2 Numerical solution of equilibrium equations: itera-
tive methods

In this chapter we treat several iterative methods to solve the equilibrium equations

p=pP,  pe=1, (1)

where p denotes the row vector of equilibrium probabilities, P the transition probability
matrix of an irreducible Markov chain and e the column vector with ones. To analyze their
convergence properties, we first need some general properties of nonnegative matrices (see,

e.g., [1,14]).

2.1 Nonnegative matrices

Let @ be a nonnegative, irreducible and aperiodic N x N matrix. The spectral radius p(Q)
of @) is defined by
p(Q) = max{|\|; \ is an eigenvalue of Q}.

From the assumptions on @) it follows that there is a unique and simple eigenvalue A;(Q)
with [A1(Q)] = p(Q), even A\ (Q) = p(Q). The corresponding right-eigenvector, called the
Perron-Frobenius or spectral eigenvector, will be denoted by y*. This eigenvector satisfies
yr > 0 for all . Further let po(Q) denote the subradius of @, defined by

p2(Q) = max{|\[; \ is an eigenvalue of @ with || < p(Q)}.
Now the following proposition holds.

Proposition 2.1 Let u be an N-column vector with u > 0 and uw # 0. Then there exist a
constant a > 0 and an integer k, with 0 < k < N, such that

Q"u=ap"(Q)y" +O0(n"p5(Q)),  (n— o).

Remark 2.2 The constant k£ will be unequal to zero only if there are generalized eigen-
vectors corresponding to the subdominant eigenvalue(s), see e.g. [3].

Remark 2.3 The same proposition is of course valid for vQ™ where v is an N-row vector
with v > 0 and v # 0.

2.2 Matrix powers

A simple method which provides bounds on the equilibrium distribution p is to calculate
the matrix powers P, P2, P* P8, ... until P?" is nearly a constant matrix. If P is aperiodic,
then (P?");; converges to p; and the bounds are max;(P?");; | p; and min;(P?");; T p; (see
p. 173 in [2]). Note that we can always achieve that P is aperiodic by the transformation
P = al+(1—a)P, where 0 < a < 1 and I denotes the identity matrix. This transformation
leaves the equilibrium distribution intact (cf. [5]).

This method is impractical if N is large, since P?" becomes a dense matrix, so each
iteration will require O(N?) operations.



2.3 Power method

The most popular iterative method, which exploits the sparsity of P, is the power method
(see, e.g., [T]). This method is described in Figure [1]

POWER METHOD

Choose an initial vector p® >0, p©® £ 0, and compute for n =0, 1, ...
p(n+1) — p('ﬂ)p7 (2)

until p( ) — p( is sufficiently small.

Figure 1: Power method

The stopping criterion is based on the difference between p*+ and p™. For example,
the stopping criterion can be taken to be

N ) () N )
S =M < e ",
=0 =0

where € is some small positive number. When the method has converged, an approximation
of p is obtained by normalization of the final p(™). Note that, if p(?) is a probability distri-
bution, then p(™ is the probability distribution of the Markov chain P after n transitions
(given that the initial distribution is p(®)).

If P is aperiodic (which can always be achieved, see Exercise , then this method
converges geometrically. From Proposition it follows that for some constant a > 0 and
nonnegative integer k < N,

p™ =pOP" =ap+ O p5(P)),  (n— o0).
Hence the rate of convergence is determined by the subradius of P.

Example 2.4
Consider the periodic Markov chain with transition probability matrix

0 1
p- ( 01 ) .
When we start with p(® = (0, 1), then we obtain the alternating sequence
P =(1,0), p®=(0,1), p® =(1,0),...
So there is no convergence. But for the transformed matrix

)

11
P=-I+-pP=
2 T3 (

NN |
NN |~

we have convergence after one iteration.



Example 2.5
Consider the Markov chain with transition probability matrix

P=(1 1)

The eigenvalues of P are given by o1 = 1 and 09 = 1/4, with corresponding row eigenvectors
x1 = (1,2) and 29 = (1, —1). When we start with the initial distribution
1 1

P = (0,1) = gﬂh - §$2,

NN
QO [

then for n =0,1,...

I 1 1 1 /1\"
p():301x1—302x2:3(1,2)—3<4> (1,—1).

Hence p(™ converges geometrically fast to the equilibrium distribution p = (1/3,2/3).

2.4 Gauss-Seidel variant of the Power method

(n+1)

The power method recursively computes the components of p from

pmty ijn)pﬂ, i=0,1,...,N.

+1) (n+1

the new estimates p;

)
i for

The Gauss-Seidel approach uses for the computation of p§”
7 < 1. Then the recursive scheme becomes

n+1 Z (n+1)pﬂ+ Z p] p]u ZZO,l,,N

Jj=i+1

In vector-matrix notation this reads
p(n+l) _ p(n+l)PU + P(H)PL,

with Py the upper triangular matrix with the diagonal of P, and P, the lower diagonal
matrix without the diagonal of P. This can be rewritten as

p(n+1) (n)Pg57 (3)

with
Py =P (I—Py)"!

Note that the inverse of I — Py exists, since Py is a transient Markov chain. Since Py, is a
non-negative matrix with spectral radius 1 (Verify!), the convergence properties of scheme
can be analyzed along the same lines as scheme . The structure of P, however,
may differ from the structure of P. Clearly, P, is never irreducible (the first row has only
zeros), and it may be periodic even if P is not.

In practice the convergence of the Gauss-Seidel scheme is usually much faster than the
Power method.



Example 2.6
Consider the Markov chain in Example [2.5| again. The Gauss-Seidel scheme becomes

nt1) _ il ol
Do Do 5 + pi 1
(nt1) _ mtl | mr)3
D1 Do 5 + D1 1
which can be rewritten as
(1) _ (1l
0 D1 27
p =

Hence

0 0
P = .
’ <§1>

Note that P, is not stochastic. Its eigenvalues are given by o, = 1 and o9 = 0. When we
start with the initial distribution p(® = (0,1), then p® = (1/2,1), p® = (1/2,1),.... So
convergence is reached after one iteration.

Remark 2.7 Another variant of the Power method is the method of successive overrelax-

ation, see e.g. [6]. Here the components pf.”“) are recursively computed from
) i—1 ) N
pY = o t o [ a2 | i=0.1. N,
Jj=0 J=i+1
where
Pji

aij: ) ivjzoylv"wN? j#%
1 —pii
and w is the relaxation factor. Usually 1 < w < 2. The iteration method with w = 1 is the

Gauss-Seidel method.

2.5 Iterative bounds

In this section we provide another iteration scheme which also produces bounds on the
equilibrium distribution. This scheme is obtained by reformulating as a contraction
scheme (see [8]).

Define

w=" i=01,...,N.
Do
Then vy = 1 and becomes
N
Vi =poi+ Y _vps,  i=1,...,N. (4)
j=1



Note that v; is the expected number of visits to state ¢ between two successive visits to
state 0. Writing r; = p; and ¢;; = pj;, equation turns into

N
Ui:n—i-z%'jvja i=1...,N (5)

j=1

This set of equations is contractive (cf. Exercise [3). To see this, note that since P is
irreducible, the system ultimately leaves the set of states {1,2,..., N}, whence Q" — 0
and thus p(Q) < 1. Therefore the solution v can be approximated recursively by

™) = 4 Qv (6)
where v and r are the N-column vectors with elements UZ(") and r;, i =1,...,N. Once
v is known, p can be recovered via

Vj .
Di= =N 1=0,1,..., N,
Zj‘vzo Uj

and from lower and upper bounds on v,

v, < v; <, 1=0,1,...,N,

bounds on p are determined via

v, v; )
N = szg N 3 Z:O,l,...,N.
=0 Uj j=0Y;

In the remainder of this section we will derive the bounds on v. It will be assumed
that @ is irreducible and aperiodic. The following two examples show that this is not an
immediate consequence of the assumption that P is irreducible and aperiodic.

Example 2.8
The matrix P defined by

11
U 3 3
P=|3 350
3
109
is irreducible, but the corresponding @),
1
s 0
o (5 1)
0 %

is not irreducible.



Example 2.9
The matrix P defined by

P =

== O
=l O Nl
O NN =

is aperiodic, but the corresponding @),

-

For the difference between v and v™ it follows that

= O

(@I NV
~—

is periodic.

) ) — Q™ o~ Qo) = Qo™ — D) = . = QR (D) — ).

Hence, when we take as initial vector v(¥) = 0, then v —v©® = >0, r # 0, and thus
v+ — 9™ >0 for all n. Further, by Proposition (2.1,

U(n+1) . U(n) _ apn(Q)y* + O(nkpg(Q»’ (n — OO), (7)

where a is some positive constant and y* is the positive right-eigenvector corresponding to
the largest eigenvalue p(Q) of Q. So v+ —v(™ > 0 for n sufficiently large (and of course,
once the difference is positive, it remains positive in all subsequent iterations).

Now define a,, and 3, by (if v — v~V > 0)

' ,Ui(nJrl) _ Ul(n) n+1) (n)
Oy, = min —
U;

i n) . Ul(n—l) ’

n) (n—1) °

v
B, = max —
tw =

The numbers «,, and /3, are monotonically converging lower- and upperbounds on p(Q),

an 1p(Q),  Bulp@),  (n—o00)
The monotonicity a1 > «, follows from
02 — ) — Q™) — M) > Qa, (V™ — v V) =, (VD — M),
Similarly 3,1 < 3, and obviously «,, < 3,. Further, relation implies that

Uz'(nH) _ 2}(n+1)

S =@ +0 (i (2] ). 00 )

from which we can conclude that «,, and (3, converge to p(Q).

i



So for n sufficiently large (3, < 1. In this case we can derive the following upperbound
for v. Clearly

v = U(n-i—l) + (v(n+2) . U(n—i—l)) + (U(n+3) . U(n+2)) 4.
= ot 4 i(v(mkﬂ) — U(n—i—k))'
k=1

For k > 1 we have, by using that 8,.1 < 3,,
PR k) g (k) g k1))

; 6n<v(n+k) . v(n+k—1))

B — o)

Hence,

v < v(n+1) + i Br]j,(fv(n+1) . U(n)) — ,U(nJrl) + 1’@’16 (,U(nJrl) . ,U(n)).
k=1 T Mn

Similarly we can derive the following lowerbound,
Qp

v > U(n+1) 4+ —"

(U(n+1) — v(")).

These bounds are easy to implement: while executing scheme @, a, and (, can be
computed and the bounds become better if «,, and (3, get closer to p(@Q). From the relation
v — o) = Qv — v™) we immediately see that v(™ converges to v with rate p(Q). But
the power of scheme @ is not determined by the rate of convergence of v(™, but by the
rate of convergence of the bounds. From it is readily verified that the difference between
the upper- and lowerbound converges to 0 with rate ps(Q). The contraction scheme with
bounds is summarized in Figure 2 The bounds used in this scheme can be computed as
soon as v(™ — v~ is strictly positive and 3, drops below 1.

Remark 2.10
The method (i.e., the number of iterations required) is sensitive to the choice of state 0.
Choosing state 0 as a likely state is strongly recommended.

Remark 2.11

Let P denote the transition probability matrix of a Markov chain, and let r be the reward
vector and [ the discount factor. Then the total discounted reward vector vz can be
determined by successive iterations,

v+ = 4 gPy™, n=012..,

and in each iteration,

v(”+1) + B m'in(vz(nﬂ) —U,En))e <v< U(n+1) + p maX(vi(nH) _Uz(n))a
1 — ﬂ 7 1 —_ ﬁ 7
where e is the all one vector. The derivation of these bounds for vs is very similar to the
one for v (Verify!).



ITERATIVE BOUNDS

Set v(® = 0 and compute for n =0,1,. ..
) = 4 Qv

until 7Y — (D) ig sufficiently small, where

U(n+1) _ U(n—l—l) + - ?nﬁn (U(n-i—l) _ U(n))
D) = () Qn (U(n+1) _ U(n))_
1—a,

Then lower- and upperbounds for the equilibrium distribution p are obtained from the last
) and 7™ via

v
() 7t
Lgngzin, i:O,l,...,N,
Xovy” S
where by convention 7{"” = v{" = 1.

Figure 2: Tterative bounds

2.6 Gauss-Seidel variant of the iterative bounds

The set of equations can of course also be solved by Gauss-Seidel iteration. Then the
recursive scheme becomes

i N
v,(nﬂ) =1+ Qijvg('nﬂ) + > Qij“j(‘n), i=1...,N.
j=1 J=it+l

In vector-matrix notation this reads as
U(n-l—l) =+ QLv(n+1) + QU’U(n),

where (), is the lower triangular matrix with the diagonal, and @)y the upper triangular
matrix without the diagonal of (). This can be rewritten as

pntl) — Tgs + Qgsv(”), (9)

with rgs = (I — Qr)'r and Qs = (I — Q1) 'Qu. From (9) we see that the Gauss-Seidel
variant can be analyzed along the same lines as scheme (). Thus we may conclude that
the convergence behavior of Gauss-Seidel iteration is determined by the spectral radius and
even more by the subradius of Q4. For the spectral radius we know that, if p(Q)) < 1, then
p(Qgs) < p(Q) (see, e.g., p. 701in [7]). For the subradius the situation is more complicated:
the subradius of Q)4s may be less, but also greater than the subradius of ). In practice,

however, usually p2(Q,s) < p2(Q).



2.7 Exercises
[EXERCISE 1.

Consider a Markov chain with transition probability matrix P. Define

mj = miin(P“)ij, M} = miaX(P")ij.

Prove that for all n,

n+1 n+1 n

[EXERCISE 2.]

Consider an irreducible Markov chain with transition probability matrix P. Define

P=al+(1-a)P,
where 0 < o < 1 and I denotes the identity matrix.
(i) Show that P is aperiodic.

(ii) Show that P and P have the same equilibrium distribution.

[EXERCISE 3.]
Let @ be an irreducible aperiodic non-negative matrix and let y* denote the positive right-
eigenvector corresponding to the maximal eigenvalue of @) (see Proposition . Define
the following norm,

]

yr = max -
Yi

|

(i) Show that for all x we have |z;| < y}||z

v < p(Q)]|x

Hence, if p(Q) < 1, then @ is a contraction.

4+ for each 1.

(ii) Prove that ||Qx

y+ for all vectors z.
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