
1 Numerical solution of equilibrium equations: direct

methods

In this chapter we focus on the numerical solution of the equilibrium equations of a Markov
chain with finitely many states.

Consider an irreducible Markov chain with finite state space {0, 1, . . . , N} and transition
probability matrix P with elements pij, i, j = 0, 1, . . . , N . We are interested in calculating
the equilibrium distribution {p0, p1, . . . , pN}, which is the unique solution to the system

pi =
N∑

j=0

pjpji, i = 0, 1, . . . , N, (1)

N∑
i=0

pi = 1, (2)

or in vector-matrix notation, where p denotes the row vector of equilibrium probabilities
and e the column vector with ones,

p = pP, pe = 1. (3)

The equations (1) are called the equilibrium (or balance) equations. There are several
approaches to numerically solve the equilibrium equations. We distinguish between direct
(exact) methods and iterative (approximative) methods. In the next sections we discuss
direct methods; the following chapter treats iterative methods.

1.1 Gaussian elimination

The equilibrium equations (1) may be rewritten in the form

N∑
j=0

pj(pji − δji) = 0, i = 0, 1, . . . , N, (4)

where δij is 1 if i = j and 0 else. To find the probabilities pi, we may apply Gaussian
elimination (cf. [2, 3]): we solve p0 from equation 0 for p0, and eliminate p0 from all other
equations. Then we solve equation 1 for p1 and eliminate p1 from all other equations, and
so on, until we solve equation N − 1 for pN−1. The last equation is redundant and thus

can be omitted (Why?). Hence, if we denote by a
(n)
ij the coefficients in the equations after

n elimination steps, then
a

(0)
ij = pji − δji,

and for n = 0, 1, . . . , N − 1,

a
(n+1)
nj = −

a
(n)
nj

a
(n)
nn

, j > n, (5)

a
(n+1)
ij = a

(n)
ij + a

(n)
in a

(n+1)
nj , i, j > n (6)
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Relation (5) corresponds to the solution of pn from equation n and relation (6) corresponds
to the elimination of pn from all other equations. Then we calculate

vN = 1, vn =
N∑

j=n+1

a
(n+1)
nj vj, n = N − 1, N − 2, . . . , 0.

The vn’s can be interpreted as relative visiting frequencies, i.e., the mean number of the
visits to state n between two successive visits to state N . Normalisation of the vn’s finally
yields the equilibrium probabilities, so

pi =
vi∑N

j=0 vj

, i = 0, 1, . . . , N.

The algorithm is summarized in Figure 1; note that we applied Gaussian elimination
without pivoting.

Algorithm I (Gaussian elimination without pivoting)

0. Set aij = pji − δji for all i and j.

1. Compute for n = 0, 1, . . . , N − 1

anj = −anj

ann

, j > n,

aij = aij + ainanj, i, j > n.

2. Set vN = 1 and compute for n = N − 1, N − 2, . . . , 0

vn =
N∑

j=n+1

anjvj.

3. Compute for i = 0, 1, . . . , N ,

pi =
vi∑N

j=0 vj

.

Figure 1: Gaussian elimination

The number of operations required by this algorithm is O(N3). So it is only practical
when N is not too large, say N ≤ 1000.

We do not apply pivoting, but is this always possible? In other words, in step 1 of the
algorithm we divide by ann; this is feasible if we can prove that ann 6= 0. Further, step
1 involves subtractions, which may cause loss of significant digits. We will show that the
algorithm can be slightly adapted such that it only involves multiplication, division and
addition of nonnegative numbers. As a consequence, the resulting algorithm is numerically
stable.
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1.2 State space reduction and the GTH algorithm

We first show that Gaussian elimination (without pivoting) has an interesting probabilis-

tic interpretation. Let us consider the coefficients a
(1)
ij obtained in the first step of this

procedure. They satisfy

a
(1)
0j = −

a
(0)
0j

a
(0)
00

=
pj0

1− p00

, j = 1, . . . , N,

and

a
(1)
ij = a

(0)
ij + a

(0)
i0 a

(1)
0j

= pji − δji + p0i
pj0

1− p00

= pji + p0i
pj0

1− p00

− δji i, j = 1, . . . , N.

If we set
p1

ji = pji + p0i
pj0

1− p00

, i, j = 1, . . . , N,

then it follows that
a

(1)
ij = p1

ji − δji i, j = 1, . . . , N.

The important observation is that p1
ij can be interpreted as the transition probability

from i to j of the Markov chain restricted to the set of states {1, 2, . . . , N}: it is possible to
directly jump from state j to i (with probability pji), or first via state 0 and then to i (with
probability pj0p0i/(1− p00)). Hence, after the first step, the equations 1, . . . , N correspond
to the equilibrium equations of the Markov chain restricted to {1, 2, . . . , N}. So Gaussian
elimination may be interpreted as state space reduction: we successively eliminate state
1, 2, . . . until only state N remains. By induction we get

a
(n)
ij = pn

ji − δji, i, j = n, . . . , N,

where the pn
ij’s are the transition probabilities of the Markov chain restricted to the states

{n, n + 1, . . . , N}. Since the original Markov chain is irreducible, it follows that the re-
stricted Markov chain is also irreducible, and thus

−a(n)
nn = 1− pn

nn > 0.

Furthermore,

−a(n)
nn = 1− pn

nn =
N∑

j=n+1

pn
nj =

N∑
j=n+1

a
(n)
jn .

So we can replace a(n)
nn in (5) by a column sum, yielding

a
(n+1)
nj =

a
(n)
nj∑N

k=n+1 a
(n)
kn

, j > n,
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and in (6) we can omit the calculation of the diagonal coefficients a
(n+1)
ii . The resulting

version of Gaussian elimination is summarized in Figure 2; it is known as the algorithm of
Grassmann, Taksar and Heyman (GTH), see [1].

Algorithm II (GTH algorithm)

0. Set aij = pji − δji for all i and j.

1. Compute for n = 0, 1, . . . , N − 1

anj =
anj∑N

k=n+1 akn

, j > n,

aij = aij + ainanj, i, j > n, i 6= j.

2. Set vN = 1 and compute for n = N − 1, N − 2, . . . , 0

vn =
N∑

j=n+1

anjvj.

3. Compute for i = 0, 1, . . . , N ,

pi =
vi∑N

j=0 vj

.

Figure 2: GTH algorithm

As we already mentioned, the Gaussian elimination algorithms are only useful when N
is not too large. Many real life applications, however, lead to Markov chains with a very
large number of states. But the number of outgoing transitions from each state is usually
quite small, i.e., P is a sparse matrix. This property is exploited by iterative methods for
the solution of Markov chains; they will be treated in the next chapter.

Remark 1.1
Another way to look at the GTH algorithm is as follows. Denote the transition probabilities
of the Markov chain restricted to {n, n + 1, . . . , N} by p

(n)
ij , i, j ≥ n. To eliminate state n,

we compute the new transition probabilities p
(n+1)
ij from

p
(n+1)
ij = p

(n)
ij + p

(n)
in ·

p
(n)
nj∑N

k=n+1 p
(n)
nk

, i, j > n, i 6= j.

and store the transition probabilities from and to state n, i.e., p
(n)
nj and p

(n)
in . Then, after-

wards, we retrieve pn from the balance equation in state n,

pn

N∑
j=n+1

p
(n)
nj =

N∑
i=n+1

pip
(n)
in .
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The resulting algorithm is summarized below; it is just a reformulation of the algorithm in
Figure 2.

Algorithm III (GTH algorithm)

0. Set pij to the transition probabilities of the Markov chain on {0, 1, . . . , N}.

1. Compute for n = 0, 1, . . . , N − 1

pij = pij + pin ·
pnj∑N

k=n+1 pnk

, i, j > n, i 6= j.

2. Set vN = 1 and compute for n = N − 1, N − 2, . . . , 0

vn =
1∑N

j=n+1 pnj

N∑
j=n+1

vjpjn.

3. Compute for i = 0, 1, . . . , N ,

pi =
vi∑N

j=0 vj

.

Figure 3: GTH algorithm

1.3 Exercises

Exercise 1.
In a communication network data moves from switch to switch in the form of packets
(strings of bits) of constant length. We may think of a switch as a storage device where
packets arrive according to some random process. They are stored in a buffer with a
capacity of say K packets and are transmitted one by one. Time is slotted into intervals of
fixed length (say one micro second). If at the beginning of a slot, there is a packet in the
buffer, it is removed (transmitted) instantaneously; if there is no packet, nothing is done,
even if more packets arrive during the slot. If a packet arrives and the buffer is full, it is
lost.

(i) Model the switch as a Markov chain.

(ii) Write down the equilibrium equations.

(iii) Show how performance characteristics such as, e.g., mean buffer level and fraction of
packets that is lost, can be expressed in terms of the equilibrium probabilities.
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Exercise 2.
Now consider a switch with several finite capacity input buffers (for storage of packets from
different links). In each slot a packet arrives in buffer i with probability pi, and exactly
one packet can be removed (transmitted) from one of the buffers. There are several service
policies for selecting the next packet to be transmitted; e.g., random selection, cyclic
selection, or from the buffer with the largest (smallest) number of packets. An important
performance characteristic is the number of packets that is lost per time unit. For several
service policies,

(i) model the switch as a Markov chain;

(ii) formulate the equilibrium equations;

(iii) and express the fraction of packets that is lost in terms of the equilibrium probabili-
ties.
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