2 Numerical solution of equilibrium equations: iterative methods

In this chapter we treat several iterative methods to solve the equilibrium equations

$$
\begin{equation*}
p=p P, \quad p e=1 \tag{1}
\end{equation*}
$$

where p denotes the row vector of equilibrium probabilities, P the transition probability matrix of an irreducible Markov chain and e the column vector with ones. To analyze their convergence properties, we first need some general properties of nonnegative matrices (see, e.g., [1, [4).

2.1 Nonnegative matrices

Let Q be a nonnegative, irreducible and aperiodic $N \times N$ matrix. The spectral radius $\rho(Q)$ of Q is defined by

$$
\rho(Q)=\max \{|\lambda| ; \lambda \text { is an eigenvalue of } Q\}
$$

From the assumptions on Q it follows that there is a unique and simple eigenvalue $\lambda_{1}(Q)$ with $\left|\lambda_{1}(Q)\right|=\rho(Q)$, even $\lambda_{1}(Q)=\rho(Q)$. The corresponding right-eigenvector, called the Perron-Frobenius or spectral eigenvector, will be denoted by y^{*}. This eigenvector satisfies $y_{i}^{*}>0$ for all i. Further let $\rho_{2}(Q)$ denote the subradius of Q, defined by

$$
\rho_{2}(Q)=\max \{|\lambda| ; \lambda \text { is an eigenvalue of } Q \text { with }|\lambda|<\rho(Q)\} .
$$

Now the following proposition holds.
Proposition 2.1 Let u be an N-column vector with $u \geq 0$ and $u \neq 0$. Then there exist a constant $a>0$ and an integer k, with $0 \leq k<N$, such that

$$
Q^{n} u=a \rho^{n}(Q) y^{*}+O\left(n^{k} \rho_{2}^{n}(Q)\right), \quad(n \rightarrow \infty)
$$

Remark 2.2 The constant k will be unequal to zero only if there are generalized eigenvectors corresponding to the subdominant eigenvalue(s), see e.g. [3].

Remark 2.3 The same proposition is of course valid for $v Q^{n}$ where v is an N-row vector with $v \geq 0$ and $v \neq 0$.

2.2 Matrix powers

A simple method which provides bounds on the equilibrium distribution p is to calculate the matrix powers $P, P^{2}, P^{4}, P^{8}, \ldots$ until $P^{2^{n}}$ is nearly a constant matrix. If P is aperiodic, then $\left(P^{2^{n}}\right)_{i j}$ converges to p_{j} and the bounds are $\max _{i}\left(P^{2^{n}}\right)_{i j} \downarrow p_{j}$ and $\min _{i}\left(P^{2^{n}}\right)_{i j} \uparrow p_{j}$ (see p. 173 in [2]). Note that we can always achieve that P is aperiodic by the transformation $\widetilde{P}=\alpha I+(1-\alpha) P$, where $0<\alpha<1$ and I denotes the identity matrix. This transformation leaves the equilibrium distribution intact (cf. [5]).

This method is impractical if N is large, since $P^{2^{n}}$ becomes a dense matrix, so each iteration will require $O\left(N^{3}\right)$ operations.

2.3 Power method

The most popular iterative method, which exploits the sparsity of P, is the power method (see, e.g., [7]). This method is described in Figure 1.

Power method

Choose an initial vector $p^{(0)} \geq 0, p^{(0)} \neq 0$, and compute for $n=0,1, \ldots$

$$
\begin{equation*}
p^{(n+1)}=p^{(n)} P, \tag{2}
\end{equation*}
$$

until $p^{(n+1)}-p^{(n)}$ is sufficiently small.

Figure 1: Power method

The stopping criterion is based on the difference between $p^{(n+1)}$ and $p^{(n)}$. For example, the stopping criterion can be taken to be

$$
\sum_{i=0}^{N}\left|p_{i}^{(n+1)}-p_{i}^{(n)}\right| \leq \epsilon \sum_{i=0}^{N}\left|p_{i}^{(n)}\right|
$$

where ϵ is some small positive number. When the method has converged, an approximation of p is obtained by normalization of the final $p^{(n)}$. Note that, if $p^{(0)}$ is a probability distribution, then $p^{(n)}$ is the probability distribution of the Markov chain P after n transitions (given that the initial distribution is $p^{(0)}$).

If P is aperiodic (which can always be achieved, see Exercise 22), then this method converges geometrically. From Proposition 2.1 it follows that for some constant $a>0$ and nonnegative integer $k<N$,

$$
p^{(n)}=p^{(0)} P^{n}=a p+O\left(n^{k} \rho_{2}^{n}(P)\right), \quad(n \rightarrow \infty)
$$

Hence the rate of convergence is determined by the subradius of P.

Example 2.4

Consider the periodic Markov chain with transition probability matrix

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

When we start with $p^{(0)}=(0,1)$, then we obtain the alternating sequence

$$
p^{(1)}=(1,0), \quad p^{(2)}=(0,1), \quad p^{(3)}=(1,0), \ldots
$$

So there is no convergence. But for the transformed matrix

$$
\widetilde{P}=\frac{1}{2} I+\frac{1}{2} P=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

we have convergence after one iteration.

Example 2.5

Consider the Markov chain with transition probability matrix

$$
P=\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right) .
$$

The eigenvalues of P are given by $\sigma_{1}=1$ and $\sigma_{2}=1 / 4$, with corresponding row eigenvectors $x_{1}=(1,2)$ and $x_{2}=(1,-1)$. When we start with the initial distribution

$$
p^{(0)}=(0,1)=\frac{1}{3} x_{1}-\frac{1}{3} x_{2},
$$

then for $n=0,1, \ldots$

$$
p^{(n)}=\frac{1}{3} \sigma_{1}^{n} x_{1}-\frac{1}{3} \sigma_{2}^{n} x_{2}=\frac{1}{3}(1,2)-\frac{1}{3}\left(\frac{1}{4}\right)^{n}(1,-1) .
$$

Hence $p^{(n)}$ converges geometrically fast to the equilibrium distribution $p=(1 / 3,2 / 3)$.

2.4 Gauss-Seidel variant of the Power method

The power method recursively computes the components of $p^{(n+1)}$ from

$$
p_{i}^{(n+1)}=\sum_{j=0}^{N} p_{j}^{(n)} p_{j i}, \quad i=0,1, \ldots, N
$$

The Gauss-Seidel approach uses for the computation of $p_{i}^{(n+1)}$ the new estimates $p_{j}^{(n+1)}$ for $j \leq i$. Then the recursive scheme becomes

$$
p_{i}^{(n+1)}=\sum_{j=0}^{i} p_{j}^{(n+1)} p_{j i}+\sum_{j=i+1}^{N} p_{j}^{(n)} p_{j i}, \quad i=0,1, \ldots, N .
$$

In vector-matrix notation this reads

$$
p^{(n+1)}=p^{(n+1)} P_{U}+p^{(n)} P_{L}
$$

with P_{U} the upper triangular matrix with the diagonal of P, and P_{L} the lower diagonal matrix without the diagonal of P. This can be rewritten as

$$
\begin{equation*}
p^{(n+1)}=p^{(n)} P_{g s}, \tag{3}
\end{equation*}
$$

with

$$
P_{g s}=P_{L}\left(I-P_{U}\right)^{-1} .
$$

Note that the inverse of $I-P_{U}$ exists, since P_{U} is a transient Markov chain. Since $P_{g s}$ is a non-negative matrix with spectral radius 1 (Verify!), the convergence properties of scheme (3) can be analyzed along the same lines as scheme (2). The structure of $P_{g s}$, however, may differ from the structure of P. Clearly, $P_{g s}$ is never irreducible (the first row has only zeros), and it may be periodic even if P is not.

In practice the convergence of the Gauss-Seidel scheme is usually much faster than the Power method.

Example 2.6

Consider the Markov chain in Example 2.5 again. The Gauss-Seidel scheme becomes

$$
\begin{aligned}
p_{0}^{(n+1)} & =p_{0}^{(n+1)} \frac{1}{2}+p_{1}^{(n)} \frac{1}{4}, \\
p_{1}^{(n+1)} & =p_{0}^{(n+1)} \frac{1}{2}+p_{1}^{(n+1)} \frac{3}{4},
\end{aligned}
$$

which can be rewritten as

$$
\begin{aligned}
& p_{0}^{(n+1)}=p_{1}^{(n)} \frac{1}{2}, \\
& p_{1}^{(n+1)}=p_{1}^{(n)} .
\end{aligned}
$$

Hence

$$
P_{g s}=\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{2} & 1
\end{array}\right) .
$$

Note that $P_{g s}$ is not stochastic. Its eigenvalues are given by $\sigma_{1}=1$ and $\sigma_{2}=0$. When we start with the initial distribution $p^{(0)}=(0,1)$, then $p^{(1)}=(1 / 2,1), p^{(2)}=(1 / 2,1), \ldots$. So convergence is reached after one iteration.

Remark 2.7 Another variant of the Power method is the method of successive overrelaxation, see e.g. [6]. Here the components $p_{i}^{(n+1)}$ are recursively computed from

$$
p_{i}^{(n+1)}=(1-\omega) p_{i}^{(n)}+\omega\left(\sum_{j=0}^{i-1} a_{i j} p_{j}^{(n+1)}+\sum_{j=i+1}^{N} a_{i j} p_{j}^{(n)}\right), \quad i=0,1, \ldots, N
$$

where

$$
a_{i j}=\frac{p_{j i}}{1-p_{i i}}, \quad i, j=0,1, \ldots, N, \quad j \neq i
$$

and ω is the relaxation factor. Usually $1 \leq \omega \leq 2$. The iteration method with $\omega=1$ is the Gauss-Seidel method.

2.5 Iterative bounds

In this section we provide another iteration scheme which also produces bounds on the equilibrium distribution. This scheme is obtained by reformulating (1) as a contraction scheme (see [8]).

Define

$$
v_{i}=\frac{p_{i}}{p_{0}}, \quad i=0,1, \ldots, N .
$$

Then $v_{0}=1$ and (1) becomes

$$
\begin{equation*}
v_{i}=p_{0 i}+\sum_{j=1}^{N} v_{j} p_{j i}, \quad i=1, \ldots, N \tag{4}
\end{equation*}
$$

Note that v_{i} is the expected number of visits to state i between two successive visits to state 0 . Writing $r_{i}=p_{0 i}$ and $q_{i j}=p_{j i}$, equation (4) turns into

$$
\begin{equation*}
v_{i}=r_{i}+\sum_{j=1}^{N} q_{i j} v_{j}, \quad i=1, \ldots, N \tag{5}
\end{equation*}
$$

This set of equations is contractive (cf. Exercise 3). To see this, note that since P is irreducible, the system ultimately leaves the set of states $\{1,2, \ldots, N\}$, whence $Q^{n} \rightarrow 0$ and thus $\rho(Q)<1$. Therefore the solution v can be approximated recursively by

$$
\begin{equation*}
v^{(n+1)}=r+Q v^{(n)} \tag{6}
\end{equation*}
$$

where $v^{(n)}$ and r are the N-column vectors with elements $v_{i}^{(n)}$ and $r_{i}, i=1, \ldots, N$. Once v is known, p can be recovered via

$$
p_{i}=\frac{v_{i}}{\sum_{j=0}^{N} v_{j}} \quad i=0,1, \ldots, N
$$

and from lower and upper bounds on v,

$$
\underline{v}_{i} \leq v_{i} \leq \bar{v}_{i}, \quad i=0,1, \ldots, N
$$

bounds on p are determined via

$$
\frac{\underline{v}_{i}}{\sum_{j=0}^{N} \bar{v}_{j}} \leq p_{i} \leq \frac{\bar{v}_{i}}{\sum_{j=0}^{N} \underline{v}_{j}}, \quad i=0,1, \ldots, N
$$

In the remainder of this section we will derive the bounds on v. It will be assumed that Q is irreducible and aperiodic. The following two examples show that this is not an immediate consequence of the assumption that P is irreducible and aperiodic.

Example 2.8

The matrix P defined by

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{4} & 0 & \frac{3}{4}
\end{array}\right)
$$

is irreducible, but the corresponding Q,

$$
Q=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{3}{4}
\end{array}\right)
$$

is not irreducible.

Example 2.9

The matrix P defined by

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{4} & \frac{3}{4} & 0
\end{array}\right)
$$

is aperiodic, but the corresponding Q,

$$
Q=\left(\begin{array}{cc}
0 & \frac{3}{4} \\
\frac{1}{2} & 0
\end{array}\right)
$$

is periodic.

For the difference between $v^{(n+1)}$ and $v^{(n)}$ it follows that

$$
v^{(n+1)}-v^{(n)}=r+Q v^{(n)}-r-Q v^{(n-1)}=Q\left(v^{(n)}-v^{(n-1)}\right)=\cdots=Q^{n}\left(v^{(1)}-v^{(0)}\right) .
$$

Hence, when we take as initial vector $v^{(0)}=0$, then $v^{(1)}-v^{(0)}=r \geq 0, r \neq 0$, and thus $v^{(n+1)}-v^{(n)} \geq 0$ for all n. Further, by Proposition 2.1),

$$
\begin{equation*}
v^{(n+1)}-v^{(n)}=a \rho^{n}(Q) y^{*}+O\left(n^{k} \rho_{2}^{n}(Q)\right), \quad(n \rightarrow \infty) \tag{7}
\end{equation*}
$$

where a is some positive constant and y^{*} is the positive right-eigenvector corresponding to the largest eigenvalue $\rho(Q)$ of Q. So $v^{(n+1)}-v^{(n)}>0$ for n sufficiently large (and of course, once the difference is positive, it remains positive in all subsequent iterations).

Now define α_{n} and β_{n} by (if $v^{(n)}-v^{(n-1)}>0$)

$$
\alpha_{n}=\min _{i} \frac{v_{i}^{(n+1)}-v_{i}^{(n)}}{v_{i}^{(n)}-v_{i}^{(n-1)}}, \quad \beta_{n}=\max _{i} \frac{v_{i}^{(n+1)}-v_{i}^{(n)}}{v_{i}^{(n)}-v_{i}^{(n-1)}} .
$$

The numbers α_{n} and β_{n} are monotonically converging lower- and upperbounds on $\rho(Q)$,

$$
\alpha_{n} \uparrow \rho(Q), \quad \beta_{n} \downarrow \rho(Q), \quad(n \rightarrow \infty) .
$$

The monotonicity $\alpha_{n+1} \geq \alpha_{n}$ follows from

$$
v^{(n+2)}-v^{(n+1)}=Q\left(v^{(n+1)}-v^{(n)}\right) \geq Q \alpha_{n}\left(v^{(n)}-v^{(n-1)}\right)=\alpha_{n}\left(v^{(n+1)}-v^{(n)}\right) .
$$

Similarly $\beta_{n+1} \leq \beta_{n}$ and obviously $\alpha_{n} \leq \beta_{n}$. Further, relation (7) implies that

$$
\begin{equation*}
\frac{v_{i}^{(n+2)}-v_{i}^{(n+1)}}{v_{i}^{(n+1)}-v_{i}^{(n)}}=\rho(Q)+O\left(n^{k}\left(\frac{\rho_{2}(Q)}{\rho(Q)}\right)^{n}\right), \quad(n \rightarrow \infty) \tag{8}
\end{equation*}
$$

from which we can conclude that α_{n} and β_{n} converge to $\rho(Q)$.

So for n sufficiently large $\beta_{n}<1$. In this case we can derive the following upperbound for v. Clearly

$$
\begin{aligned}
v & =v^{(n+1)}+\left(v^{(n+2)}-v^{(n+1)}\right)+\left(v^{(n+3)}-v^{(n+2)}\right)+\cdots \\
& =v^{(n+1)}+\sum_{k=1}^{\infty}\left(v^{(n+k+1)}-v^{(n+k)}\right)
\end{aligned}
$$

For $k \geq 1$ we have, by using that $\beta_{n+1} \leq \beta_{n}$,

$$
\begin{aligned}
v^{(n+k+1)}-v^{(n+k)} & \leq \beta_{n+k}\left(v^{(n+k)}-v^{(n+k-1)}\right) \\
& \leq \beta_{n}\left(v^{(n+k)}-v^{(n+k-1)}\right) \\
& \vdots \\
& \leq \beta_{n}^{k}\left(v^{(n+1)}-v^{(n)}\right)
\end{aligned}
$$

Hence,

$$
v \leq v^{(n+1)}+\sum_{k=1}^{\infty} \beta_{n}^{k}\left(v^{(n+1)}-v^{(n)}\right)=v^{(n+1)}+\frac{\beta_{n}}{1-\beta_{n}}\left(v^{(n+1)}-v^{(n)}\right) .
$$

Similarly we can derive the following lowerbound,

$$
v \geq v^{(n+1)}+\frac{\alpha_{n}}{1-\alpha_{n}}\left(v^{(n+1)}-v^{(n)}\right) .
$$

These bounds are easy to implement: while executing scheme (6), α_{n} and β_{n} can be computed and the bounds become better if α_{n} and β_{n} get closer to $\rho(Q)$. From the relation $v-v^{(n+1)}=Q\left(v-v^{(n)}\right)$ we immediately see that $v^{(n)}$ converges to v with rate $\rho(Q)$. But the power of scheme (6) is not determined by the rate of convergence of $v^{(n)}$, but by the rate of convergence of the bounds. From (8) it is readily verified that the difference between the upper- and lowerbound converges to 0 with rate $\rho_{2}(Q)$. The contraction scheme with bounds is summarized in Figure 2. The bounds used in this scheme can be computed as soon as $v^{(n)}-v^{(n-1)}$ is strictly positive and β_{n} drops below 1 .

Remark 2.10

The method (i.e., the number of iterations required) is sensitive to the choice of state 0 . Choosing state 0 as a likely state is strongly recommended.

Remark 2.11

Let P denote the transition probability matrix of a Markov chain, and let r be the reward vector and β the discount factor. Then the total discounted reward vector v_{β} can be determined by successive iterations,

$$
v^{(n+1)}=r+\beta P v^{(n)}, \quad n=0,1,2, \ldots,
$$

and in each iteration,

$$
v^{(n+1)}+\frac{\beta}{1-\beta} \min _{i}\left(v_{i}^{(n+1)}-v_{i}^{(n)}\right) e \leq v \leq v^{(n+1)}+\frac{\beta}{1-\beta} \max _{i}\left(v_{i}^{(n+1)}-v_{i}^{(n)}\right) e,
$$

where e is the all one vector. The derivation of these bounds for v_{β} is very similar to the one for v (Verify!).

ITERATIVE BOUNDS

Set $v^{(0)}=0$ and compute for $n=0,1, \ldots$

$$
v^{(n+1)}=r+Q v^{(n)}
$$

until $\bar{v}^{(n+1)}-\underline{v}^{(n+1)}$ is sufficiently small, where

$$
\begin{aligned}
& \bar{v}^{(n+1)}=v^{(n+1)}+\frac{\beta_{n}}{1-\beta_{n}}\left(v^{(n+1)}-v^{(n)}\right) \\
& \underline{v}^{(n+1)}=v^{(n+1)}+\frac{\alpha_{n}}{1-\alpha_{n}}\left(v^{(n+1)}-v^{(n)}\right) .
\end{aligned}
$$

Then lower- and upperbounds for the equilibrium distribution p are obtained from the last $\underline{v}^{(n)}$ and $\bar{v}^{(n)}$ via

$$
\frac{\underline{v}_{i}^{(n)}}{\sum_{j=0}^{N} \bar{v}_{j}^{(n)}} \leq p_{i} \leq \frac{\bar{v}_{i}^{(n)}}{\sum_{j=0}^{N} \underline{v}_{j}^{(n)}}, \quad i=0,1, \ldots, N
$$

where by convention $\bar{v}_{0}^{(n)}=\underline{v}_{0}^{(n)}=1$.

Figure 2: Iterative bounds

2.6 Gauss-Seidel variant of the iterative bounds

The set of equations (5) can of course also be solved by Gauss-Seidel iteration. Then the recursive scheme becomes

$$
v_{i}^{(n+1)}=r_{i}+\sum_{j=1}^{i} q_{i j} v_{j}^{(n+1)}+\sum_{j=i+1}^{N} q_{i j} v_{j}^{(n)}, \quad i=1, \ldots, N .
$$

In vector-matrix notation this reads as

$$
v^{(n+1)}=r+Q_{L} v^{(n+1)}+Q_{U} v^{(n)}
$$

where Q_{L} is the lower triangular matrix with the diagonal, and Q_{U} the upper triangular matrix without the diagonal of Q. This can be rewritten as

$$
\begin{equation*}
v^{(n+1)}=r_{g s}+Q_{g s} v^{(n)} \tag{9}
\end{equation*}
$$

with $r_{g s}=\left(I-Q_{L}\right)^{-1} r$ and $Q_{g s}=\left(I-Q_{L}\right)^{-1} Q_{U}$. From (9) we see that the Gauss-Seidel variant can be analyzed along the same lines as scheme (5). Thus we may conclude that the convergence behavior of Gauss-Seidel iteration is determined by the spectral radius and even more by the subradius of $Q_{g s}$. For the spectral radius we know that, if $\rho(Q)<1$, then $\rho\left(Q_{g s}\right) \leq \rho(Q)$ (see, e.g., p. 70 in [7]). For the subradius the situation is more complicated: the subradius of $Q_{g s}$ may be less, but also greater than the subradius of Q. In practice, however, usually $\rho_{2}\left(Q_{g s}\right)<\rho_{2}(Q)$.

2.7 Exercises

EXERCISE 1.

Consider a Markov chain with transition probability matrix P. Define

$$
m_{j}^{n}=\min _{i}\left(P^{n}\right)_{i j}, \quad M_{j}^{n}=\max _{i}\left(P^{n}\right)_{i j} .
$$

Prove that for all n,

$$
m_{j}^{n} \leq m_{j}^{n+1} \leq M_{j}^{n+1} \leq M_{j}^{n} .
$$

ExERCISE 2.

Consider an irreducible Markov chain with transition probability matrix P. Define

$$
\widetilde{P}=\alpha I+(1-\alpha) P,
$$

where $0<\alpha<1$ and I denotes the identity matrix.
(i) Show that \widetilde{P} is aperiodic.
(ii) Show that P and \widetilde{P} have the same equilibrium distribution.

ExERCISE 3.

Let Q be an irreducible aperiodic non-negative matrix and let y^{*} denote the positive righteigenvector corresponding to the maximal eigenvalue of Q (see Proposition 2.1). Define the following norm,

$$
\|x\|_{y^{*}}=\max _{i} \frac{\left|x_{i}\right|}{y_{i}^{*}} .
$$

(i) Show that for all x we have $\left|x_{i}\right| \leq y_{i}^{*}\|x\|_{y^{*}}$ for each i.
(ii) Prove that $\|Q x\|_{y^{*}} \leq \rho(Q)\|x\|_{y^{*}}$ for all vectors x.

Hence, if $\rho(Q)<1$, then Q is a contraction.

References

[1] A. Berman, R.J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979.
[2] J.L. Doob, Stochastic processes, Wiley, New York, 1953.
[3] M.C. Pease, Methods of matrix algebra, Academic Press, New York, 1965.
[4] E. Seneta, Nonnegative matrices and Markov chains, 2nd edition, Springer-Verlag, Berlin, 1980.
[5] P.J. Schweitzer, Iterative solution of the functional equations of undiscounted Markov renewal programming, J. Math. Anal. Appl., 34 (1971), pp. 495-501.
[6] H.C. Tisms, Stochastic modelling and analysis: a computational approach, John Wiley \& Sons, Chichester, 1990.
[7] R. Varga, Matrix iterative analysis, Prentice Hall, Englewood Cliffs, 1962.
[8] J. van der Wal, P.J. Schweitzer, Iterative bounds on the equilibrium distribution of a finite Markov chain, Prob. Eng. Inf. Sci., 1 (1987), pp. 117-131.

