + λ11
M(0,1)(0,0)(1)

)

(5.9)

This results in a new approximation of the probability mass function p2,8(n2, n8) and therefore in a new
approximation ofE[T2] andE[T8], and so on. The iterative algorithm as explained above is outlined below.
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Iterative algorithm

The iterative algorithm as explained above is outlined below.
Determine values M(n2,n8)(0,0)(1);

Determine values M(n5,n11)(0,0)(1);

Take E[T2] = E[T5] = E[T8] = E[T11] =startvalue;

Take E[T2]prev = E[T5]prev = 0;

WHILE Abs(E[T2] − E[T2]prev) > ε OR Abs(E[T5] − E[T5]prev) > ε DO

Determine p2,8(n2, n8);

E[T2]prev := E[T2];
Compute E[T2] as in equation (5.8);

Determine p5,11(n5, n11);

E[T5]prev := E[T5];
Compute E[T5] as in equation (5.9);

ENDWHILE.

5.6.2 All red

In general a cycle consists of two phases. The first phase consists of a (possible) all red period. With
probability p(0, 0, 0, 0) the cycle starts with an all red period. This all red period lasts on average 1/(λ2 +
λ5 +λ8 +λ8). The second phase of the cycle consists of an effective greentime of signals 2 and 8 or 5 and
11.

The first moment of the effective green-time of signals 2 and 8, given that the second phase of the cycle
consists of an effective green-time of signals 2 and 8 is equal to the first moment of the effective green-time
of signals 2 and 8, divided by the probability that the secondphase of the cycle is an effective green-time
of signals 2 and 8 (= z2,8). The same holds for the first moment of the effective green-time of signals 5
and 11.

We start with the following probability mass function:

p(0, 0, 0, 0) = p(1, 0, 0, 0) = p(0, 1, 0, 0) = p(0, 0, 1, 0) = p(0, 0, 0, 1) = 1/5

p(n2, n8, 0, 0) = p(0, 0, n5, n11) = 0 , with n2, n5, n8, n11 > 0 (5.10)

The first moment (E[T2] = E[T8] andE[T5] = E[T11]) of the effective green-time can now be determined
as follows:

E[T2] =
∑

n2+n8>0

p(n2, n8, 0, 0)M(n2,n8)(0,0)(1) + p(0, 0, 0, 0)

(

λ2

λ2 + λ5 + λ8 + λ11
M(1,0)(0,0)(1) + λ8

λ2 + λ5 + λ8 + λ11
M(0,1)(0,0)(1)

)

E[T2|T2 > 0] = E[T2]/z2,8 (5.11)

E[T5] =
∑

n5+n11>0

p(0, 0, n5, n11)M(n5,n11)(0,0)(1) + p(0, 0, 0, 0)

(

λ5

λ2 + λ5 + λ8 + λ11
M(1,0)(0,0)(1) + λ11

λ2 + λ5 + λ8 + λ11
M(0,1)(0,0)(1)

)

E[T5|T5 > 0] = E[T5]/z5,11 (5.12)

On the first conditional moment of the red-time we will fit an exponential distribution. From this we can
find a new and better approximation of the probability mass function of the number of vehicles waiting
(described in subsection 5.5.1), at the moment the signals switch. Then we compute the first moment of
the effective green-time again, and so on. We will end the iterative algorithm, when the first moment of the
effective green-time (for both streams) converges to a specific value. In all tested cases we have seen that,
when the system is stable the system always converges to the same specific value.
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Iterative algorithm

The iterative algorithm as explained above is outlined below.
Determine values M(n2,n8)(0,0)(1);

Determine values M(n5,n11)(0,0)(1);

Take a start probability mass function as given in equation (5.10);

Take E[T2] = E[T5] = startvalue;

Take E[T2]prev = E[T5]prev = 0;

WHILE Abs(E[T2] − E[T2]prev) > ε OR Abs(E[T5] − E[T5]prev) > ε DO

E[T2]prev := E[T2] and E[T5]prev := E[T5];
Compute E[T2], E[T5] as in equations (5.11) and (5.12);

Determine p(n2, n8, n5, n11) based on one moment fit;

ENDWHILE.

5.7 Approximation based on two-moment fit

In this section an improved iterative algorithm, developedto approximate the effective green-times in the
exhaustive control will be explained. This algorithm is based on a two-moment fit of the busy period, as
well as a two-moment fit of the effective red-time. So, the algorithms discussed in this section are the most
accurate ones. The two all empty strategies, i.e.stay greenandall red result in slightly different algorithms
and will therefore be discussed separately.

5.7.1 Stay green

We have determinedM(n2,n8)(0,0)(1), M(n5,n11)(0,0)(1), M(n2,n8)(0,0)(2) andM(n5,n11)(0,0)(2) for all different
values ofn2, n8, n5 andn11. Furthermore we can approximate the probability mass function p2,8(n2, n8).
Now we can derive an expression for the first and second momentof the effective green-time of traffic
signals 2 and 8 (E[T2] = E[T8] andE[T2

2 ] = E[T2
8 ]):

E[T2] =
∑

n2+n8>0

M(n2,n8)(0,0)(1)p2,8(n2, n8) +

p2,8(0, 0)

(

1

λ2 + λ8
+ λ2

λ2 + λ8
M(1,0)(0,0)(1) + λ8

λ2 + λ8
M(0,1)(0,0)(1)

)

(5.13)

E[T2
2 ] =

∑

n2+n8>0

M(n2,n8)(0,0)(2)p2,8(n2, n8) + p2,8(0, 0)

(

λ2

λ2 + λ8

(

2

(λ2 + λ8)2
+ M(1,0)(0,0)(2) + 2M(1,0)(0,0)(2)

λ2 + λ8

)

+

λ8

λ2 + λ8

(

2

(λ2 + λ8)2
+ M(0,1)(0,0)(2) + 2M(0,1)(0,0)(2)

λ2 + λ8

))

(5.14)

The effective green-time of traffic signals 2 and 8 corresponds to the effective red-time of traffic signals 5
and 11. So an approximation for the probability mass function p5,11(n5, n11) can be determined. So the
average effective green-time of traffic signals 5 and 11 (E[T5] = E[T11]) and the second moment of this
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green time (E[T2
5 ] = E[T2

11]) are given by:

E[T5] =
∑

n5+n11>0

M(n5,n11)(0,0)(1)p5,11(n5, n11) +

p5,11(0, 0)

(

1

λ5 + λ11
+ λ5

λ5 + λ11
M(1,0)(0,0)(1) + λ11

λ5 + λ11
M(0,1)(0,0)(1)

)

(5.15)

E[T2
5 ] =

∑

n5+n11>0

M(n5,n11)(0,0)(2)p5,11(n5, n11) + p5,11(0, 0)

(

λ2

λ5 + λ11

(

2

(λ5 + λ11)2
+ M(1,0)(0,0)(2) + 2M(1,0)(0,0)(2)

λ5 + λ11

)

+

λ11

λ5 + λ11

(

2

(λ5 + λ11)2
+ M(0,1)(0,0)(2) + 2M(0,1)(0,0)(2)

λ5 + λ11

))

(5.16)

This results in a new approximation of the probability mass function p2,8(n2, n8) and therefor in a new
approximation ofE[T2], E[T8], E[T2

2 ] and E[T2
8 ] and so on. The iterative algorithm as shown above is

outlined below.

Iterative algorithm

The iterative algorithm as explained above is outlined below.
Determine values M(n2,n8)(0,0)(1);

Determine values M(n5,n11)(0,0)(1);

Take E[T2] = E[T5] = E[T8] = E[T11] =startvalue;

Take E[T2]prev = E[T5]prev = 0;

WHILE Abs(E[T2] − E[T2]prev) > ε OR Abs(E[T5] − E[T5]prev) > ε DO

Determine p2,8(n2, n8);

E[T2]prev := E[T2];
Compute E[T2] and E[T2

2 ] as in equation (5.13) and (5.14);

Determine p5,11(n5, n11);

E[T5]prev := E[T5];
Compute E[T5] and E[T2

5 ] as in equation (5.15) and (5.16);

ENDWHILE.

5.7.2 All red

In general a cycle consists of two phases. The first phase consists of a (possible) all red period. With
probability p(0, 0, 0, 0) the cycle starts with an all red period. This all red period lasts on average 1/(λ2 +
λ5 + λ8 + λ11). The second phase of the cycle consists of an effective greentime of signals 2 and 8 or 5
and 11.

The first moment of the effective green-time of signals 2 and 8, given that the second phase of the cycle
consists of an effective green-time of signals 2 and 8, is equal to the first moment of the effective green-time
of signals 2 and 8, divided by the probability that the secondphase of the cycle is an effective green-time
of signals 2 and 8 (= z28). The same holds for the first moment of the effective green-time of signals 5 and
11 and the second moment of both variables.

We start with the following probability mass function:

p(0, 0, 0, 0) = p(1, 0, 0, 0) = p(0, 1, 0, 0) = p(0, 0, 1, 0) = p(0, 0, 0, 1) = 1/5

p(n2, n8, 0, 0) = p(0, 0, n5, n11) = 0, with n2, n5, n8, n11 > 0 (5.17)

The first moment (E[T2] = E[T8] and E[T5] = E[T11]) and second moment (E[T2
2 ] = E[T2

8 ] and
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E[T2
5 ] = E[T2

11]) of the effective green-time can now be determined as follows:

E[T2] =
∑

n2+n8>0

p(n2, n8, 0, 0)M(n2,n8)(0,0)(1) + p(0, 0, 0, 0)

(

λ2

λ2 + λ5 + λ8 + λ11
M(1,0)(0,0)(1) + λ8

λ2 + λ5 + λ8 + λ11
M(0,1)(0,0)(1)

)

E[T2|T2 > 0] = E[T2]/z2,8 (5.18)

E[T2
2 ] =

∑

n2+n8>0

p(n2, n8, 0, 0)M(n2,n8)(0,0)(2) + p(0, 0, 0, 0)

(

λ2

λ2 + λ5 + λ8 + λ11
M(1,0)(0,0)(2) + λ8

λ2 + λ5 + λ8 + λ11
M(0,1)(0,0)(2)

)

E[T2
2 |T2 > 0] = E[T2

2 ]/z2,8 (5.19)

E[T5] =
∑

n5+n11>0

p(0, 0, n5, n11)M(n5,n11)(0,0)(1) + p(0, 0, 0, 0)

(

λ5

λ2 + λ5 + λ8 + λ11
M(1,0)(0,0)(1) + λ11

λ2 + λ5 + λ8 + λ11
M(0,1)(0,0)(1)

)

E[T5|T5 > 0] = E[T5]/z5,11 (5.20)

E[T2
5 ] =

∑

n5+n11>0

p(0, 0, n5, n11)M(n5,n11)(0,0)(2) + p(0, 0, 0, 0)

(

λ5

λ2 + λ5 + λ8 + λ11
M(1,0)(0,0)(2) + λ11

λ2 + λ5 + λ8 + λ11
M(0,1)(0,0)(2)

)

E[T2
5 |T5 > 0] = E[T2

5 ]/z5,11 (5.21)

On the first and second conditional moment of the red-time we will fit a Coxian-2 distribution with pa-
rameters as given by Adan and Resing [1]. From this we can find anew and better approximation of the
probability mass function of the number of vehicles waiting(described in subsection 5.5.2), at the moment
the signals turn green. Then compute the first and second moment of the effective green-time again, and
so on. We will end the iterative algorithm, when the first moment of the effective green-time (for both
streams) converges to a specific value.

Iterative algorithm

The iterative algorithm as explained above is outlined below.
Determine values M(n2,n8)(0,0)(1);

Determine values M(n5,n11)(0,0)(1);

Take a start probability mass function as given in equation (5.17);

Take E[T2] = E[T5] = startvalue;

Take E[T2]prev = E[T5]prev = 0;

WHILE Abs(E[T2] − E[T2]prev) > ε OR Abs(E[T5] − E[T5]prev) > ε DO

E[T2]prev := E[T2] and E[T5]prev := E[T5];
Compute E[T2], E[T5] and E[T2

2 ], E[T2
5 ] as in equation (5.18),(5.19),(5.20) and (5.21);

Determine p(n2, n8, n5, n11) based on two-moment fit;

ENDWHILE.

5.8 Average delay

For the two differentall emptystrategies, we can now derive the average delay of vehicles at the different
approaches, using mean value analysis.
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5.8.1 Stay green

Now the average effective green-times have been approximated, we can compute the average delay of
vehicles. The average delayE[Di ] (the own ‘service time’ included) for approachi is given by:

E[Di ] = E[Tj ]
E[Ti ] + E[Tj ]

E[RTj ] + E[Lq
i ] 1

µi
+ ρi E[RSi ] + 1

µi
(5.22)

whereE[RTj ] is the residual effective red-time of approachj andE[RSi ] is the residual departure time of
a vehicle at approachi . E[RTj ] andE[RSi ] are given by:

E[RTj ] = 1

2
E[Tj ](CT2

j
+ 1)

E[RSi ] = 1

2
E[Si ](CS2

i
+ 1)

with CT2
j

and CS2
i

the squared coefficient of variation of the effective red-time and the departure time

respectively.

Formula (5.22) is determined as follows. The first term is theaverage delay caused by the fact that a vehicle
arrives during the effective red-time, so the effective green-time of the other group. According to PASTA
[1] the probability that a vehicle arrives during the effective red-time is equal to the fraction of time the
signal is red. This fraction is given byE[Tj ]/(E[Ti ] + E[Tj ]) for vehicles arriving at signali . Then on
average vehicles will have to wait a residual effective red-time E[RTj ].
The second and third term of formula (5.22) can be determinedas follows: Based on PASTA we know that
the average number of vehicles on approachi seen by an arriving vehicle equalsE[Lq

i ] and each of them
has a departure time with mean 1/µi . Furthermore the vehicle has ‘to wait’ for its own departure.

The last term of the formula above can again be explained by PASTA. We know that with probabilityρi

there is a departure when a vehicle arrives and the arriving vehicle has to wait until the departure has been
completed. On average this time is given by the residual departure timeE[RSi ].
As we assumed earlier, vehicles leave the intersection withinterdeparture times that are exponentially,
deterministic and Erlang-4 distributed. The residual departure time is then given by:

M/M/1

E[RSi ] = E[Si ]

M/D/1

E[RSi ] = 1

2
E[Si ]

M/E4/1

E[RSi ] = 5

8
E[Si ]

From (5.22) and with Little’s law [1] (E[Lq
i ]+ρi = λi E[Di ]), the following formula for the average delay

can be found:

E[Di ] = 1

1 − ρi

(

E[Tj ]
E[Ti ] + E[Tj ]

(
1

2
E[Tj ](CT2

j
+ 1)) + ρi E[RSi ]

)

+ 1

µi

The last two terms, multiplied by 1
1−ρ1

form the ordinaryM/G/1 part. The other terms are extra due to
service to the other group.
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5.8.2 All red

For theall red strategy, the average delay formula is slightly different and given by:

E[Di ] = E[Tj ]
E[Ti ] + E[Tj ] + p(0,0,0,0)

λ2+λ5+λ8+λ11

E[RTj ] + E[Lq
i ] 1

µi
+ ρi E[RSi ] + 1

µi

with E[RTj ] andE[RSi ] as given in the previous subsection.

The formula above is determined in the same way as the formulain the previous subsection. A small
difference is given by the fact that the average cycle time isgiven by the averageall red time (given by
p(0, 0, 0, 0)/(λ2 + λ5 + λ8 + λ11)) and the effective green-times of both groups.

Again with Little’s law the following approximation formula can be found:

E[Di ] = 1

1 − ρi

(

E[Tj ]
E[Ti ] + E[Tj ] + p(0,0,0,0)

λ2+λ5+λ8+λ11

(
1

2
E[Tj ](CT2

j
+ 1)) + ρi E[RSi ]

)

+ 1

µi

5.9 Convergence

The first problem that may arise is that the iterative procedure does not converge at all, that means, the
changes in the estimates from iteration to iteration do not get smaller and may even get larger. We cannot
prove, that the iterative procedure always converges, but in practice we have always seen it converges.

In most cases the values of the estimates are monotonically increasing from iteration to iteration. It is al-
ways increasing because the start probability mass function has a mass of 0.2 in the states(n2, n5, n8, n11) =
{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. In some cases the value of the estimates is al-
ternating around the end value. First it is smaller than the end value, subsequently larger, then smaller again,
and so on. The absolute deviation of the value of the estimates with the specific end value is monotonically
decreasing from iteration to iteration.

The iteration stops, when the deviation between the values of two successive iterations is smaller than a
specific valueε. We have chosenε = 0.001. Of course, the smaller the epsilon the more accurate the
approximation, but the larger the computation time.

In the cases we have examined, the number of iterations varied from 5 to 40. The smaller the occupation
rate and the more balanced the occupation rates of the signals within one group, the smaller the number of
iterations needed.

The computation time depends on three factors. Of course thespeed of the computer affects the computa-
tion time. Another factor is the computer program that is used. We have used Mathematica 4.1 to implement
the iterative method. The most important factor is given by the number of states(Qi (t), Q j (t)) = (ni , n j )

for which the time until state(Qi (t), Q j (t)) = (0, 0) is reached is computed. For each case we have
computed a square ((Qi (t), Q j (t)) = (ni , n j ) with 0 ≤ ni ≤ nM AX

i and 0≤ n j ≤ nM AX
j ). The values

nM AX
i andnM AX

j depend on the value of occupation rates and on the way the occupation rates of the signals

within one group are balanced. We have chosennM AX
i = nM AX

j . The values varied from 50 to 150.

The computation time of the cases we have examined varied from 5 minutes to 45 minutes. This seems
long, but with a faster computer and a more clever programmedmethod, this computation time can decrease
enormously. With another start probability mass function that corresponds better to the specific case the
computation time of this method will decrease as well, because the total number of iterations will decrease.

5.10 Discrete-event simulation

To simulate the dynamic traffic control, we have written a discrete-event simulation with an event schedul-
ing approach. The event scheduling approach concentrates on the events and how they affect the system.
The three events that can be distinguished are:
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1. Arrival of a vehicle

2. Departure of a vehicle

3. Beginning of the effective green-time

The signals are divided inton groups, where the signals within each group are turned greensimultaneously.
The server serves the groups in cyclic order(1, 2, · · · , n). We investigate at each departure whether there
are waiting vehicles at signals in groupGk. When at each of the signals in groupGk no vehicles are waiting
anymore, the signals are turned red. The signals of the next group in orderGk+1 are turned green after a
clearance time ofsGk,Gk+1. During this clearance time all signals are turned red and asa result no vehicles
can drive off.

We keep track of the time points at which the next events of thedifferent types occur. This Future Event
Set (FES) is implemented as a binary search tree to determinethe next event efficiently. In a tree, the time
points are not ordered in a straight line, like earliest event first, and so on. Instead, the starting time point,
called the root, is linked to two other nodes, called its children, and those nodes in turn are linked to other
children, and so on. Formally, a tree is either empty, or a root, which is connected to one or more other
trees, called the subtrees of the root. The order of all time points in this tree is important. Formally, in a
binary search tree the following holds:

• All the time points in the left subtree take place earlier than the time point of the root

• All the time points in the right subtree take place later thanthe time point of the root

• The left and right subtrees are also binary search trees

We can conclude, that the event that takes place first, is the leftmost node in the tree. We use a binary
search tree in order to minimize the distance we have to go to reach any given element. Searching for an
element in a binary tree containingn nodes is anO(logn) process and building the tree in the first place is
an O(nlogn) process, if the tree is reasonably well balanced.

The simulation then consists of finding the smallest time point in this tree, setting the current time to this
event time and executing the corresponding activities. Here we will describe how these events affect the
system and which activities are carried out.

1. Arrival of a vehicle

With an arrival, the vehicle is placed in the waiting queue. For each vehicle in the queue we keep track of
the position of the vehicle in the queue as well as the point oftime the vehicle joined the queue. When a
vehicle arrives, a new arrival at the same signal is simulated. When no vehicles were waiting at the moment
the vehicle arrived at the signal, a departure is simulated.

2. Departure of a vehicle

With the departure of a vehicle, we first compute the delay of that particular vehicle. Because we keep
track of the points of time vehicles arrive at the queue this can easily be done. All (possible) remaining
vehicles shift one place forward in the queue. If there are still vehicles waiting, the signal is not turned red,
but a new departure is simulated. With each departure we investigate whether all queues within the group
are empty. When this is true, a new event of type 3 (the beginning of the effective green-time) is simulated
after the clearance time between groupGk andGk+1. Furthermore, the state of the signals in subsetGk is
changed from green to red.
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3. Beginning of the effective green-time

At the beginning of the effective green-time of subsetGk, the state of the signals within this subset changes
from red to green. When there are waiting vehicles at the queues a new departure is generated and added
to the binary search tree.

As stopping criterium for this simulation the runlength is taken. When the current simulation time exceeds
this runlength the simulation is ended.

5.11 Results

In this section we will give the results of eight cases that wehave investigated. These eight cases represent
most of the (extreme) situations that can occur. In table 5.1, an explanation of the abbreviations used in the
tables in this section is given.

i Number of the traffic signal used in figure 5.1.
I nti Total number of arriving vehicles per hour (I nti = 3600λi ).
Capi Maximum number of leaving vehicles per hour (Capi = 3600µi ).
E[Ti ]sim First moment of the effective green-time, determined by simulation (in seconds).
E[T2

i ]sim Second moment of the effective green-time, determined by simulation.
E[Di ]sim Average delay of vehicles (in seconds), determined by simulation (with 95% confidence interval).
E[Ti ]app Approximation of the first moment of the effective green-time (in seconds).
E[T2

i ]app Approximation of the second moment of the effective green-time.
E[Di ]app Approximation of the average delay of vehicles (in seconds).

Table 5.1: Explanation of the abbreviations used in the tables in this section

In the first two tables the results of the all empty strategystay greenare given for respectively the ex-
ponential and deterministic departure process. Subsequently in the last three tables the results for the all
empty strategyall red are given when the departure process is respectively exponential, deterministic and
Erlang-4.

We have used Mathematica 4.1 to implement the different methods.
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5.11.1 Resultsstay green

Exponential service times

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 280 1800 7.29 114.9 6.42(± 0.016) 7.36 116.5 6.44
5 530 1900 6.98 97.6 8.21(± 0.017) 7.08 99.2 8.22
8 700 1900 7.29 114.9 8.42(± 0.017) 7.36 116.5 8.44
11 400 1700 6.98 97.6 8.04(± 0.021) 7.08 99.2 8.04

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 37.24 3098.8 44.16(± 0.528) 37.01 2968.0 43.76
5 930 1900 39.48 3636.8 42.16(± 0.473) 39.20 3474.6 41.85
8 700 1900 37.24 3098.8 39.52(± 0.457) 37.01 2968.0 39.09
11 500 1700 39.48 3636.8 30.95(± 0.310) 39.20 3474.6 30.59

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 15.49 771.0 29.67(± 0.363) 15.32 764.2 29.84
5 930 1900 17.14 967.8 26.74(± 0.317) 17.00 963.8 26.87
8 200 1900 15.49 771.0 18.69(± 0.210) 15.32 764.2 18.78
11 200 1700 17.14 967.8 15.76(± 0.179) 17.00 963.8 15.80

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 13.45 430.0 8.09(± 0.017) 13.42 429.9 7.93
5 250 1900 7.44 104.9 13.93(± 0.047) 7.39 103.8 14.08
8 930 1900 13.45 430.0 8.61(± 0.021) 13.42 429.9 8.60
11 300 1700 7.44 104.9 14.85(± 0.053) 7.39 103.8 15.11

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 830 1800 31.69 2481.9 32.04(± 0.253) 31.67 2208.0 30.47
5 830 1900 26.32 1855.3 39.08(± 0.294) 26.07 1665.1 37.32
8 830 1900 31.69 2481.9 29.64(± 0.246) 31.67 2208.0 28.97
11 200 1700 26.32 1855.3 25.49(± 0.183) 26.07 1665.1 24.07

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 100 1800 7.93 133.3 5.39(± 0.016) 7.94 133.5 5.41
5 200 1900 6.93 92.4 7.13(± 0.017) 6.95 92.7 7.13
8 300 1900 7.93 133.3 5.94(± 0.013) 7.94 133.5 5.95
11 400 1700 6.93 92.4 8.60(± 0.020) 6.95 92.7 8.63

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 200 1800 8.06 142.8 10.92(± 0.056) 8.10 143.2 10.96
5 400 1900 10.63 290.2 7.28(± 0.063) 10.66 290.6 7.23
8 600 1900 8.06 142.8 14.21(± 0.065) 8.10 143.2 14.09
11 800 1700 10.63 290.2 11.85(± 0.078) 10.66 290.6 11.21

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 700 1800 19.10 786.4 21.13(± 0.124) 19.19 786.6 21.07
5 700 1900 19.75 847.8 19.03(± 0.104) 19.84 848.9 18.96
8 700 1900 19.10 786.4 20.23(± 0.116) 19.19 786.6 20.22
11 700 1700 19.75 847.8 20.81(± 0.118) 19.84 848.9 20.73
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Deterministic service times

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 280 1800 6.14 59.9 4.76(± 0.007) 6.25 61.0 4.76
5 530 1900 5.89 52.2 5.72(± 0.009) 6.00 53.2 5.71
8 700 1900 6.14 59.9 5.88(± 0.008) 6.25 61.0 5.89
11 400 1700 5.89 52.2 5.70(± 0.009) 6.00 53.2 5.70

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 22.32 927.6 23.61(± 0.172) 24.00 1006.8 23.81
5 930 1900 23.68 1088.0 22.52(± 0.160) 25.48 1180.3 22.73
8 700 1900 22.32 927.6 21.14(± 0.149) 24.00 1006.8 21.33
11 500 1700 23.68 1088.0 16.82(± 0.108) 25.48 1180.3 16.97

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 11.72 311.9 16.74(± 0.111) 12.76 338.4 16.87
5 930 1900 12.95 390.7 15.17(± 0.098) 14.14 430.0 15.12
8 200 1900 11.72 311.9 10.85(± 0.064) 12.76 338.4 10.94
11 200 1700 12.95 390.7 9.42(± 0.054) 14.14 430.0 9.39

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 10.65 204.2 6.23(± 0.009) 11.16 212.7 6.13
5 250 1900 6.26 66.5 8.99(± 0.020) 6.32 66.6 9.04
8 930 1900 10.65 204.2 6.65(± 0.011) 11.16 212.7 6.53
11 300 1700 6.26 66.5 9.68(± 0.019) 6.32 66.6 9.73

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 830 1800 20.36 792.1 17.52(± 0.119) 21.86 851.0 17.51
5 830 1900 17.00 590.9 21.45(± 0.136) 18.18 632.6 21.50
8 830 1900 20.36 792.1 16.67(± 0.108) 21.86 851.0 16.66
11 200 1700 17.00 590.9 14.26(± 0.084) 18.18 632.6 14.30

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 100 1800 7.67 121.7 4.75(± 0.011) 7.67 121.5 4.80
5 200 1900 6.56 72.2 6.77(± 0.018) 6.72 74.4 6.72
8 300 1900 7.67 121.7 5.08(± 0.011) 7.67 121.5 5.14
11 400 1700 6.56 72.2 8.03(± 0.019) 6.72 74.4 7.96

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 200 1800 6.81 71.8 7.07(± 0.021) 6.82 72.2 7.09
5 400 1900 8.75 136.9 5.20(± 0.027) 8.88 138.7 5.06
8 600 1900 6.81 71.8 8.90(± 0.021) 6.82 72.2 8.79
11 800 1700 8.75 136.9 7.58(± 0.026) 8.88 138.7 7.40

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 700 1800 12.44 261.6 11.75(± 0.035) 13.23 297.7 11.81
5 700 1900 12.89 282.4 10.62(± 0.032) 13.69 301.9 11.20
8 700 1900 12.44 261.6 11.26(± 0.033) 13.23 297.7 11.32
11 700 1700 12.89 282.4 11.62(± 0.033) 13.69 301.9 12.25
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5.11.2 Resultsall red

Exponential service times

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 280 1800 4.98 72.5 5.44(± 0.017) 4.96 72.1 5.43
5 530 1900 4.78 61.3 7.00(± 0.021) 4.76 60.7 7.01
8 700 1900 4.98 72.5 7.10(± 0.019) 4.96 72.1 7.10
11 400 1700 4.78 61.3 6.88(± 0.020) 4.76 60.7 6.90

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 35.05 2890.4 44.66(± 0.506) 35.10 2789.7 43.26
5 930 1900 37.30 3399.8 42.64(± 0.457) 37.23 3272.0 41.47
8 700 1900 35.05 2890.4 39.94(± 0.435) 35.10 2789.7 38.65
11 500 1700 37.30 3399.8 31.16(± 0.306) 37.23 3272.0 30.31

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 12.58 638.4 28.90(± 0.352) 11.51 572.3 28.50
5 930 1900 13.53 769.5 26.02(± 0.306) 12.52 698.9 25.64
8 200 1900 12.58 638.4 18.19(± 0.202) 11.51 572.3 17.93
11 200 1700 13.53 769.5 15.28(± 0.171) 12.52 698.9 15.09

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 8.16 219.5 5.94(± 0.014) 8.17 220.3 5.96
5 250 1900 4.72 53.0 12.34(± 0.045) 4.59 51.3 12.40
8 930 1900 8.16 219.5 6.40(± 0.017) 8.17 220.3 6.40
11 300 1700 4.72 53.0 13.31(± 0.048) 4.59 51.3 13.34

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 830 1800 27.36 2041.0 31.58(± 0.277) 27.62 2040.9 31.00
5 830 1900 24.28 1641.2 39.37(± 0.328) 23.62 1593.7 38.81
8 830 1900 27.36 2041.0 30.02(± 0.275) 27.62 2040.9 29.48
11 200 1700 24.28 1641.2 25.46(± 0.199) 23.62 1593.7 25.02

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 100 1800 2.54 15.2 3.38(± 0.009) 2.55 15.2 3.38
5 200 1900 2.98 22.9 2.78(± 0.006) 2.98 23.0 2.79
8 300 1900 2.54 15.2 3.67(± 0.008) 2.55 15.2 3.67
11 400 1700 2.98 22.9 3.55(± 0.007) 2.98 23.0 3.55

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 200 1800 5.70 97.1 9.91(± 0.053) 5.59 94.9 9.88
5 400 1900 7.37 186.9 6.12(± 0.026) 7.31 185.1 6.22
8 600 1900 5.70 91.1 12.70(± 0.067) 5.59 94.9 12.68
11 800 1700 7.37 186.9 9.70(± 0.042) 7.31 185.1 9.70

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 700 1800 17.40 719.2 20.91(± 0.107) 17.42 710.1 20.76
5 700 1900 18.00 774.5 18.85(± 0.093) 18.03 767.0 18.71
8 700 1900 17.40 719.2 20.06(± 0.097) 17.42 710.1 19.92
11 700 1700 18.00 774.5 20.60(± 0.100) 18.03 767.0 20.47

64



CHAPTER 5. Analyzing exhaustive control 5.11. Results

Deterministic service times

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 280 1800 4.23 30.9 3.73(± 0.005) 4.32 31.6 3.73
5 530 1900 4.05 26.0 4.46(± 0.007) 4.14 26.7 4.47
8 700 1900 4.23 30.9 4.51(± 0.006) 4.32 31.6 4.51
11 400 1700 4.05 26.0 4.51(± 0.007) 4.14 26.7 4.52

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 21.53 897.1 23.57(± 0.187) 22.61 938.2 23.46
5 930 1900 22.91 1054.3 22.48(± 0.166) 24.01 1100.3 22.46
8 700 1900 21.53 897.1 21.11(± 0.161) 22.61 938.2 21.01
11 500 1700 22.91 1054.3 16.78(± 0.116) 24.01 1100.3 16.78

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 9.32 234.8 15.35(± 0.120) 9.87 247.0 15.29
5 930 1900 10.13 286.1 13.86(± 0.105) 10.76 302.2 13.79
8 200 1900 9.32 234.8 9.96(± 0.072) 9.87 247.0 9.94
11 200 1700 10.13 286.1 8.65(± 0.056) 10.76 302.2 8.62

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 6.91 94.9 3.98(± 0.005) 7.16 99.6 3.99
5 250 1900 3.74 21.1 7.24(± 0.017) 3.83 21.9 7.33
8 930 1900 6.91 94.9 4.15(± 0.006) 7.16 99.6 4.16
11 300 1700 3.74 21.1 7.82(± 0.019) 3.83 21.9 7.93

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 830 1800 18.28 696.4 17.13(± 0.117) 19.24 725.2 16.86
5 830 1900 15.81 546.3 21.05(± 0.129) 16.43 560.3 20.95
8 830 1900 18.28 696.4 16.25(± 0.106) 19.24 725.2 16.03
11 200 1700 15.81 546.3 14.03(± 0.080) 16.43 560.3 13.95

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 100 1800 2.43 7.2 2.70(± 0.004) 2.43 7.3 2.69
5 200 1900 2.87 11.1 2.34(± 0.002) 2.87 11.1 2.34
8 300 1900 2.43 7.2 2.78(± 0.003) 2.43 7.3 2.78
11 400 1700 2.87 11.1 2.83(± 0.002) 2.87 11.1 2.84

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 200 1800 4.59 39.2 5.97(± 0.017) 4.77 40.9 5.96
5 400 1900 6.12 78.2 4.06(± 0.009) 6.36 81.1 4.07
8 600 1900 4.59 39.2 7.33(± 0.022) 4.77 40.9 7.32
11 800 1700 6.12 78.2 5.91(± 0.014) 6.36 81.1 5.92

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 700 1800 11.51 238.2 11.49(± 0.040) 12.21 253.8 11.52
5 700 1900 11.95 257.6 10.38(± 0.032) 12.65 274.2 10.43
8 700 1900 11.51 238.2 11.00(± 0.037) 12.21 253.8 11.05
11 700 1700 11.95 257.6 11.38(± 0.040) 12.65 274.2 11.43
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Erlang-4 service times

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 280 1800 4.46 40.7 4.16(± 0.008) 4.55 41.6 4.16
5 530 1900 4.28 34.3 5.10(± 0.012) 4.37 35.1 5.11
8 700 1900 4.46 40.7 5.16(± 0.010) 4.55 41.6 5.16
11 400 1700 4.28 34.3 5.11(± 0.010) 4.37 35.1 5.12

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 24.94 1277.3 28.51(± 0.227) 26.22 1350.3 28.68
5 930 1900 26.52 1500.3 27.21(± 0.201) 27.84 1585.1 27.45
8 700 1900 24.94 1277.2 25.54(± 0.199) 26.22 1350.3 25.67
11 500 1700 26.52 1500.3 20.19(± 0.137) 27.84 1585.1 20.33

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 10.25 321.8 18.64(± 0.182) 10.46 326.6 18.60
5 930 1900 11.11 391.6 16.81(± 0.156) 11.39 399.3 16.76
8 200 1900 10.25 321.8 11.98(± 0.109) 10.46 326.6 11.94
11 200 1700 11.11 391.6 10.26(± 0.089) 11.39 399.3 10.24

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 7.32 124.8 4.47(± 0.007) 7.54 129.6 4.49
5 250 1900 4.03 28.4 8.52(± 0.023) 4.11 29.1 8.60
8 930 1900 7.32 124.8 4.72(± 0.008) 7.54 129.6 4.73
11 300 1700 4.03 28.4 9.21(± 0.021) 4.11 29.1 9.28

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 830 1800 20.91 990.0 20.78(± 0.142) 21.67 1013.5 20.52
5 830 1900 18.21 781.6 24.70(± 0.155) 18.52 785.7 25.56
8 830 1900 20.91 990.0 19.78(± 0.131) 21.67 1013.5 19.51
11 200 1700 18.21 781.6 16.89(± 0.097) 18.52 785.7 16.81

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 100 1800 2.46 9.17 2.86(± 0.005) 2.47 9.2 2.86
5 200 1900 2.91 14.02 2.45(± 0.003) 2.91 14.0 2.46
8 300 1900 2.46 9.17 3.01(± 0.005) 2.47 9.2 3.00
11 400 1700 2.91 14.02 3.01(± 0.003) 2.91 14.0 3.02

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 200 1800 4.92 52.4 6.95(± 0.027) 5.07 54.0 6.94
5 400 1900 6.51 103.4 4.59(± 0.012) 6.70 106.5 4.61
8 600 1900 4.92 52.4 8.66(± 0.033) 5.07 54.0 8.65
11 800 1700 6.51 103.4 6.85(± 0.023) 6.70 106.5 6.87

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 700 1800 13.14 338.2 13.80(± 0.052) 13.86 358.2 13.86
5 700 1900 13.60 364.7 12.46(± 0.043) 14.36 386.9 12.53
8 700 1900 13.14 338.2 13.21(± 0.050) 13.86 358.2 13.29
11 700 1700 13.60 364.7 13.64(± 0.053) 14.36 386.9 13.72

66



CHAPTER 5. Analyzing exhaustive control 5.11. Results

5.11.3 Discussion of results

We only have given numerical results of the approximation based on a two-moment fit of the busy period
as well as a two moment fit of the effective red-time. No exact results were given of the approximation
based on a one moment fit. For low occupation rates the one moment fit approximation yields reasonably
good results. For example, for case 1, 6 and 7 the approximation differs less than 3% from the simulation
results. For high occupation rates the results are not accurate enough. The deviation can run to more than
30%.

From all the results in this section we can conclude that the approximation described in this chapter is very
accurate. In table 5.2 we can find the deviation (in percents)of the approximation of the first and second
moment of the effective green-time from the simulation results for the eight different cases. So for each
case the approximation of the effective green-time of groupG1 (Signal 2 and 8) andG2 (Signal 5 and 11)
is compared with the simulation results.

Stay green All red
Exp Det Exp Det Erl4 Total

Case Dev1 Dev2 Dev1 Dev2 Dev1 Dev2 Dev1 Dev2 Dev1 Dev2 Dev
1: G1 0.96 1.39 1.79 1.84 0.40 0.55 2.13 2.27 2.02 2.21 1.66

G2 1.43 1.64 1.87 1.92 0.42 0.98 2.22 2.69 2.10 2.33
2: G1 0.62 4.22 7.53 8.54 0.14 3.48 5.02 4.58 5.13 5.72 4.50

G2 0.71 4.46 7.60 8.48 0.19 3.76 4.80 4.36 4.98 5.65
3: G1 1.10 0.88 8.87 8.50 8.51 10.35 5.90 5.20 2.05 1.49 5.32

G2 0.82 0.41 9.19 10.06 7.46 9.17 6.22 5.63 2.52 1.97
4: G1 0.22 0.02 4.79 4.16 0.12 0.36 3.62 4.95 3.01 3.85 2.23

G2 0.67 1.05 0.96 0.15 2.75 3.21 2.41 3.79 1.99 2.46
5: G1 0.06 11.04 7.37 7.44 0.95 0.00 5.25 4.14 3.63 2.37 4.09

G2 0.95 10.25 6.94 7.06 2.72 2.89 3.92 2.56 1.70 0.52
6: G1 0.13 0.15 0.00 0.16 0.39 0.00 0.00 1.39 0.41 0.33 0.48

G2 0.29 0.32 2.44 3.05 0.00 0.44 0.00 0.00 0.00 0.14
7: G1 0.50 0.28 0.15 0.56 1.93 4.17 3.92 4.34 3.05 3.05 1.93

G2 0.28 0.17 1.49 1.31 0.81 0.96 3.92 3.71 2.92 3.00
8: G1 0.47 0.03 6.35 13.80 0.11 1.27 6.08 6.55 5.48 5.91 4.24

G2 0.46 0.13 6.21 6.91 0.17 0.97 5.86 6.44 5.59 6.09
Total 0.60 2.28 4.60 5.25 1.69 2.66 3.83 3.91 2.91 2.94

Table 5.2: Deviation (in percents) of the approximation of the first two moments of theeffective green-time from the
simulation results

In table 5.2 can be seen that the developed approximation forthestay greenstrategy with an exponential
departure process yields the best results, with an average deviation of 0.60% and 2.28% for the first and
second moment respectively. On the other hand, when a deterministic departure process is assumed, the
deviation comes to 4.60% and 5.25% for respectively the first and second moment of the effective green-
time. In some cases (for example case 3), the deviation of thefirst moment is even almost 10%. The higher
the occupation rates of the approaches the larger the deviation will be. But this is not the only reason for a
large deviation. When the occupation rates of the two approaches in the same group differ quite a lot, then
the deviation will be large as well.

For the strategyall red we can remark other things. The overall results for the threedifferent departure
processes don’t differ that much. The exponential departure process yields the best results, followed by
the Erlang-4 departure process. The worst results are once more achieved, when the departure process is
deterministic. So the higher the coefficient of variation ofthe departure process, the smaller the deviation
will be. The departure process influences the accuracy of theapproximation the most, when the occupation
rates of the approaches are high. For example look at case 6 and 8. The occupation rate of the approaches
of case 6 is low, where the occupation rate of approaches of case 8 is high. For all three different departure
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processes, the results of case 6 are very accurate (deviation of less than 2%). This in contrast with the
results of case 8, where the occupation rate for all approaches is high.

For case 3 the results are very inaccurate (especially with the all red strategy and exponential departure
process). In the next subsection we will investigate whether the use of other two-moment fits will yield
better results for case 3, when the departure process is exponential and with all empty strategyall red. As
you can see in the table above the deviation of the first and second moment of the effective green-time is
almost 10%, which is extremely bad.

5.11.4 Special case

In this subsection we consider one of the cases that is investigated earlier in this section. The input and
output of this case is given in table 5.3. The departure process is exponential. The deterministic and
Erlang-4 departure processes already yield reasonably good results and will therefore not be investigated
here.

In this particular case, the occupation rates of the two approaches that have right simultaneously differ a
lot. As can be seen in table 5.2, the approximation of the effective green-time varies enormously from the
simulation results. This deviation is almost 10%.

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 12.58 638.4 28.90(± 0.352) 11.51 572.3 28.50
5 930 1900 13.53 769.5 26.02(± 0.306) 12.52 698.9 25.64
8 200 1900 12.58 638.4 18.19(± 0.202) 11.51 572.3 17.93
11 200 1700 13.53 769.5 15.28(± 0.171) 12.52 689.9 15.09

Table 5.3: Results of special case with original two-moment fit

Here we investigate whether the choice of moment fit influences the accuracy of the approximation. Instead
of using a Coxian-2 distribution for a two-moment fit (where the parameters are given by Adan and Resing
[1]) on the effective red-time, we will investigate the use of a hyperexponential distribution and another
choice for the Coxian-2 parameters given by Tijms [25, Appendix B].

Two-moment fit: Hyperexponential

The following is suggested by Tijms [25, Appendix B]:

pa = 1/2



1 +

√

√

√

√

c2
T5

− 1

c2
T5

+ 1





pb = 1 − pa

µa = 2pa

E[T5]
µb = 2pb

E[T5]

The results of the approximation are given in table 5.4.
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i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 12.58 638.4 28.90(± 0.352) 11.30 561.8 28.52
5 930 1900 13.53 769.5 26.02(± 0.306) 12.30 687.1 25.66
8 200 1900 12.58 638.4 18.19(± 0.202) 11.30 561.8 17.95
11 200 1700 13.53 769.5 15.28(± 0.171) 12.30 687.1 15.10

Table 5.4: Results of special case with hyperexponential two-moment fit

Two-moment fit: Coxian-2

The other choice for the Coxian-2 parameters is given by:

µa = 2

E[T5]



1 +

√

√

√

√

c2
T5

− 1/2

c2
T5

+ 1





µb = 4

E[T5]
− µa

pa = µb

µa
(µaE[T5] − 1)

This particular Coxian-2 density has the remarkable property that its third moment is also the same as that
of the gamma density with the same mean and squared coefficient of variation. According to Tijms [25,
Appendix B], this normalization is a natural one in many applications.

The results of the approximation are given in table 5.5.

i I nti Capi E[Ti ]sim E[T2
i ]sim E[Di ]sim E[Ti ]app E[T2

i ]app E[Di ]app

2 780 1800 12.58 638.4 28.90(± 0.352) 12.34 614.9 28.47
5 930 1900 13.53 769.5 26.02(± 0.306) 13.33 745.1 25.61
8 200 1900 12.58 638.4 18.19(± 0.202) 12.34 614.9 17.91
11 200 1700 13.53 769.5 15.28(± 0.171) 13.33 745.1 15.07

Table 5.5: Results of special case with other Coxian-2 two-moment fit

The use of a hyperexponential distribution for a two-momentfit doesn’t yield better results (see table 5.4).
The results are even a little worse. On the other hand, the other choice for the parameters of the Coxian-2
distribution yields results that have a deviation of 1.91% and 1.48% for the first moment of the effective
green-time and a deviation of 3.68% and 3.17% for the second moment of the effective green-time (see
table 5.5), which is much better than the results in table 5.3.

5.12 Conclusions and recommendations

From all the results in the previous section we can conclude that the approximation described in this chap-
ter is very accurate. Especially when we assume that the departure process of vehicles at the signals is
exponentially distributed, the deviation is small. On the other hand when we assume that the departure
process is deterministic, the deviations can be large. In reality the departure process is a mixture of these
two extreme cases (exponential and deterministic). Therefore, we have also tested for theall red strategy
the approximation method with an Erlang-4 departure process. The accuracy of these results lies between
the results of the exponential and deterministic departureprocess.

In all cases where we made use of a Coxian-2 distribution for atwo-moment fit, we used the parameter
set proposed by Adan and Resing [1]. In special cases when theoccupation rates of approaches that have
right of way simultaneously differs a lot you can probably better make use of the parameter set proposed
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by Tijms [25]. This particular Coxian-2 density has the remarkable property that its third moment is also
the same as that of the gamma density with the same mean and squared coefficient of variation. Maybe all
results would improve when we make use of this set of parameters for the Coxian-2 distribution instead of
the other one.

In this chapter we investigated the approximation for a simple intersection as given in figure 5.1 and with
clearance times equal to zero. The method described in this chapter can be extended to larger and more
comprehensive intersections.

In some cases, when the squared coefficient of variation is less than 0.5, we cannot make use of a Coxian-2
distribution for a moment fit. Instead of the Coxian-2 distribution, we have to fit anEk−1,k distribution (a
mix of an Ek−1 andEk distribution) with a certain set of parameters. Because only in rare casesc2

Ti
was

smaller than 0.5, we didn’t implement the two-moment fit of a mix of Erlang distributions in this chapter.
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CHAPTER6

FULLY-ACTUATED CONTROL SYSTEM

In this chapter a fully-actuated control system is considered. This type of control system is nowadays used
on most of the intersections around the world. We use thek-limited polling system to model this type
of control and to find eventually a good fully-actuated control of the traffic signals on a single isolated
intersection.

The outline of this chapter is as follows: In section 6.1 somebackground information is given about
polling systems and especially thek-limited polling system. A detailed model description is presented
in section 6.2. In section 6.3 an approximation of the average delay is proposed and this approximation is
used to optimize thek-values for thek-limited strategy. Thek-limited strategy can be used to determine
settings for the fully-actuated traffic control system using a simple heuristic. This heuristic is explained
in section 6.4. In the next section the heuristic is further developed. The program, that is written to
simulate the fully-actuated traffic control is explained insection 6.6. We have developed an Excel tool, to
implement the ideas in this chapter. In section 6.7 this toolis demonstrated. Subsequently, the tool is used
for determining a fully-actuated control system of an intersection in the city of Eindhoven in section 6.8.
In the same section we will compare different controls with each other by simulation. Finally, in the last
section conclusions are drawn.

6.1 Introduction

Polling systems are a class of multi-queue systems attendedby a single server, visiting the queues one at
a time, cf. figure 6.1. Such systems are encountered very frequently in communications and computer
systems. Moving from one queue to another, the server typically incurs a non-negligible switch-over time.
The queues are assumed to have infinite buffer capacity. As usual in the polling literature, customers are as-
sumed to arrive according to Poisson processes. Having no detailed information about the characteristics of
the arrival process, the assumption of Poisson arrival processes is quite often a reasonable approximation,
which makes the analysis easier. Each of the queues has its own Poisson arrival process. These arrival pro-
cesses are mutually independent. The service process of each of the queues is stochastic, but independent
of the service process of the other queues.

In the present chapter, we consider a polling system with ak-limited service strategy. Underk-limited
service, when visiting a queue, the server works until a prespecified number ofk customers has been served,
or the queue becomes empty, whichever occurs first and then moves to the next queue. The problem is how
the limitsk should be set as to minimize the weighted average delay.
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Figure 6.1: The basic polling system

Polling system have many characteristics in common with traffic signal systems. For example, customers
can be seen as vehicles. The service process of the customerscan be compared with the departure process
of the vehicles. The switch-over time from one queue to another, matches the clearance-time of two
incompatible queues. In the next section a detailed model description of a polling system is given.

6.2 Model description

In this section a detailed model description of the polling system is given. So in this section, we speak
about customers instead of vehicles. Later on in this chapter, we will use thek-limited polling system to
model the fully-actuated control system. Then we will speakabout vehicles instead of customers.

6.2.1 The basic model

Consider a polling model consisting of multiple (= n) queues,Q1, . . . , Qn, attended by a single serverS.
The server visits the queues in strictly cyclic order,Q1, . . . , Qn. The cycle time is given by the stochastic
variableCi and denotes the time between successive visits by the serverto queuei . However,E[Ci ] is
independent ofi and is also independent of the service discipline, as long asall queues remain stable. We
takeE[C] to denote this common value. Customers arriving atQi are also referred to as type-i customers,
i = 1, . . . , n. The queues are assumed to have infinite buffer capacity.

6.2.2 The arrival process

Customers are assumed to arrive according to independent Poisson processes. The first moment of the
interarrival times of type-i customers is given byαi , i = 1, . . . , n. Denote byλi := 1/αi the arrival rate at
Qi , i = 1, . . . , n. The total arrival rate isλ := ∑n

i=1 λi .
We focus here on models with single arrivals, i.e., customers are assumed to arrive one by one, instead of
arriving in platoons.

6.2.3 The service process

Type-i customers require deterministic service times 1/µi , i = 1, . . . , n. Defineρi := λi /µi as the
occupation rate atQi , i = 1, . . . , n. The total occupation rate isρ := ∑n

i=1 ρi .
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6.2.4 The switch-over process

Moving from Qi to Q j , the server needs a deterministic switch-over timesi j , i, j = 1, . . . , n. Because the
server visits the queues in strictly cyclic order onlysi i +1 is important. In the polling literature, switch-over
times are usually assumed to depend only on the previous queue visited, i.e.,si j = si , i, j = 1, . . . , n. The
total mean switch-over time is given bys := ∑n

i=1 si .

6.2.5 The service policy

The service policy prescribes which number of customers server S should serve. There are three classical
service disciplines, and thek-limited service belongs to one of these.

I. Exhaustive service

Under exhaustive service, the server continues to work until the queue becomes empty. Customers that
arrive during the visit of the server to that queue, are served in the current visit.

II. Gated service

Under gated service,S serves only the customers that were present at the start of the visit. Customers that
arrive during the visit of the server to that queue, are served in the next visit.

III. K-limited service

Underk-limited service, the server continues to work on queueQi until either a prespecified number ofki

customers have been served, or the queue becomes empty, whichever occurs first. A special case of this
limited service strategy is the case whenki = 1, i = 1, . . . , n (serve just one customer, if any). This is
called1-Limited service.

There are two versions of limited service:Exhaustive-limited serviceandGated-limited service, depending
on whether or notS only serves the customers that were present at the start of the visit. Note that the case
ki = ∞, i = 1, . . . , n results in exhaustive service.

In this chapter we will focus on the third type of service, thek-limited service, and more specifically, the
exhaustive limited service. The order of service is always assumed to be First Come First Served (FCFS),
i.e., customers are assumed to be served in order of arrival.

6.3 Constrained optimization problem

A simple traffic balance argument shows that if the system is stable, the server is working a fractionρ of
the time. This results in the simple equation:

E[C] = s + ρE[C]

So that the mean cycle time is given by:

E[C] = s

1 − ρ

If the system is stable, on average the number of customers arriving at queuei during a cycle must be
smaller than the maximum number of customers leaving the queue during the service. For thek-limited
service strategy this can be translated into the following condition for stability [10]:

λi s

1 − ρ
< ki , i = 1, . . . , n (6.1)
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Throughout this chapter, the stability condition (6.1) is assumed to hold.

Denote byDi the delay of an arbitrary type-i customer,i = 1, . . . , n. Let wi represent the delay cost per
unit of time of a type-i customer,i = 1, . . . , n. The average delay cost per unit of time is then given by
∑n

i=1 wi λi E[Di ]. In this chapter we are interested in the problem of finding the values fork1, . . . , kn, that
minimize that quantity. To have a bound on the cycle time, we therefore study the more specific version of
the problem with the constraint

∑n
i=1 γi ki ≤ K . Whenγi = βi and K = L − s is chosen, then a limit

L on the mean cycle time is given at periods of overload (namelywhen all queues are loaded and in every
visit ki customers are served). This suggests a rule for the optimal setting of time-limits in polling models
with a time-limited service discipline. Note that in the case of constant service times, thek-limited and
time-limited service disciplines coincide.

Borst et al. [4] have proposed four approaches for determining thesek-limit values so as to minimize the
mean waiting cost of customers in the polling system. The approaches have been tested for a variety of
cases. All four approaches perform reasonably well. Especially one, which we discuss in more detail in
the rest of this section.

6.3.1 A Fuhrmann & Wang-like k-limited approximation

Fuhrmann & Wang [12] developed an approximation for the meanwaiting time E[Di ]. They proposed
that the waiting time of a customer can be broken down into three parts. Therefore we have to introduce
the following stochastic variables. LetXi denote the number of customers waiting at queueQi seen by
an arbitrary customer arriving at queueQi . And let RCi denote the residual cycle time with regard toQi .
Then the waiting time of a customer can be broken down into:

• The time until the server next visits queueQi . This time has mean lengthE[RCi ].

• Next there arebXi /ki c ‘busy i -cycles’, i.e., in which the maximum number ofki customers are
served at queueQi .

• Finally, there areXi − ki bXi /ki c individual service times, each of mean length 1/µi .

Kuehn [17] suggested that for each of the ‘busyi -cycles’ denoted byCb,i the following balance argument
holds:

E[Cb,i ] ≈ ki /µi + s + E[Cb,i ]
∑

j 6=i

ρ j , i = 1, . . . , n

So thatE[Cb,i ] is approximately given by:

E[Cb,i ] ≈ ki /µi + s

1 − ρ + ρi
, i = 1, . . . , n (6.2)

In the rest of this subsection two extreme cases are studied:The 1-Limited service and the Exhaustive
service. For the general case, the results for the two lattercases are combined to find a good approximation
for the E[Di ]’s.

1-Limited service case

When ki = 1, i = 1, . . . , n, summing the listed terms in the beginning of this subsection yields the
following approximate formula:

E[Di ] ≈ E[RCi ] + E[Xi ]E[Cb,i ], i = 1, . . . , n

Applying Little’s Law, λi E[Di ] = E[Xi ] gives:

E[Di ] ≈ E[RCi ]
1 − λi E[Cb,i ]

, i = 1, . . . , n
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Using approximation (6.2) and rearranging yields:

E[Di ] ≈
(1 + ρi

1−ρ
)E[RCi ]

1 − λi E[C] , i = 1, . . . , n (6.3)

Exhaustive service case

With the exhaustive service discipline two things can happen. A customer can arrive during the visit of the
server to that queue and is served in the same visit. On the other hand, a customer can arrive, when the
server is not visiting that particular queue. In that case, the customer has to wait until the server visits the
queue and is then served in that visit.
The average delay of a customer in the first situation is givenby:

E[Di ] = −E[C](1 − ρi )
2 + E[RCi ](1 − ρi ), i = 1, . . . , n (6.4)

The average delay of a customer in the second situation is given by:

E[Di ] = E[C]ρi (1 − ρi ) + E[RCi ](1 − ρi ), i = 1, . . . , n (6.5)

By PASTA we can easily determine the probability that a customer arrives during the visit of the server
to that queue. This probability is given byρi (situation 1). Multiplying equations (6.4) and (6.5) with the
probability these two situations will happen (ρi and (1 − ρi respectively) and summing over these two
possible situations, leads to the following result for the exhaustive discipline:

E[Di ] = (1 − ρi )E[RCi ], i = 1, . . . , n (6.6)

General case

Summing the terms listed earlier now yields approximately:

E[Di ] ≈ E[RCi ] + E[Xi ]E[Cb,i ]/ki , i = 1, . . . , n

Applying Little’s Law, λi E[Di ] = E[Xi ] and rearranging gives:

E[Di ] ≈ E[RCi ]
1 − λi

ki
E[Cb,i ]

, i = 1, . . . , n

Now using approximation (6.2) we have:

E[Di ] ≈
(1 + ρi

1−ρ
)E[RCi ]

1 − λi
ki

E[C]
, i = 1, . . . , n (6.7)

Note that, aski → ∞, the above approximation converges to(1 + ρi
1−ρ

)E[RCi ]. But as we have seen in
(6.6), it should converge to(1 − ρi )E[RCi ]. Taking also into account the results for the 1-Limited service
case given in (6.3), the approximation in (6.7) can be heuristically modified to:

E[Di ] ≈
1 − ρi + ρi

ki
(1 + 1

1−ρ
)

1 − λi
ki

E[C]
E[RCi ], i = 1, . . . , n (6.8)

Given the approximation in (6.8) and assumingE[RCi ] ≈ E[RC] = BE[C], with B some unknown
constant, the following minimization problem has to be solved:

Minimize:
∑n

i=1 wi λi
1−ρi + ρi

ki
(1+ 1

1−ρ
)

1− λi
ki

E[C]
BE[C]

Subject to:
∑n

i=1 γi ki ≤ K
ki ≥ 0, i = 1, . . . , n
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In fact, the approximation ignores the integrality ofk1, . . . , kn.
Solving this optimization problem yields the following optimal k∗

i :

k∗
i = λi s

1 − ρ
+ (K −

n
∑

j =1

γ j
λ j s

1 − ρ
)

√
wi λi δi /γi

∑n
j =1 γ j

√

w j λ j δ j /γ j
, i = 1, . . . , n (6.9)

with δi = ρi (2 − ρ) + λi s(1 − ρi ).
The various steps of the nonlinear optimization problem areworked out in Appendix B. Because we
assume anM/D/1 system, the optimalk∗

i ’s can be translated into optimal time limitsu∗
i in the following

way:

u∗
i = k∗

i

µi
, i = 1, . . . , n (6.10)

6.4 Fully-actuated traffic control system

We can use thek-limited service strategy, to model a fully-actuated traffic control system. In this section
thek-limited service strategy will be adapted, so it can be used to find a good fully-actuated traffic control.

6.4.1 Current fully-actuated control

In this subsection it is explained how the currently used fully-actuated control system works. The set of
traffic signals on an intersection is divided intom subsetsGi , with the restriction that the signals in one
subset are not incompatible with each other. Within each subset, the traffic signals have right of way
simultaneously. This is possible because the signals are not incompatible. For each subset, there is a signal
in one of the other subsets, which is incompatible with one ofthe signals in that particular subset. So
each subset has right of way separately from the other subsets. The subsets have right of way in a particular
cyclic orderG1, G2, . . . , Gm, which is specified. That means that first subsetG1 has right of way, secondly
subsetG2, and so on, until subsetGm has had right of way. Then subsetG1 has right of way again, and so
on. After the effective green-time of a subset a clearance time is waited, until the traffic signals of the next
subset in order will have right of way.
When the signals in subsetGi have right of way next, but no vehicles are waiting at each of the signals in
that particular subset, the signals will not turn green, andthe subset will be skipped. Then subsetGi+1 is
next in order.
The effective green-time of signals in a subset lasts until no vehicles are present at any of the approaches
anymore. That means, when no vehicles are waiting to drive off, the signals turn red and the next subset in
order will (possibly) have right of way.
The control described above, corresponds to the exhaustivecontrol analyzed in chapter 5. To this fully-
actuated control three extra requirements are added. The effective green-time of the signals within subset
Gi will not exceed a specific maximum valueui . When the signals of subsetGi turn green, they stay
green during a specific minimum valuel i . These maximum and minimum effective green-time values
don’t have to be the same for all signals within one subset. When the maximum total cycle time (

∑n
i=1 ui )

is increasing, this will result in shorter average delays. However, the variance of the delays will increase,
leading to very short but sometimes very long delays. To prevent this, the maximum total cycle time is
bounded by a maximum valueL.

Current method to determine maximum effective green-times

Now we will discuss the current method, that is used to determine the maximum effective green-times.
The minimum effective green-times are prescribed, based onthe design of the intersection. First a fixed-
time signal scheme is determined usingCocon[6]. This signal scheme is used as a basis for the fully-
actuated control. Signals that have right of way simultaneously in the fixed-time control, will be placed in
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one subset in the fully-actuated control. When the signals are manually divided into subsets, then for each
signal a maximum effective green-time is determined based on the length of the effective green-time of the
fixed-time signal scheme. So not all signals within one subset have the same maximum effective green-
time. This is slightly different from our model where all signals within one subset have the same maximum
effective green-time. To explain why the model used at this moment is unnecessarily difficult, we look at
the case, where two signalsi1 and i2 within subsetGi have different maximum effective green-timesui1
andui2. We assume thatui1 < ui2 whenρi1 < ρi2. The only case, whenui1 < ui2 yields better results
on average in comparison withui1 = ui2, is when the queue at signali2 is empty already, but still vehicles
are waiting at signali1. But because ofρi1 < ρi2, it will rarely happen that at signali1 more vehicles have
arrived during the effective red-time of subsetGi than at signali2. That’s the reason, why we choose the
maximum effective green-times of signals within one subsetto be all equal.

The length of the maximum effective-green time is equal to the length of the effective green-time of the
fixed-time control scheme. The sum of the lengths of the maximum effective green-times of the subsets,
i.e. the maximum value of the maximum effective green-time of the signals within the subset, is equal to
the maximum valueL minus the total clearance-time (s).

6.4.2 Translation to k-limited polling

In this subsection we will model the current fully-actuatedtraffic control system as ak-limited polling
system. Here we assume that the set of signals is already divided into subsets.

With k-limited polling we have a single server, serving the queuesone at a time. The signals within one
subset have right of way simultaneously, resulting in a sortof multi-server polling system. In the field
of multi-server polling systems not much is known. To translate the multi-server polling system into a
single server polling system, we make the assumption, that the busiest approach within a subset, that is the
approach with the highest occupation rateρi (= λi /µi ), represents the whole subset. In other words, all
signals within one subset are replaced by the signal belonging to the approach with the highest occupation
rate.

Settingγi = 1/µi , K = L − s andwi = 1/λ = 1/
∑n

i=1 λi reduces the constraint optimization problem
to:

Minimize:
∑n

i=1
λi
λ

E[Di ]
Subject to:

∑n
i=1

ki
µi

≤ L − s
ki ≥ 0, i = 1, . . . , n

The first constraint in the optimization problem above imposes a limitL on the mean cycle time at periods
of overload (namely, when all queues are loaded). Then the optimal k∗

i andu∗
i are given by (compare with

(6.9) and (6.10)):

k∗
i = λi s

1 − ρ
+ µi (L − s

1 − ρ
)

√
ρi δi /λ

∑n
j =1

√

ρ j δ j /λ

u∗
i = k∗

i

µi

with δi = ρi (2 − ρ) + λi s(1 − ρi ).

The objective that was minimized is equal to the weighted average delay of vehicles at the intersection,
where the weight of signali , is given byλi /λ. Each subset of signals is represented by the busiest one.
So the optimalk∗

i for the busiest signal is found and the average delay of vehicles at the busiest signal
is minimized. The larger the valueui is, the smaller the delays of the signals of that particular subset
will be, but the larger the delays of the signals of the other subsets will be. Although the average delay
of vehicles at the busiest signals is minimized, the averagedelay of vehicles at the other signals is not
(necessarily) minimized. But the weight of these signals is(much) smaller than the weight of the busiest
signal, resulting in small increments of the objective. That’s the reason, why we have chosen that all signals
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within one subset have the same maximum effective green-time determined by the busiest signal within that
subset.

In figure 6.2 the average delay as function of the maximum effective green-time value is plotted. Whenui

goes to infinity, thek-limited polling system is equal to the exhaustive polling system. Soxi in figure 6.2
corresponds to the average delay of the exhaustive system, analyzed in chapter 5. As we have seen earlier
in this chapter, the system is stable forki > λi s/(1−ρ) and as a resultui > ρi s/(1−ρ). Soyi in figure 6.2
corresponds toρi s/(1 − ρ).

E [ D i ]

u i

x i
y i

Figure 6.2: The average delaydi as function of the maximum effective green-timeui

6.4.3 Division of signals into subsets

In this subsection we consider the division of the traffic signals into subsets. For this purpose, a simple
heuristic is developed. This heuristic is discussed below.

The set of traffic signals is arranged in order of values ofρi , from high to low. So the signal corresponding
to the highest value ofρi , is the first element in this arranged set of signals. The order in which the signals
are placed in subsets, is the order of the arranged set of signals. Assume we have alreadym subsets. We
first try to place the next signal in order in the first subset. When the signal is incompatible with one of the
signals in this subset, we try to place the signal in the second subset, and so on. When the signal cannot be
placed in any of the existing subsets, a new subset is createdand added at the end of all subsets. The signal
is placed in this subset. We continue this heuristic, until each element in the arranged subset is placed in a
subset.

The heuristic discussed above is summarized in the following mathematical program:
Arrange the set traffic signals in order of values of ρi , from the highest value to the lowest value;

This arranged set S∗ is given by {i(1), i(2), . . . , i(n)};
The number of different subsets, m := 0;

WHILE n > 0 DO

Take the first element of S∗, i(1);

Take s = 0;

Bool:=True;

WHILE s < m AND Bool=True DO

IF i(1) is incompatible with any of the signals in subset Gs THEN

s := s + 1;

ELSE

Signal i(1) is placed in subset Gs;

Bool:=False;
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ENDIF;

ENDWHILE;

IF Bool=True THEN

Signal i(1) is placed in subset Gs;

m := m + 1;

ENDIF;

Remove element i(1) from the arranged set S∗;

n := n − 1;

FOR k = 1 TO n DO

i(k) := i(k+1);

ENDWHILE.

Example

Consider the simple intersection with four traffic signals as given in figure 6.3. Suppose signals 2 and 8 are
not incompatible and can have right of way simultaneously. On the other hand signals 5 and 11 must have
separate effective green-times. In the figure we can easily see, that signals 2 and 8 are incompatible with
signal 5 and 11 and the other way around.

2

5

8

11

Figure 6.3: Example of a simple intersection

The traffic intensities (number of arriving vehicles per hour) and the signal capacities (maximum number
of leaving vehicles per hour) are given in table 6.1.

i λi µi ρi

2 0.1111 0.5000 0.222
5 0.3056 0.5278 0.579
8 0.1389 0.5278 0.263
11 0.0694 0.4722 0.147

Table 6.1: Input of intersection in example

Explanation of algorithm above:Step 1
S∗ = {5, 8, 2, 11}
Step 2
G1 = {5}
Step 3
G1 = {5},G2 = {8}
Step 4
G1 = {5},G2 = {8, 2}
Step 5
G1 = {5},G2 = {8, 2},G3 = {11}
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6.4.4 Optimal sequence of subsets

When the signals are divided into subsets, the optimal sequence of these subsets has to be determined.
The optimal sequence of the subsets, is the sequence where the total clearance-times is minimized. So
all permutations of then subsets are determined. The total number of (cyclic) permutations is given by
(n − 1)!. For every permutation the total clearance-time is computed. The permutation with the smallest
value of this clearance-time is chosen as optimal sequence.Because the total number of subsets is always
small this action will not be very time consuming.
The mathematical program that is used to determine all permutations (in a recursive way) is given in
Appendix F.
In the preceding subsections we have discussed all different steps to determine a good fully-actuated traffic
control. We have given a simple heuristic to divide the set ofsignals into subsets, where each subset has
right of way separately. Given the division into subsets, wecan easily determine the optimal cyclic order
in which the ‘server’ should visit the subsets. To determinethe maximum effective green-times of these
subsets, we have translated the fully-actuated traffic control system to thek-limited polling system. Until
now, we didn’t take the minimum effective green-timesl i into consideration. In the next section we will
discuss the effect of these minimum effective green-times on the method described in this section.

6.5 Introduction of minimum effective green-time

We cannot directly apply thek-limited service policy to derive values forui . The reason is, that if a signal
turns green, it must stay green for at leastl i time-units. It may occur that no vehicles are waiting at approach
i , while the length of the effective green-time didn’t reach the minimal valuel i . This results in a loss of
capacity. Because of the loss of capacity, theui ’s as determined in the previous section don’t have to yield
a stable system.
In this section we first investigate the stability of the system. Subsequently two adaptations of thek-limited
policy are proposed, taking into account the existence of minimum effective green-times.

6.5.1 Stability

For the normalk-limited polling model, we have seen in (6.1) that the following stability condition holds:

ki >
λi s

1 − ρ
, i = 1, . . . , n

which corresponds to:

ui >
ρi s

1 − ρ
, i = 1, . . . , n

The stability condition of the fully-actuated control, isn’t that simple. It is still an unsolved problem, which
needs further attention in future research.

6.5.2 First adaptation of k-limited strategy

Here we assume, that during the minimum effective green-time no vehicles can leave. So, we can treat the
minimum effective green-timesl i as clearance times. So:

s∗ := s +
n

∑

i=1

l i

The advantage of this approximation, is that the new foundk∗
i always results in a stable system on condition

that:

u∗
i >

ρi (s + ∑n
i=1 l i )

1 − ρ
(6.11)
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Then the optimalk∗
i andu∗

i are given by:

k∗
i = l i +

λi (s + ∑n
j =1 l j )

1 − ρ
+ µi (L −

s + ∑n
j =1 l j

1 − ρ
)

√
ρi δi /λ

∑n
j =1

√

ρ j δ j /λ

u∗
i = k∗

i

µi

The advantage of this strategy lies in the fact that, when condition (6.11) is satisfied, theu∗
i ’s always yield

a stable system. On the other hand, by assuming that no vehicles depart during the minimum effective
green-time, theui ’s of signals with a low occupation rate (ρi ), will be too large in proportion to theui ’s of
signals with a high occupation rate. The signals with a high occupation rate affect the objective (the sum of
the weighted average delay of vehicles) the most. In this approximation, the signals with a high occupation
rate haveui ’s that are too small compared with theui ’s of signals with a low occupation rate. This will
result in high values of the objective.

6.5.3 Second adaptation of k-limited strategy

To find another approximation we look back at the originalk-limited polling model. The optimalui ’s are
given by:

u∗
i = ρi

s

1 − ρ
+ (L − s

1 − ρ
)

√
ρi δi /λ

∑n
j =1

√

ρ j δ j /λ
(6.12)

with s/(1 − ρ) = E[C].
One may interpret (6.12) as follows. Signali should have an effective green-time of at leastρi E[C], to sat-
isfy the stability condition. The remaining non-clearance-time, L − E[C], should be assigned proportional
to

√
ρi δi /λ.

When introducing a minimum effective green-time, a closed expression for the average cycle-timeE[C]
cannot be found. However, the average cycle time can be approximated recursively, with the following
equation:

E[Capp] = s +
n

∑

i=1

max(ρi E[Capp], l i ) (6.13)

So for theui ’s in the model with minimum effective green-times the following inequality must hold:

ui > ρi E[Capp]

with E[Capp] as determined in (6.13).

This stability condition is too strong, becauseE[Capp] > E[C]. WhenE[Capp] is greater thanL, we can-
not use this approximation to determine theu∗

i ’s. When this is not the case the optimalu∗
i ’s are determined

in the same way as in (6.12): Signali should have an effective green-time of at leastρi E[Capp]. The
remaining non-clearance-time will be assigned proportional to

√
ρi δi /λ, in the same way as in the original

Fuhrmann & Wangk-limited approximation.

u∗
i = ρi E[Capp] + (L − E[Capp])

√
ρi δi /λ

∑n
j =1

√

ρ j δ j /λ

The advantage of this strategy, is the fact that the signals have a valueui that is proportional to
√

ρi δi /λ,
which will result in a nearly optimal objective. On the otherhand, it is not clear whether for these values
of ui the system is stable, because we make use of an approximationof E[C].
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6.6 Discrete-event simulation

To simulate the fully-actuated traffic control, a discrete-event simulation program with an event scheduling
approach has been designed. The event scheduling approach concentrates on the events and how they affect
the system. The three events that can be distinguished are:

1. Arrival of a vehicle;

2. Departure of a vehicle;

3. Beginning of the effective green-time.

The signals are divided inton subsets, where the signals within each subset are turned green simultaneously.
The server serves the subsets in cyclic order(1, 2, . . . , n). The effective green-time of signals in subseti
lasts at leastl i seconds. When thesel i seconds are elapsed, we investigate at each departure whether there
are waiting vehicles at signals in subseti . When at each of the signals in subseti no vehicles are waiting
anymore, the signals are turned red. If there are still vehicles waiting at one of the signals in subseti , after
an effective green-time ofui seconds, then the signals are turned red as well. The signalsof the next subset
in orderi + 1 are turned green after a clearance time ofsi,i+1. During this clearance time all signals are
turned red and as a result no vehicles can drive off.

We keep track of the time points at which the next events of thedifferent types occur. This Future Event
Set (FES) is implemented as a binary search tree to determinethe next event efficiently. In a tree, the time
points are not ordered in a straight line, like earliest event first, and so on. Instead, the starting time point,
called the root, is linked to two other nodes, called its children, and those nodes in turn are linked to other
children, and so on. Formally, a tree is either empty, or a root, which is connected to one or more other
trees, called the subtrees of the root. The order of all time points in this tree is important. Formally, in a
binary search tree the following holds:

• All the time points in the left subtree take place earlier than the time point of the root

• All the time points in the right subtree take place later thanthe time point of the root

• The left and right subtrees are also binary search trees

We can conclude, that the event that takes place first, is the leftmost node in the tree. We use a binary
search tree in order to minimize the distance we have to go to reach any given element. Searching for an
element in a binary tree containingn nodes is anO(logn) process and building the tree in the first place is
an O(nlogn) process, if the tree is reasonably well balanced.

The simulation then consists of finding the smallest time point in this tree, setting the current time to this
event time and executing the corresponding activities. Below it is described how these events affect the
system and what activities are carried out.

1. Arrival of a vehicle

With an arrival, the vehicle is placed in the waiting queue. For each vehicle in the queue we keep track of
the position of the vehicle in the queue as well as the point oftime the vehicle joined the queue. When a
vehicle arrives, a new arrival at the same signal is simulated. When no vehicles were waiting at the moment
the vehicle arrived at the signal, a departure is simulated.

2. Departure of a vehicle

With the departure of a vehicle, we first compute the delay of that particular vehicle. Because we keep
track of the points of time vehicles arrive at the queue this can easily be done. All (possible) remaining
vehicles shift one place forward in the queue. If there are still vehicles waiting, the signal is not turned
red, but a new departure is simulated. When the minimum effective green-time ofl i seconds is passed by,
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we investigate whether all queues within the subset are empty. When this is true, a new event of type 3
(the beginning of the effective green-time) is simulated after the clearance time between subseti andi + 1.
Furthermore, the state of the signals in subseti is changed from green to red.

3. Beginning of the effective green-time

At the beginning of the effective green-time of subseti , the state of the signals within this subset changes
from red to green. When there are waiting vehicles at the queues a new departure is generated and added
to the binary search tree.

As stopping criterium for this simulation the runlength is taken. When the current simulation time exceeds
this runlength the simulation is ended.

6.7 Excel tool

The heuristics and approximations described in this chapter are implemented in an Excel tool. In this
section this tool is described.

6.7.1 Input

To start the tool, first the total number of traffic signals andthe upper limitL on the total cycle time has to
be given. Subsequently the rest of the input can be given on the input-sheet. An example of the input-sheet
can be seen in figure 6.4. As can be seen in this figure, the following input has to be given for each signal:

• i : The number of the traffic signal, according to table 1.1.

• λi : The total number of arriving vehicles per second.

• µi : The maximum number of leaving vehicles per second.

• l i : The minimum length of the effective green time in seconds.

Figure 6.4: Print of Excel input screen
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6.7.2 Output

After the essential input is given, the maximum length of theeffective green-times is determined. First
the signals are divided into subsets according to the heuristic described in subsection 6.4.3. Secondly the
optimal sequence of these subsets is determined according to the method described in subsections 6.4.4. To
give an approximation of the optimalui ’s, we have implemented approximation 1 of thek-limited polling
strategy (described in subsection 6.5.2) in this Excel tool. The reason of this is, that by using this approx-
imation a stable system can be guaranteed when certain stability conditions are satisfied. Maybe these
conditions are a little bit too strong, but we prefer this to approximation 2, where no stability conditions
can be given.

The procedures and heuristics described in this subsectionare schematically presented in the following
mathematical program:

Give input;

Determine division of subsets;

Determine optimal sequence of subsets;

Determine ui ’s;

Give output.

In figure 6.5 the output screen of this Excel tool can be seen.

Figure 6.5: Print of Excel output screen
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6.8 Case

In this section we will test the developed method on an intersection in Eindhoven. This intersection is part
of a set of three new intersections in the western part of Eindhoven. We will investigate the fully-actuated
control during the evening rush-hour.

6.8.1 Schematic overview

The investigated intersection is schematically presentedin figure 6.6.
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Figure 6.6: Overview of intersection (Scale 1:300)

As can be seen in this figure, there are five car signals (numbered 1, 2, 8, 9, 11). Furthermore, there are
eleven other signals for cyclists (numbered 25, 26, 27, 28), pedestrians (numbered 34, 35, 36, 37, 38) and
buses (numbered 43, 49). For simplicity the pedestrian signals are not shown in figure 6.6. In Appendix D
can be found, which signals are incompatible with each other. In the same Appendix the clearance-times
of these incompatible signals are given.

6.8.2 Results

The results generated by the developed heuristic (with different upper-limits on the total cycle time) are
compared with each other by simulation. First, the results of the current situation are given. Secondly,
the current division of the signals into subsets is maintained, but differentui ’s are determined. Finally for
upper-limitsL is 144, 120 and 90 seconds, theui ’s are determined and compared with previous results. As
objective, we have taken the weighted average delay of the car and bicycle signals. The average delays of
pedestrian and bus signals are not included in this function, because noui ’s have to be determined for these
groups.

For each signal, the numberi , arrival rateλi , departure rateµi and minimum effective green-timel i is
given. The resultingui ’s are given, as well as the average length of the effective green-time (E[Ti ]) and the
average delay (E[Di ]) with a 95%-confidence interval. Furthermore, the fractionof the vehicles that has
to wait more than 90 seconds (= fE[Di ]>90) is given in the last column of the table. Finally, on top of each
table the upper-limitL and the total clearance-times are presented. The variablesl i , ui , E[T]i , E[Di ] and
the objective are expressed in seconds.
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Current division & current ui ’s

In table 6.2 the results of the current fully-actuated control are presented. Here we can see, that the differ-
ence between the average effective green-time of signals 1 and 11 (= 20.47 seconds) and the maximum
effective green-time of these signals (= 25.0 seconds) is small. This results in reasonably high delays.
The value of the average effective green-time of signals 25 and 26 is close to the minimum effective green-
time. So we would expect that the average delays are small. This isn’t true, because the average effective
red-time is large. Therefore vehicles have to wait a long time before the signals turn green.

L=144 Sequence:
s=19 (2,8,27,28,37,38)-(9,43,49)-(25,26,34,35,35)-(1,11)
i λi µi l i ui E[Ti ] E[Di ] fE[Di ]>90

1 0.0778 0.5000 6.0 25.0 20.47 60.88(± 0.170) 0.218
2 0.2583 0.5278 6.0 70.0 56.76 47.42(± 0.161) 0.115
8 0.1944 0.5278 6.0 70.0 56.76 26.18(± 0.024) 0.003
9 0.0333 0.4722 6.0 15.0 9.37 62.96(± 0.102) 0.243
11 0.0666 0.4722 6.0 25.0 20.47 55.72(± 0.044) 0.180
25 0.0167 1.1111 6.0 15.0 6.12 54.08(± 0.042) 0.188
26 0.0167 1.1111 6.0 15.0 6.12 54.37(± 0.027) 0.188
27 0.0167 1.1111 6.0 70.0 56.76 14.77(± 0.022) 0.000
28 0.0167 1.1111 6.0 70.0 56.76 14.60(± 0.015) 0.000
Objective: 43.30

Table 6.2: Current division & currentui ’s with upper-limitL = 144

Current division & new ui ’s

In table 6.3 the results (with the same division of the signals into subsets, but theui ’s according to the new
method) are presented. In this table we can see, thatui ’s don’t differ that much from the original values.
Theui ’s for the signals 25 and 26 are decreased significantly and this results in small increments of theui ’s
of the other signals. In the current situationL is chosen to be 144 seconds. This value is so high, that it
rarely will happen that the maximum ofui is needed to empty queues of subseti . Therefore the results of
the current situation, with objective value 43.30 seconds, compared to the situation with the same division,
but newly determinedui ’s, with objective value 41.55 seconds, are not that spectacular. This decrement of
the objective value is mostly caused by the fact that the delay of the busiest signal 2 is decreased.

L=144 Sequence:
s=19 (2,8,27,28,37,38)-(9,43,49)-(25,26,34,35,35)-(1,11)
i λi µi l i ui E[Ti ] E[Di ] fE[Di ]>90

1 0.0778 0.5000 6.0 27.1 20.85 58.41(± 0.114) 0.203
2 0.2583 0.5278 6.0 74.6 57.59 43.57(± 0.130) 0.081
8 0.1944 0.5278 6.0 74.6 57.59 26.04(± 0.027) 0.002
9 0.0333 0.4722 6.0 15.5 9.47 63.81(± 0.071) 0.249
11 0.0667 0.4722 6.0 27.1 20.85 54.38(± 0.043) 0.173
25 0.0167 1.1111 6.0 7.8 6.11 55.79(± 0.029) 0.200
26 0.0167 1.1111 6.0 7.8 6.11 55.78(± 0.062) 0.201
27 0.0167 1.1111 6.0 74.6 57.59 14.84(± 0.028) 0.000
28 0.0167 1.1111 6.0 74.6 57.59 14.85(± 0.028) 0.000
Objective: 41.55

Table 6.3: Current division & newui ’s with upper-limitL = 144
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New division & new ui ’s

In table 6.4 the results of the control (with the new divisionof signals according to the newly developed
heuristic and theui ’s according to the new method) are presented, withL still equal to 144 seconds. With
the new division of the signals into subsets we have a total clearance-times of 12 seconds, compared with
the current situation wheres is 19 seconds. Therefore we can increase theui ’s without increasing the value
L, leading to better results. This new division has decreasedthe objective dramatically to 25.44 seconds.
A high value ofL leads to high values ofui and this will lead to a robust system, meaning that when the
traffic intensities vary, the objective value will not vary that much. The smaller theL, the more important
the way of determining theui ’s will be. That’s why we have investigated the fully-actuated control with
smaller values ofL as well.

L=144 Sequence:
s=12 (1,2,8)-(9,43,49)-(11)-(25,26,27,28,34,35,36,37,38)
i λi µi l i ui E[Ti ] E[Di ] fE[Di ]>90

1 0.0778 0.5000 6.0 78.9 42.15 13.31(± 0.012) 0.000
2 0.2583 0.5278 6.0 78.9 42.15 24.04(± 0.017) 0.005
8 0.1944 0.5278 6.0 78.9 42.15 17.90(± 0.007) 0.000
9 0.0333 0.4722 6.0 16.9 8.21 44.40(± 0.037) 0.090
11 0.0667 0.4722 6.0 27.7 12.37 42.59(± 0.042) 0.073
25 0.0167 1.1111 6.0 8.5 6.13 40.38(± 0.021) 0.077
26 0.0167 1.1111 6.0 8.5 6.13 40.47(± 0.038) 0.077
27 0.0167 1.1111 6.0 8.5 6.13 40.38(± 0.033) 0.077
28 0.0167 1.1111 6.0 8.5 6.13 40.26(± 0.020) 0.077
Objective: 25.44

Table 6.4: New division & newui ’s with upper-limitL = 144

New division & new ui ’s

In table 6.5 the results of the fully-actuated control (withthe new division of signals and theui ’s according
to the new method) are presented. The upper-limitL on the total cycle time is 120 seconds. The results in
this table compared with the results in the previous table don’t differ that much (compare the objective of
25.44 seconds with the objective 26.43 seconds). The average delay of vehicles at the signals 25,26, 27
and 28 is decreased a little bit, because the effective red-time is decreased.

L=120 Sequence:
s=12 (1,2,8)-(9,43,49)-(11)-(25,26,27,28,34,35,36,37,38)
i λi µi l i ui E[Ti ] E[Di ] fE[Di ]>90

1 0.0778 0.5000 6.0 63.8 41.40 13.23(± 0.008) 0.000
2 0.2583 0.5278 6.0 63.8 41.40 26.62(± 0.055) 0.014
8 0.1944 0.5278 6.0 63.8 41.40 18.19(± 0.012) 0.000
9 0.0333 0.4722 6.0 14.2 8.09 44.32(± 0.035) 0.078
11 0.0667 0.4722 6.0 22.3 12.14 43.80(± 0.033) 0.071
25 0.0167 1.1111 6.0 7.6 6.12 38.78(± 0.058) 0.050
26 0.0167 1.1111 6.0 7.6 6.12 38.75(± 0.036) 0.050
27 0.0167 1.1111 6.0 7.6 6.12 38.77(± 0.028) 0.050
28 0.0167 1.1111 6.0 7.6 6.12 38.80(± 0.056) 0.050
Objective: 26.43

Table 6.5: New division & newui ’s with upper-limitL = 120
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New division & new ui ’s

In table 6.6 the results of the fully-actuated control (withthe division of signals according to the newly
developed heuristic and theui ’s according to the new approximation algorithm) are presented. The upper-
limit on the total cycle time is given byL is 90 seconds. In this table we can see, that the decrement of the
valueL to 90 seconds leads to higher values of the delay of signals 8 and 11, but especially signal 2. The
delays of the other signals didn’t change dramatically. Because the traffic intensity of signal 2 is high, the
value of the objective did increase to 33.04 seconds.
The smaller the value ofL the larger the value of the objective will be. When we chooseL = ∞, no
constraints on the maximum effective green-time are given.This results in an exhaustive system, where
the objective value is the smallest. On the other hand, the larger the value ofL, the larger the variance of
the delays will be. This is not advisable, because sometimesvehicles have to wait a very long time before
they can move on. So the issue is to choose the value ofL, in such a way that the objective value as well
as the variance of the delays is acceptable.

L=90 Sequence:
s=12 (1,2,8)-(9,43,49)-(11)-(25,26,27,28,34,35,36,37,38)
i λi µi l i ui E[Ti ] E[Di ] fE[Di ]>90

1 0.0778 0.5000 6.0 44.8 39.09 13.29(± 0.007) 0.000
2 0.2583 0.5278 6.0 44.8 39.09 42.93(± 0.167) 0.109
8 0.1944 0.5278 6.0 44.8 39.09 19.88(± 0.021) 0.002
9 0.0333 0.4722 6.0 10.8 7.78 43.66(± 0.049) 0.059
11 0.0667 0.4722 6.0 15.8 11.52 48.69(± 0.125) 0.111
25 0.0167 1.1111 6.0 6.6 6.10 35.16(± 0.027) 0.004
26 0.0167 1.1111 6.0 6.6 6.10 35.26(± 0.036) 0.004
27 0.0167 1.1111 6.0 6.6 6.10 35.24(± 0.014) 0.004
28 0.0167 1.1111 6.0 6.6 6.10 35.16(± 0.027) 0.004
Objective: 33.04

Table 6.6: New division & newui ’s with upper-limitL = 90

In the last three tables in this section we could see, that thefraction of the vehicles that have to wait
more than 90 seconds is decreasing whenL decreases and theui for that particular signal is more than
large enough to handle the amount of traffic. But when theui is just large enough, the average delay is
increasing, as well as the fraction of the vehicles that haveto wait more than 90 seconds.
The upper-limitL can be decreased to a certain minimum level, i.e. a value ofL for which the system is
just stable. By trial and error, we have determined that in this case the value is approximately 75 seconds.

6.9 Conclusions

From the simulation results in the previous section we conclude, that the newly found fully-actuated traffic
control (with the same division of the signals into subsets,but theui ’s according to the new approxima-
tion algorithm) will lead to an improvement of the objectivefunction, compared to the current situation.
Moreover, when the signals are divided into subsets in a different way, the objective improves enormously
compared to both other situations. From this we can concludethat the current way to divide the signals
into subsets is not always effective.
Furthermore we can conclude that the smaller the valueL is, the larger the objective will be, but the smaller
the frequency of peaks (vehicles that have to wait a very longtime) is. Of course, the frequency of peaks
will only decrease when the average delay is not too large. The value ofL cannot be decreased endlessly.
The upper-limit can be decreased to a certain minimum level for which the system is just stable.
The biggest improvement of the approximation developed in this chapter is given by the fact that the
old method to determine the fully-actuated control settings is very time-consuming compared to the new
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method. Furthermore, we have seen that when the upper-limitL is chosen big enough the system will be
very robust, i.e. the objective value is not very sensitive to (modest) changes in the parametersui .

Because the computation time for the derived method is very small, the method can also be used for an
adaptive control. In normal fully-actuated control, the duration of the maximum effective green-times are
fixed and have to be specified by the traffic engineer. As trafficsituations and conditions change, these
timings should be changed as well. This is done not very frequently and certainly not systematically. With
adaptive control, methods are derived to automatically adjust these maximum effective green-times. In
future research, the effect of adaptive control (based on the method derived in this chapter) on the objective
can be investigated by using simulation.
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CHAPTER7

PHASING SIGNALS

Arterial systems occur often in big cities where the traffic is led around the city center to prevent having
too many cars in the center. This is also the case in Eindhoven, where the arterial consists of twenty-four
intersections. Traffic signals force vehicles to stop and toremain stopped for a certain time, and then
releases vehicles in platoons. The delays and speed changescaused by traffic signals considerably reduce
the capacity of an urban arterial and lower the quality of traffic flow. To limit the discomfort of traffic
signals, the signals can be phased. A large number of the intersections of the arterial in Eindhoven is
phased, in such a way that the signals of the main stream turn green just before the platoon of vehicles
arrives at the intersection. This chapter presents a new solution method to find a fixed-time control of
phased intersections on an arterial.

The outline of this chapter is as follows: In section 7.1 the problem of determining a fixed-time control
for intersections that are part of an arterial is described.The current method of phasing intersections and
the newly developed method are discussed in section 7.2 and 7.3 respectively. In section 7.4 a simplified
problem is translated into a Mixed Integer Program. In the next chapter we will apply the method described
in this chapter to an intersection in the city of Eindhoven.

7.1 Problem description

This section introduces the problem of finding a method to control the signals of phased intersections.
Consider an example of two intersections, as given in figure 7.1, where the adjacent signalized intersections
1 and 2 are connected by a two-way link. The traffic signals on both intersections have a fixed-time cyclic
control, that means that the effective green-times and the order in which approaches turn green are fixed.

1 2

Figure 7.1: Example of a simple arterial
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We speak about (partly) phased intersections, but in fact not the intersections are phased, but the signals on
these intersections. We say that signali is phased with signalj when:

• The platoon departing from signali is arriving at signalj within the effective green-time of this
signal.

• Between signali and j vehicles don’t pass another signal.

Indeed, vehicles moving from one intersection to the next intersection and the other way around, are moving
in platoons. We define the length of the platoon as the distance between the front and the back vehicle.
This length depends on two different things:

• The acceleration of the vehicles, when leaving the queue.

• The number of vehicles leaving the platoon because they turnleft or right.

In figure 7.2 the connection between the arriving flow, the queue length and the departure flow is graphically
represented.

For the intersections of the arterial the same model is used as described in section 2.1 and 2.2. The main
objective is to find a fixed-time control in such a way that the sum over all intersections of the weighted
average delay of vehicles on the intersections is minimized.

Remark 1

For the cycle time of all intersections the following must hold: Either the cycle time of intersectionk is
a multiple of the cycle time of intersectionl , or the cycle time of intersectionl is a multiple of the cycle
time of intersectionk. Most of the time, the cycle times of all intersections are equal. We define the master
cycle time as the cycle time used for all phased intersections.

Remark 2

It will rarely happen that the arterial is phased in two directions.

7.2 Current way of phasing signals

Since the early seventies researchers have investigated how signals of adjacent intersections should be
phased in order to optimize the traffic flow of these intersections. The method developed then, is nowadays
still being used.

For the ‘busiest’ intersection a fixed-time control is developed. We define ‘busiest’ as, the intersection with
the largest minimal cycle time. The minimal cycle time is defined as the smallest cycle time, for which the
system is stable. For this intersection the cycle time and sequence and durations of effective green-times
are determined. Then the master cycle is taken equal to this cycle. The duration of the effective green-time
of the phased signal, the so-called phase green-time, can bedirectly derived from this scheme.

For the other intersections of the arterial the durations ofthe signals that have to be phased is then fixed.
The duration of the effective green-time depends on the duration of the effective green-time of the busiest
intersection and dispersion of the platoon. Moving along the intersections, the length of the effective green-
time of phased signals will increase. The exact beginning ofthese effective green-times depends on the
travel time from one intersection to the other. The signal turns green, just before the platoon arrives, in
order to let the vehicles that were already waiting drive-off just before the platoon.

When the duration of the phased signal is determined, for the other signals a fixed-time control is deter-
mined by minimizing the total average delay of vehicles on that particular intersection.
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Figure 7.2: Figure 7.2a indicates the shape of the platoon arriving at an intersection; in figure 7.2b the queuelength is
given as a function of the time; in figure 7.2c the platoon leaving the intersection is formed by a first part with average
height equal toµ until the time at which the queue vanishes (after timez), then the platoon shape coincides with the
arrival pattern.

7.3 New way of phasing signals

In this chapter we will develop an alternative method to phase the traffic signals of different intersections.
In the current method, the cycle time and the duration of the effective green-time of the phased signals
are fixed, when the fixed-time control for the busiest signal is determined. We develop an integral method,
where the master cycle time and the length of the effective green-times of the phased signals are determined,
based on all intersections instead of the busiest one.

Let K = {k1, k2, . . . , km} be the set of intersections which have to be phased. Sok1 is the first intersection
along the road, etcetera. For the first intersection, given the cycle timec and phase green-timep the optimal
sequence and durations of the effective green-times are determined, where the effective green-time of the
phased signal is equal top. This is done by minimizing the total average delay of vehicles on that particular
intersection.

Vehicles move from the first intersection to the second intersection and arrive in a platoon at the phased
signal. Just before the platoon arrives the signal turns green, and the vehicles already waiting at the signal
drive off, in order to let the platoon continue without stopping. So we assume that the average delay of the
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platoon is zero.

For this intersection the cycle timec and the phase green-time are known. The duration and the sequence
of the rest of the effective green-times can be determined byminimizing the weighted average delay of
vehicles at the other signals.

This process continues until for all intersections a signalscheme is determined. These schemes depend on
the cycle timec and the phase green-timep. We choose that cycle timec and phase green-timec, so that
the sum over all intersections of the weighted average delayis minimized.

7.4 The initial model formulation

In this section the description of the problem in section 7.3is translated into an optimization model. First,
an informal verbal presentation of the model is provided, followed by the extensive notation needed to
describe all aspects of the model. The objective function and each constraint is developed separately.

The model for optimizing a single intersection is thoroughly described in chapter 2. Therefore, we will only
discuss the new constraints and sum up the other constraintsin the mathematical model in subsection 7.4.3.
For an explanation of the old constraints we refer to subsection 2.2.3.

7.4.1 Verbal model statement

Minimize: Sum over all intersections of the weighted average delay of vehicles on the intersection.
Subject to:

1. For all traffic signals and all intersections: Length of the effective green-time must be smaller than
or equal to the maximum green-time and must be greater than orequal to the minimum green-time,

2. For all traffic signals and all intersections: The beginningand the end of the effective green-times
must fall in the range[0, Cycle),

3. For all traffic signals and all intersections: The delay of vehicles as a function of the length of the
effective green-time is given by the formula of Webster,

4. For all traffic signals and all intersections: The green-period cannot overlap the green-periods of
incompatible signals and incompatible approaches have to take into account a clearance-time for
safety,

5. For all traffic signals and all intersections: The length of the effective green-time must be large
enough to handle all the arriving vehicles at that signal,

6. For the phased traffic signal on the first intersection: The length of the effective green-time is equal
to the phase green-time and the beginning of the effective green-time is equal to zero,

7. For the phased traffic signal on all intersections (except the first intersection): The length of the
effective green-time is equal to the length of the effectivegreen-time of the previous intersection, plus
the time needed to let all vehicles that were already waitingat the signal drive off,

8. For the phased traffic signal on all intersections (except the first intersection): The beginning of the
effective green-time is equal to the beginning of the effective green-time of the previous intersection,
plus the time needed to travel from the previous intersection to this intersection, minus the time
needed to let all vehicles that were already waiting at the signal drive off.
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7.4.2 Notation

The verbal model statement of the problem can be specified as amathematic model using the following
notation.

Indices:
K set of intersections, indexk (second indexl )
Ik set of traffic signals on intersectionk, indexi (second indexj )
Qk set consisting of the phased signal on intersectionk, indexq

Parameters:
m number of intersections of the arterial
nk number of signals on intersectionk
c cycle time (integer)
p phase green-time (integer)

λik arrival rate of vehicles at traffic signali on intersectionk
µik departure rate of vehicles at traffic signali on intersectionk
ρik occupation rate of traffic signali on intersectionk (ρik = λik/µik)
wik weight of traffic signali on intersectionk (wik = λik/

∑nk
j λ jk)

mgik minimum effective green-time of signali on intersectionk
Mgik maximum effective green-time of signali on intersectionk
si jk necessary time between the end of the effective green-time of signal i and the beginning of signalj

on intersectionk
rkl time a vehicles needs, to drive from intersectionk to l (in seconds)

Variables:
bik time when signali turns green on intersectionk (range[0, c))
eik time when signali turns red on intersectionk (range[0, c))
gik length of the effective green-time of signali on intersectionk (gik = (eik − bik) modc)
dik average delay of vehicles at traffic signali on intersectionk
Dk weighted average delay of vehicles on intersectionk (Dk = ∑nk

i wikdik)
zi jk 1 if bik − ejk < 0

0 otherwise

7.4.3 Mathematical model

The constraints as formulated in the first section of this chapter can be translated into mathematical con-
straints, using the notation above. The constraints formulated in this subsection have the same numbers as
the constraints in the earlier described verbal model statement. By determining an optimal signal scheme
for one intersection, we made use of the optimization problem as formulated in chapter 2.

The constraints in the model hold for alli , j andk.
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Constraint 1 & 2 & 3 & 4 & 5

b jk − eik ≤ czi jk

eik − b jk < c(1 − zi jk )

gik ≤ mgik

gik ≥ Mgik

dik ≥ αikhgik + βikh, h = 1, ..., Nik

zi jk + z j ik − zi ik − z j jk = 1
b jk − eik + czi jk ≥ si jk

µikgik > λikc
bik < c
eik < c
gik < c
bik ≥ 0
eik ≥ 0
gik ≥ 0
dik ≥ 0
zi jk ∈ {0, 1}

Constraint 6 & 7

We require that the length of the effective green-time of thephased signal is equal to the length of the ef-
fective green-time of the phased signals of the previous intersection, plus the time needed to let all vehicles
that were already waiting at the signal drive off. For signals that are phased the following constraints for
the effective green-time must hold:

eqk = p, k = 1
eqk = eqk−1 + aqk−1

µqk
, k = 2, . . . , m

whereaqk−1 is the amount of traffic already waiting at the phased signal before the platoon of vehicles of
the previous intersection arrives. Soaqk−1 is the amount of traffic coming from intersectionk − 1 during
one cycle (the phased signal excluded) and is defined as:

aqk−1 = ∑

t λtk−1c, k = 2, . . . , m

where indext contains all signals of intersectionk − 1, where vehicles move from signalt of intersection
k − 1 to signalq of intersectionk.

Constraint 6 & 8

The beginning of the effective green-time of the phased signal is equal to the beginning of the effective
green-time of the phased signal of the previous intersection, plus the time needed to travel from the previous
intersection to this intersection, minus the time needed tolet all vehicles that were already waiting at the
signal drive off.

bqk = 0, k = 1
bqk = bqk−1 + rk−1k − aqk−1

µqk
, k = 2, . . . , m

Objective

The objective function, being the sum over all intersections of the weighted average delay of all vehicles
on the intersection, has to be minimized

Minimize:
∑m

k=1 Dk = ∑m
k=1

∑nk
i=1 wikdik
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The program described above (MainProgram) is called a MixedInteger Program, because some of the
variables used to formulate the problem are continuous and some of them are integer (binary). The Main-
Program can be solved with AIMMS, a linear and mixed-integerprogram solver.

The proposed algorithm relies on formal mathematical techniques rather than heuristics. Under the as-
sumptions, it is expected that the optimal solution found bythe algorithm is globally optimal. Since the
algorithm is mathematically based, it may be shown that the solution produced is optimal for the conditions
and within the constraints imposed. The solution can thus beused with confidence that there is no better
alternative under the given circumstances.
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PHASING SIGNALS: EXAMPLE

The two intersections that are investigated in this chapterare situated very close to each other in the center
of the city of Eindhoven. Because the mutual distance is only80 meters, it will often occur that the roads
between both intersections are congested and that this willaffect the traffic flow. These problems may be
solved by phasing the intersections. In this chapter we willinvestigate how to phase the two intersections
during the rush hour in the afternoon from 4.45 PM until 5.45 PM.
The outline of this chapter is as follows: First, in section 8.1 the input, as well as some background informa-
tion of the intersection is given. The method described in chapter 7 is implemented with the optimization
software package AIMMS. The current signal scheme and the newly found signal scheme are presented in
section 8.2 and 8.3 respectively. In section 8.4 the structure of the simulation program is discussed. The
newly found signal scheme is compared with the current scheme by simulation in section 8.5. In the last
section, these results are discussed.

8.1 Introduction

In this section all the necessary input and information of the investigated intersections is given.

8.1.1 Notation

The following notation is used in the rest of this chapter.

K = Set of intersections (indexk)

Ik = Set of traffic signals on intersectionk (index i )

c = Cycle time

λik = Arrival rate of vehicles at traffic signali on intersectionk

µik = Departure rate of vehicles at traffic signali on intersectionk

bik = Time when signali turns green on intersectionk (range[0, c))

eik = Time when signali turns red on intersectionk (range[0, c))

gik = Length of the effective green-time of signali on intersectionk

wik = Weight of signali (used in the objective) on intersectionk
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dik = The average delay of vehicles at signali on intersectionk

ρ∗
ik = Degree of saturation of signali on intersectionk

r ∗
kl = The driving time from intersectionk to l

8.1.2 Input and background information

The investigated intersections are schematically presented in figure 8.1. The driving timer12 = r21 between
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Figure 8.1: Overview of intersection (Scale 1:1000)

both intersections is 10 seconds.

As can be seen in this figure, there are four car signals (numbered 2, 5, 8, 11) for each intersection. For
intersection 1, there are four other signals for pedestrians (numbered 31,33,35,37). The cyclists use the
vehicle signals. For intersection 2, there are eight other signals for cyclists (numbered 22,24,26,28) and
pedestrians (numbered 31,33,35,37). For all pedestrian and cyclists signals of the intersections, the mini-
mum effective green-time is equal to 12.0 seconds.

In 1994 the number of arriving vehicles during one hour was counted at all signals. We have increased
these numbers to give a more realistic view of the current intensities. The arrival rateλik of signal i on
intersectionk, is the traffic intensity given in number of arriving cars persecond and can be directly calcu-
lated from this counting. The drive off capacity, given in the maximum number of cars leaving per hour, of
vehicles for the different signals can be easily computed, based on the design of the approaches, resulting
in the total amount of vehicles leaving the approach per second (departure rateµik). The objective that is
minimized is the sum over the intersections of the weighted average delay of vehicles on the intersections.
The weightwik for signali on intersectionk is given by:

wik = λik
∑nk

j λ jk

In table 8.1 the input of both intersections is given. In Appendix E.1 the arrival intensities at the different
signals, spread out over the different approaches are graphically presented.

As the computation time of the AIMMS program increases exponentially with the number of traffic signals,
we try to minimize this number. Intersection 1 can be simplified by taking one cyclist/pedestrian signal
instead of two signals. For example, signals 22 and 31 can be represented by signal 31, having the same
set of incompatible signals. Later on, we can fit signal 22 in the signal scheme manually.
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Intersection 1 Intersection 2
i wi 1 λi 1 µi 1 i wi 2 λi 2 µi 2

2 0.447 0.2472 0.7778 2 0.165 0.1750 0.7778
5 0.065 0.0361 0.7778 5 0.253 0.2694 1.2778
8 0.276 0.1528 0.5000 8 0.251 0.2667 0.7778
11 0.211 0.1167 0.5000 11 0.332 0.3528 1.2778

Table 8.1: Input of intersections

From figure 8.1, we can derive which approaches (and signals)are incompatible. At this intersection,
partial conflicts are permitted. For example, approach 8 and33 can have right of way simultaneously.
Possible conflicts between road users are solved by following the normal traffic rules. In Appendix E can
be found, which approaches and corresponding signals are incompatible with each other, as well as the
clearance-times belonging to these incompatible signals.

In the rush-hours, the roads in between the two intersections are congested. The vehicles waiting for signal
2 of intersection 1 and for signal 8 of intersection 2, will affect the traffic flow of the intersections in a
negative way. In Appendix E.1 the arrival intensities at thedifferent signals, spread out over the different
approaches are schematically presented. From this we conclude, that it is most obvious that signals 8 from
intersection 1 and 2 are phased. In section 8.3 we present theresults of the two different ways, in which
the signals can be phased.

8.2 Current situation

The current signal scheme is presented in table 8.2. The cycle time is 60 seconds. Note that the two
intersections are not phased.

Intersection 1 Intersection 2
i bi 1(s) ei 1(s) gi 1(s) i bi 2(s) ei 2(s) gi 2(s)
2 30.0 56.0 26.0 2 0.0 22.0 22.0
5 2.0 14.0 12.0 5 30.0 53.0 23.0
8 30 56.0 26.0 8 0.0 21.0 21.0
11 2.0 18.0 16.0 11 30.0 53.0 23.0
31 3.0 21.0 18.0 22 27.0 56.0 29.0
33 25.0 55.0 30.0 24 59.0 24.0 25.0
35 9.0 23.0 14.0 26 28.0 56.0 28.0
37 23.0 57.0 34.0 28 59.0 24.0 25.0

31 27.0 55.0 28.0
33 59.0 21.0 22.0
35 28.0 55.0 27.0
37 59.0 21.0 22.0

Table 8.2: Current signal scheme

8.3 Results

8.3.1 Current way of phasing signals

In table 8.3 the signal scheme with a cycle time of 50 seconds and a phase green-time of 25 seconds is
given.
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Intersection 1 Intersection 2
i bi 1(s) ei 1(s) gi 1(s) i bi 2(s) ei 2(s) gi 2(s)
2 0.0 25.0 25.0 2 2.1 31.1 29.0
5 30.0 47.0 17.0 5 35.1 0.1 35.0
8 0.0 25.0 15.0 8 2.1 31.1 29.0
11 30.0 47.0 17.0 11 35.1 0.1 35.0
31 31.0 43.0 12.0 22 36.1 49.1 13.0
33 1.0 24.0 23.0 24 4.1 27.1 23.0
35 33.0 45.0 12.0 26 36.1 49.1 13.0
37 2.0 26.0 24.0 28 4.1 27.1 23.0

31 36.1 48.1 12.0
33 4.1 24.1 20.0
35 36.1 48.1 12.0
37 4.1 24.1 20.0

Table 8.3: Signal scheme, where the intersections are phased according to the current method

Note that signals 8 of intersection 1 and 2 are phased, but notcompletely: a81 is the amount of traffic
coming from intersection 1 during one cycle (the phased signal 8 excluded) and is in this case given by:

a81 = 355+ 86

3600
· 50

= 6.125

The effective green-timee81 of signal 8 on the first intersection is equal to the phase green-time of 25
seconds. The effective green-timee82 of signal 8 on the second intersection has to be:

e82 = e81 + a81

µ82

= 25.0 + 6.125

0.7778
= 32.9 seconds

Nevertheless, with a cycle time of 50 seconds, this yields anunstable system. The effective green-timee82
for which the system is just stable, is given by 29.0 seconds.

The beginning of the effective green-timeb82 is then given by:

b82 = b81 + r12 − a81

µ82

= 0.0 + 10.0 − 6.125

0.7778
= 2.1 seconds

The end of the effective green-time is given by 2.1 + 29.0 = 31.1 seconds.

So the signals are partly phased, meaning that not the whole platoon can pass the signal before it turns red
again.

8.3.2 New way of phasing signals

For various cycle times and phase green-times, we have determined a fixed time-control, where signal 8
of intersection 1 and 2 are phased. In table 8.4 the objectivevalues for a cycle timec between 45 and
60 seconds and a phase green-timep between 15 and 24 are given. Some combinations yield an unstable
system, which is indicated with ‘-’.
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p-15 p-16 p-17 p-18 p-19 p-20 p-21 p-22 p-23 p-24
c-45 34.81 31.73 - - - - - - - -
c-46 37.70 32.30 31.36 - - - - - - -
c-47 43.51 33.40 31.46 31.74 - - - - - -
c-48 59.90 35.16 31.98 31.40 32.96 - - - - -
c-49 432.96 38.02 32.84 31.56 31.90 35.89 - - - -
c-50 - 43.22 34.10 32.02 31.68 33.08 46.54 - - -
c-51 - 55.73 35.91 32.72 31.84 32.25 35.51 - - -
c-52 - 135.57 38.64 33.69 32.24 32.07 33.33 42.35 - -
c-53 - - 43.28 34.97 32.82 32.20 32.65 35.40 271.46 -
c-54 - - 53.29 36.75 33.60 32.55 32.49 33.67 40.31 -
c-55 - - 93.85 39.33 34.60 33.05 32.62 33.08 35.46 70.64
c-56 - - - 43.53 35.90 33.71 32.93 32.96 34.05 39.23
c-57 - - - 51.84 37.63 34.53 33.38 33.08 33.55 35.64
c-58 - - - 77.74 40.08 35.55 33.95 33.37 33.46 34.47
c-59 - - - - 43.92 36.85 34.65 33.77 33.58 34.05
c-60 - - - - 50.99 38.54 35.50 34.28 33.84 33.98

Table 8.4: Table of the objective value as function of the cycle time and phase green-time: the sum over both intersec-
tions of the weighted average delay for various values ofc and p

The objective value is minimized whenc = 46 andp = 17. In table 8.5 the ‘optimal’ signal scheme with a
cycle time of 46 seconds and a phase green-time of 17 seconds is given. Signals 8 from intersection 1 and
2 are phased.

Intersection 1 Intersection 2
i bi 1(s) ei 1(s) gi 1(s) i bi 2(s) ei 2(s) gi 2(s)
2 43.0 17.0 20.0 2 2.8 27.0 24.2
5 21.0 38.0 17.0 5 30.0 44.8 14.8
8 0.0 17.0 17.0 8 2.8 27.0 24.2
11 21.0 38.0 17.0 11 30.0 44.8 14.8
31 25.0 40.0 15.0 22 31.0 43.8 12.8
33 44.0 15.0 17.0 24 6.8 25.0 18.2
35 23.0 35.0 12.0 26 31.0 43.8 12.8
37 42.0 15.0 19.0 28 6.8 25.0 18.2

31 31.0 42.8 11.8
33 6.8 22.0 15.2
35 31.0 42.8 11.8
37 6.8 22.0 15.2

Table 8.5: Signal scheme, where the intersections are phased according to the new method

Note that signals 8 of intersection 1 and 2 are phased. In thiscaseaqk−1 is given by:

a81 = 355+ 86

3600
· 46

= 5.635

The effective green-timee81 of signal 8 on the first intersection is equal to the phase green-time of 17
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seconds. The effective green-timee82 of signal 8 on the second intersection has to be:

e82 = e81 + a81

µ82

= 17.0 + 5.635

0.7778
= 24.2 seconds

The beginning of the effective green-timeb82 is then given by:

b82 = b81 + r12 − a81

µ82

= 0.0 + 10.0 − 5.635

0.7778
= 2.8 seconds

8.4 Simulation program

To test whether the developed solution method works well, a simulation program has been written. It
simulates a fixed time control on multiple intersections of an arterial. In this section the structure of this
simulation program is explained.

8.4.1 Input

The input needed to simulate the system is summarized below:

K = Set of intersections (indexk)

Ik = Set of traffic signals on intersectionk (index i )

c = Cycle time

λik = Arrival rate of vehicles at traffic signali on intersectionk

µik = Departure rate of vehicles at traffic signali on intersectionk

bik = Time (modc) when signali turns green on intersectionk (range[0, c))

eik = Time (modc) when signali turns red on intersectionk (range[0, c))

The vehicles at signalsi (on intersectionk) on the ‘outside’ of the arterial arrive according to a Poisson
process with parameterλik . Vehicles ‘within’ the arterial move in platoons from one intersection to the
other. The departure process consists of deterministic departures. Each 1/µik seconds a vehicle leaves
approachik. Thebik andeik are chosen in such a way that incompatible approaches don’t have right of
way simultaneously.

8.4.2 Discrete-event simulation

We have written a discrete-event simulation with an event scheduling approach. The event scheduling ap-
proach concentrates on the events and how they affect the system. The three events that can be distinguished
are:

1. Arrival of a vehicle

2. Beginning of the effective green-time

3. End of the effective green-time
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The departure of a vehicle can be seen as event four. But to obtain a value for the waiting time of a vehicle,
the order in which vehicles have arrived needs to be stored. We didn’t make use of this departure-event,
but kept track of the amount of ‘work’, c.q. the time to clear the vehicles, waiting in the queue. Out of the
amount of departure time waiting at the signal and the beginning and end of the effective green-times, the
departure time and subsequently the waiting time can immediately be calculated when a vehicle arrives.

When for example, two approaches belong to the same traffic signal, we doubled the departure rate of this
signal. This is not valid when a vehicle arrives and there is no waiting queue. In that case the departure
rate is equal to the original departure rate instead of the doubled one.

We keep track of the time points at which the next events of thedifferent types occur. To record these time
points we make use of a binary search tree. In a tree, the time points are not ordered in a straight line, like
earliest event first, and so on. Instead, the starting time point, called the root, is linked to two other nodes,
called its children, and those nodes in turn are linked to other children, and so on. Formally, a tree is either
empty, or a root, which is connected to one or more other trees, called the subtrees of the root. The order
of all time points in this tree is important. Formally, in a binary search tree the following holds:

• All the time points in the left subtree take place earlier than the time point of the root

• All the time points in the right subtree take place later thanthe time point of the root

• The left and right subtrees are also binary search trees

We can conclude, that the event that takes place first, is the leftmost node in the tree. We use a binary
search tree in order to minimize the distance we have to go to reach any given element. Searching for an
element in a binary tree containingn nodes is anO(logn) process and building the tree in the first place is
an O(nlogn) process, if the tree is reasonably well balanced.

The simulation then consists of finding the smallest time point in this tree, setting the current time to this
event time and executing the corresponding activities. Here we will describe how these events affect the
system and what activities are carried out.

1. Arrival of a vehicle

With an arrival, the total amount of vehicles waiting at thatapproach is increased and the delay of that
particular vehicle is computed. When the arrival is on an approach on the ‘outside’ of the arterial, a new
arrival at the same approach is simulated. When the vehicle doesn’t leave the arterial, but drives to another
intersection of the arterial, the new destination and the exact time of arrival at this destination is determined.

2. Beginning of the effective green-time

When a traffic signal turns green, the state of this signal changes. Vehicles at the approach have right of
way until the end of the effective green-time. A new event, the beginning of the effective green-time in the
next cycle, is generated and added to the binary search tree.

3. End of the effective green-time

When a traffic signal turns red, the state of this signal changes. A new event, the end of the effective green
time, so the beginning of the effective red-time, is generated and added to the binary search tree. When
the signal turns red and a vehicle is not completely driven off, two different scenarios can be followed.
We have chosen for preemptive resume, that means, the drive-off time of the vehicle is preempted, but is
continued at the beginning of the next effective green-time.

After each event the total number of waiting vehicles at the approaches is updated. As stopping criterium
for this simulation the runlength is taken. When the current simulation time exceeds this runlength the
simulation is ended.
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8.5 Analysis versus simulation

In this section three signal schemes for the intersections are simulated with the program, described in the
previous section. The objective to be minimized is equal to the sum over the intersections of the weighted
average delay. The weightwik for signali on intersectionk is given by:

wik = λik
∑nk

j λ jk

First, the current situation, with a cycle time of 60 secondsis investigated. In the current situation the
intersections are not phased. Secondly, we investigate thecase where the intersections are phased according
to the existing method. The cycle timec is taken equal to 50 seconds and the phase green-timep is taken
equal to 25 seconds. Finally, the fixed time-control determined with the new way of phasing signals is
simulated, with a cycle time of 46 seconds and a phase green-time of 17 seconds.

For each case the average delay is calculated. From this, theobjective immediately follows. In the second
and third table, the approximation of the average delay based on Webster’s formula (without correction
term), is given as well.

Besides this, the degree of saturation (ρ∗
ik) is calculated. This degree indicates the fraction of the maximum

capacity that is utilized and can be computed as follows:

ρ∗
ik = λikc

µikgik

For reliability of the results and small confidence intervals, the system is simulated for 24 hours= 86400
seconds and with 100 repetitions. A 95%-confidence intervalfor the average delay is constructed.

8.5.1 Current situation - Cycle time60seconds

In table 8.6 the simulation results as well as the input and saturation degree of the current situation are
presented. It should be observed that the degree of saturation of signal 8 on intersection 2,ρ∗

82 is equal to
0.997. It is remarkable that the high degree of saturation doesn’t yield a large average delay. Probably the
reason for this is that signal 8 on intersection 2 is phased partly with signal 5, 8 and 11 of intersection 1.

Intersection 1
i λi 1 µi 1 gi 1(s) ρ∗

i 1 di 1(s)
2 0.2472 0.7778 26.0 0.733 18.94(± 0.002)
5 0.0361 0.7778 12.0 0.232 21.46(± 0.010)
8 0.1528 0.5000 26.0 0.705 17.94(± 0.008)
11 0.1167 0.5000 16.0 0.875 41.56(± 0.085)
Weighted average delay: 23.60 seconds

Intersection 2
i λi 2 µi 2 gi 2(s) ρ∗

i 2 di 2(s)
2 0.1750 0.7778 22.0 0.614 17.41(± 0.005)
5 0.2694 1.2778 23.0 0.550 22.27(± 0.003)
8 0.2667 0.7778 21.0 0.977 14.71(± 0.002)
11 0.3528 1.2778 23.0 0.720 17.13(± 0.002)
Weighted average delay: 17.87 seconds
Objective: 41.47 seconds

Table 8.6: Output of current situation
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8.5.2 Current way of phasing signals - Cycle time50seconds

In table 8.7 the simulation results of the new signal scheme with a cycle length of 50 seconds are presented.

Intersection 1
i λi 1 µi 1 gi 1(s) ρ∗

i 1 di 1(s) dapp
i 1 (s)

2 0.2472 0.7778 25.0 0.636 16.28(± 0.002) 12.13
5 0.0361 0.7778 17.0 0.137 10.96(± 0.008) 12.18
8 0.1528 0.5000 25.0 0.611 23.26(± 0.028) 12.92
11 0.1167 0.5000 17.0 0.686 15.65(± 0.008) 21.78
Weighted average delay: 11.85 seconds

Intersection 2
i λi 2 µi 2 gi 2(s) ρ∗

i 2 di 2(s) dapp
i 2 (s)

2 0.1750 0.7778 29.0 0.388 7.36(± 0.002) 6.86
5 0.2694 1.2778 15.0 0.703 51.78(± 0.0018) 19.47
8 0.2667 0.7778 29.0 0.591 3.61(± 0.001) 8.94
11 0.3528 1.2778 15.0 0.920 62.71(± 0.034) 37.92
Weighted average delay: 36.04 seconds
Objective: 47.89 seconds

Table 8.7: Output of new situation (current way op phasing signals)

8.5.3 New way of phasing signals - Cycle time46seconds

In table 8.8 the simulation results of the optimal signal scheme with a cycle length of 46 seconds are
presented.

Intersection 1
i λi 1 µi 1 gi 1(s) ρ∗

i 1 di 1(s) dapp
i 1 (s)

2 0.2472 0.7778 20.0 0.731 16.28(± 0.002) 14.79
5 0.0361 0.7778 17.0 0.126 10.96(± 0.008) 9.83
8 0.1528 0.5000 17.0 0.827 23.26(± 0.028) 26.08
11 0.1167 0.5000 17.0 0.632 15.65(± 0.008) 16.56
Weighted average delay: 17.73 seconds

Intersection 2
i λi 2 µi 2 gi 2(s) ρ∗

i 2 di 2(s) dapp
i 2 (s)

2 0.1750 0.7778 24.2 0.428 8.32(± 0.004) 7.55
5 0.2694 1.2778 14.8 0.655 14.65(± 0.004) 15.78
8 0.2667 0.7778 24.2 0.652 2.92(± 0.001) 10.15
11 0.3528 1.2778 14.8 0.858 19.20(± 0.014) 22.17
Weighted average delay: 12.18 seconds
Objective: 29.91 seconds

Table 8.8: Output of new situation (new way op phasing signals)
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8.6 Discussion of results

From the simulation results in the previous subsection we conclude, that phasing the signals in the right
way can solve the problem of congested roads. The average delay of vehicles at signal 8 of intersection 2,
is 14.71, 3.61 and 2.92 seconds for the current situation, the current way of phasing signals and the new
way of phasing signals respectively.

The objective value in case the signals are phased accordingto the new method is 29.91 seconds. This is an
improvement of 27.9%, compared with the current situation. From the objectivevalue in case the signals
are phased according to the existing method, we conclude that this method doesn’t always work properly.
The reason that this value is so large, is that the effective green-time of signals 5 and 11 of intersection 2 is
just long enough that the system is stable.

In table 8.7 and 8.8 the approximations of the average delay,based on Webster’s formula without correction
term are given. These approximations differ sometimes quite a lot from the simulation results. There are
two reasons for this. The first reason is, that we didn’t make use of Webster’s formula with correction term,
which is much more accurate than the formula without correction term. In chapter 4 more information about
this formula and better alternatives is given. The reason that we didn’t make use of Webster’s formula with
correction term, is that we were not aware of the impact of this correction term to the formula. Later we
realized that this correction term is in the range 5 to 15 percent of the original formula of Webster, which
is quite a lot. The second reason is, that the average delay ofvehicles at signals ‘inside’ the arterial is also
determined by Webster’s formula. But this formula is only valid for an isolated intersection, where the
vehicles are assumed to arrive according to a Poisson process, instead of arriving in platoons.

In future research this method can be extended, where the arrival process within the arterial is also modelled
correctly. Then a formula of the delay of vehicles within thearterial has to be determined as a function of
the effective green-time, cycle time, the arrival rate and departure rate. Then this formula can be used in
the same way in the optimization as the formula of Webster.

Possibly this method can be used for determining a fixed-timecontrol for a network of intersections. Prob-
ably the method has to be adapted, to handle difficult routingissues that occur in networks.
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DERIVATIVE OF WEBSTER’ S FORMULA

dW E B
i (gi ) = (c − gi )

2

2c(1 − ρi )
+ ρi c2

2gi (µi gi − λi c)
(A.1)

dW E B ACC
i (gi ) := d

∂gi
dW E B

i (gi ) = gi − c

c(1 − ρi )
− (2µi gi − λi c)ρi c2

2g2
i (µi gi − λi c)2

(A.2)
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OPTIMIZATION OF FUHRMANN & WANG OPTIMIZATION PROBLEM

Minimize:

f (k̄) = ∑n
i=1 ci λi

1−ρi + ρi
ki

(1+ 1
1−ρ

)

1− λi
ki

E[C]
BE[C]

Subject to:
∑n

i=1 γi ki ≤ K

Rewriting f (k̄) yields:

f (k̄) =
n

∑

i=1

ci λi ρi (1 + 1
1−ρ

)BE[C]
−λi E[C] + Bci ((−2 + ρ)ρi + E[C]λi (−1 + ρ + ρi − ρρi ))

(−1 + ρ)(1 − λi
ki

E[C])

d f (k̄)

∂ki
=

Bci ((−2 + ρ)ρi + E[C]λi (−1 + ρ + ρi − ρρi ))
λi E[C]

k2
i

(1 − ρ)(1 − λi
ki

E[C])2

From the gradient Karush-Kuhn-Tucker Necessary Conditions we know that:

d f (k̄)

∂ki
+ Lγi = 0

Bci ((−2 + ρ)ρi + E[C]λi (−1 + ρ + ρi − ρρi ))
λi E[C]

k2
i

(1 − ρ)(1 − λi
ki

E[C])2
+ Lγi = 0

with E[C] = s
1−ρ

.

ki = λi s

1 − ρ
+

√

Bci L(−1 + ρ)3sγi λi δi

L(−1 + ρ)3γi

= λi s

1 − ρ
+

√
B√
L

√
ci λi δi s

√

γi (−1 + ρ)3

with δi = ρi (2 − ρ) + λi s(1 − ρi )

So, we derived an expression forki .
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Equality of the constraint
∑n

i=1 γi ki ≤ K must hold. Out of this we can derive an expression for
√

B√
L

,
which is used in the formula forki again:

n
∑

i=1

γi ki =
n

∑

i=1

γi
λi s

1 − ρ
+

n
∑

i=1

γi

√
ci λi δi s

√

γi (−1 + ρ)3

√
B√
L

= K

k∗
i = λi s

1 − ρ
+ (K −

n
∑

j =1

γ j
λ j s

1 − ρ
)

√
ci λi δi /γi

∑n
j =1 γ j

√

c j λ j δ j /γ j
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INPUT INTERSECTION CHAPTER3

Incompatible traffic signals

s-2 s-5 s-8 s-9 s-10 s-11 s-12 s-21 s-23 s-25 s-27
s-2 x x x x x x x
s-5 x x x x x
s-8 x x x x x
s-9 x x x x x x
s-10 x x x
s-11 x x x x x
s-12 x x x x x x
s-21 x x x
s-23 x x
s-25 x x x x
s-27 x x x x x

Clearance-times

s-2 s-5 s-8 s-9 s-10 s-11 s-12 s-21 s-23 s-25 s-27
s-2 0 0 8 6 5 0 10 0
s-5 5 1 1 0 10
s-8 7 1 3 10 1
s-9 9 6 3 4 1 13
s-10 0 2 0
s-11 0 6 4 6 0
s-12 0 5 3 2 9 1
s-21 0 0 0
s-23 2 0
s-25 0 2 0 1
s-27 2 0 7 7 7
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INPUT INTERSECTION SECTION6.8

Incompatible traffic signals

s-1 s-2 s-8 s-9 s-11 s-25 s-26 s-27 s-28 s-43 s-49
s-1 x x x x x
s-2 x x x x x x
s-8 x x x x x
s-9 x x x x x x x
s-11 x x x x x x x x x
s-25 x x x x x x
s-26 x x x x x x
s-27 x x x
s-28 x x x
s-43 x x x x x x
s-49 x x x x x x

Clearance-times

s-1 s-2 s-8 s-9 s-11 s-25 s-26 s-27 s-28 s-43 s-49
s-1 0 4 5 1 0
s-2 0 1 2 6 0 0
s-8 0 0 0 0 0
s-9 1 0 1 0 0 2 6
s-11 0 0 0 0 3 2 0 1 0
s-25 0 1 2 4 0 0
s-26 0 2 1 0 0 4
s-27 0 0 1
s-28 0 0 2
s-43 0 0 2 1 8 6
s-49 8 7 3 2 4 0
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INPUT INTERSECTION CHAPTER8

Incompatible traffic signals ‘intersection 1’

s-2 s-5 s-8 s-11 s-31 s-33 s-35 s-37
s-2 x x x x
s-5 x x x x
s-8 x x x x
s-11 x x x x
s-31 x x
s-33 x x
s-35 x x
s-37 x x

Clearance-times ‘intersection 1’

s-2 s-5 s-8 s-11 s-31 s-33 s-35 s-37
s-2 5 5 2 8
s-5 4 4 2 6
s-8 5 5 6 2
s-11 4 4 6 2
s-31 8 8
s-33 6 6
s-35 6 6
s-37 4 4
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Incompatible traffic signals ‘intersection 2’

s-2 s-5 s-8 s-11 s-31 s-33 s-35 s-37
s-2 x x x x
s-5 x x x x
s-8 x x x x
s-11 x x x x
s-31 x x
s-33 x x
s-35 x x
s-37 x x

Clearance-times ‘intersection 2’

s-2 s-5 s-8 s-11 s-31 s-33 s-35 s-37
s-2 4 4 2 5
s-5 3 3 2 5
s-8 4 4 5 2
s-11 3 3 5 2
s-31 4 4
s-33 8 8
s-35 4 4
s-37 8 8
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APPENDIXF

PASCAL PROGRAM DETERMINING ALL PERMUTATIONS

Procedure Rotate(rag AS integer);

VAR i, hulp AS integer;

hulp := startseq(1);

FOR i := 1 TO (rag − 1) DO

startseq(i ) := startseq(i + 1);
startseq(1) := hulp;

END Procedure.

Procedure Permute(pag AS integer);

VAR i AS integer;

IF pag = 1 THEN

FOR i := 1 TO (ag− 1) DO

seq(i + 1) := startseq(i );
seq(1) := 1;

ELSE

FOR i := 1 TO pag DO

Rotate(pag);

Permute(pag − 1);

NEXT i ;

ENDIF;

END Procedure.

Main Program;

VAR i AS integer;

ag :=Number of subsets;

FOR i := 1 TO (ag− 1) DO

startseq(i ) := i + 1;

Permute(ag− 1);

END Main Program.
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SAMENVATTING

Verkeerslichten regelingen zijn vandaag de dag een belangrijk middel om de doorstroming van verkeer in
met name de stad te verbeteren. Hiermee wordt niet alleen de doorstroming bevorderd, maar wordt tevens
de veiligheid van gevaarlijke kruispunten vergroot. Met een grote toename van het aantal motorvoertuigen
op de weg, neemt ook de hoeveelheid files in de stad toe. Hierdoor wordt de afstelling van verkeerslichten
binnen huidige regelingen en het ontwerpen van nieuwe verkeerslichten regelsystemen een steeds belang-
rijker onderwerp. Binnen de stad Eindhoven is men zich steeds meer bewust van het belang van een goede
afstelling van verkeerslichten. Immers, door het ontstaanvan steeds meer files ook binnen Eindhoven, zijn
slechts twee oplossingen mogelijk. Of de infrastructuur enwegenstructuur worden dusdanig aangepast
dat fileproblemen worden opgelost, of door de goede afstelling van verkeerslichten wordt de doorstroming
sterk verbeterd en zijn de fileproblemen (tijdelijk) verdwenen. De laatste oplossing is veruit de goedkoopste
en minst ingrijpende en verdient daarom op dit moment veel aandacht.
In dit rapport worden verscheidene verkeerslichten regelsystemen wiskundig geanalyseerd. In de prak-
tijk worden er twee soorten systemen onderscheiden, te weten het starre regelsysteem en het dynamische
regelsysteem. Op basis van de analyses van deze systemen en op basis van wiskundige modellen wor-
den verbeteringen voorgesteld. Deze verbeteringen wordenaan de hand van praktijkvoorbeelden getoetst,
waarbij in alle gevallen de huidige en verbeterde regelsystemen worden gesimuleerd en de resultaten met
elkaar worden vergeleken.
Hoofdstuk 2 tot en met 6 hebben alle betrekking op verkeerslichten regelsystemen van één geïsoleerd
kruispunt. In de laatste twee hoofstukken zal een begin worden gemaakt met de problematiek omtrent
de afstelling van verkeerslichten binnen een groot netwerkvan kruispunten. In dit rapport wordt er bij
alle problemen naar gestreefd, de doorstroming van het verkeer zo goed mogelijk te laten zijn. Om dit te
bereiken wordt de totale (gewogen) gemiddelde wachttijd binnen een systeem geminimaliseerd.
In hoofdstuk 2 onderzoeken we nieuwe mogelijkheden wat betreft de bepaling van een starre verkeers-
lichten regeling op een geisoleerd kruispunt. Bij een starre afstelling worden de cyclustijd, de effectieve
groenlengtes en de volgorde van deze groenlengtes vast genomen. Het probleem is als een optimalise-
ringsprobleem gemodelleerd en er is met behulp van optimaliseringssoftware een starre regeling bepaald.
Vervolgens is in het daaropvolgende hoofdstuk aan de hand van een praktijkvoorbeeld, waarbij één van
de drukste kruispunten van Eindhoven is genomen, de werkingvan het nieuwe systeem vergeleken met de
huidige regeling door middel van simulatie. De nieuwe regeling gaf grote verbeteringen in vergelijking
met de huidige regeling.
Al in 1958 ontwikkelde Webster een formule, om de gemiddeldewachttijd binnen een starre regeling
te benaderen. Deze wachttijdformule hangt af van de cyclustijd, de aankomst- en vertrekintensiteit en de
effectieve groenlengte. Sinds die tijd is er veel onderzoekgeweest naar andere en betere benaderingsformu-
les, maar tot de dag van vandaag wordt de inmiddels bijna vijftig jaar oude formule nog steeds wereldwijd
gebruikt. In hoofdstuk 4 van dit rapport is een nieuwe benaderingsformule afgeleid. Door middel van simu-
latie van 3000 verschillende gevallen is de werking van dezeformule vergeleken met die van al bestaande
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formules. Hieruit kunnen we concluderen dat de nieuwe formule een grote verbetering is vergeleken met
de huidige benaderingsformules.

Meer en meer wordt tegenwoordig bij het afstellen van verkeerslichten gebruik gemaakt van een dynami-
sche regeling. Bij een dynamische regeling wordt ingespeeld op de aanwezigheid van veel of juist weinig
verkeer. Het verkeer wordt gedetecteerd door middel van detectielussen die bij vrijwel ieder verkeerslicht
onder de weg liggen. De verkeerslichten krijgen alleen maargroen, als er ook daadwerkelijk auto’s staan
te wachten. Vervolgens blijft het verkeerslicht groen, totdat er geen auto’s meer staan te wachten of een
maximale groenlengte is bereikt. In hoofdstuk 6 is een nieuwe methode ontwikkeld om deze maximale
groenlengtes te bepalen. De manier waarop dit nu gebeurt is omslachtig en zeer tijdrovend. De huidige en
nieuwe methode zijn wederom met elkaar vergeleken door simulatie. Hieruit kunnen we concluderen dat
de grootste verbetering niet in het feit zit dat de nieuwe methode goede resultaten oplevert, maar juist in de
zeer korte tijd waarmee de gehele dynamische regeling bepaald wordt.

Wanneer de maximale groenlengtes oneindig groot worden gekozen, dan zal het dynamische systeem re-
sulteren in een ‘exhaustive’ systeem. Bij een exhaustive systeem, zal het verkeerslicht net zolang groen
blijven, als er auto’s aankomen of nog in de rij staan te wachten. In hoofdstuk 5 is dit systeem wiskun-
dig geanalyseerd. Hierbij is een benaderingsmethode ontwikkeld om het gemiddelde en de variantie van
de effectieve groenlengtes te bepalen. De resultaten van deze benadering zijn vergeleken met simulatie-
resultaten om zo een goed beeld te kunnen krijgen van de nauwkeurigheid van de door ons ontwikkelde
methode. De methode levert resultaten op, die hooguit 3% afwijken van de simulatieresultaten.

In de laatste twee hoofdstukken zijn verschillende methoden onderzocht om tussen naburige kruispunten
een groene golf te creëren. Een groene golf is gedefinieerd als een reeks van achtereenvolgens op groen
springende verkeerslichten, die zo op elkaar afgestemd zijn dat het verkeer, bij het aanhouden van een
bepaalde snelheid, op een bepaald traject niet hoeft te stoppen. In hoofdstuk 7 en 8 is de huidige methode
vergeleken met een nieuw ontwikkelde methode. Bij de huidige methode wordt eerst voor het drukste
kruispunt een regeling bepaald, waarna de overige kruispunten hierop worden afgestemd. De nieuwe
methode gaat uit van een integrale aanpak, waarbij op basis van een cyclustijd en groene golf lengte een
regeling voor het hele systeem wordt bepaald. We nemen die cyclustijd en groene golf lengte, waarbij de
som over alle kruispunten van de gewogen gemiddelde wachttijd per kruispunt zo klein mogelijk is. Om
de verschillende systemen met elkaar te kunnen vergelijkenis een simulatie geschreven, die een ringlaan
simuleert. Op basis van simulatieresultaten kunnen we concluderen dat de nieuwe methode in sommige
gevallen tot verbetering zal leiden.

Ieder hoofdstuk is afzonderlijk afgesloten met conclusiesen mogelijk aanbevelingen. Veelal zijn deze con-
clusies getrokken uit simulatieresultaten, waarbij huidige systemen en nieuwe systemen zijn gesimuleerd
en de resultaten met elkaar zijn vergeleken. In alle gevallen zijn de nieuw ontwikkelde methoden als beste
naar voren gekomen.
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