
2 Numerical solution of equilibrium equations: itera-

tive methods

In this chapter we treat several iterative methods to solve the equilibrium equations

p = pP, pe = 1, (1)

where p denotes the row vector of equilibrium probabilities, P the transition probability
matrix of an irreducible Markov chain and e the column vector with ones. To analyze their
convergence properties, we first need some general properties of nonnegative matrices (see,
e.g., [1, 4]).

2.1 Nonnegative matrices

Let Q be a nonnegative, irreducible and aperiodic N×N matrix. The spectral radius ρ(Q)
of Q is defined by

ρ(Q) = max{|λ|; λ is an eigenvalue of Q}.
From the assumptions on Q it follows that there is a unique and simple eigenvalue λ1(Q)
with |λ1(Q)| = ρ(Q), even λ1(Q) = ρ(Q). The corresponding right-eigenvector, called the
Perron-Frobenius or spectral eigenvector, will be denoted by y∗. This eigenvector satisfies
y∗i > 0 for all i. Further let ρ2(Q) denote the subradius of Q, defined by

ρ2(Q) = max{|λ|; λ is an eigenvalue of Q with |λ| < ρ(Q)}.

Now the following proposition holds.

Proposition 2.1 Let u be an N-column vector with u ≥ 0 and u 6= 0. Then there exist a
constant a > 0 and an integer k, with 0 ≤ k < N , such that

Qnu = aρn(Q)y∗ + O(nkρn
2 (Q)), (n →∞).

Remark 2.2 The constant k will be unequal to zero only if there are generalized eigen-
vectors corresponding to the subdominant eigenvalue(s), see e.g. [3].

Remark 2.3 The same proposition is of course valid for vQn where v is an N -row vector
with v ≥ 0 and v 6= 0.

2.2 Matrix powers

A simple method which provides bounds on the equilibrium distribution p is to calculate
the matrix powers P, P 2, P 4, P 8, . . . until P 2n

is nearly a constant matrix. If P is aperiodic,
then (P 2n

)ij converges to pj and the bounds are maxi(P
2n

)ij ↓ pj and mini(P
2n

)ij ↑ pj (see
p. 173 in [2]). Note that we can always achieve that P is aperiodic by the transformation
P̃ = αI+(1−α)P , where 0 < α < 1 and I denotes the identity matrix. This transformation
leaves the equilibrium distribution intact (cf. [5]).

This method is impractical if N is large, since P 2n
becomes a dense matrix, so each

iteration will require O(N3) operations.
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2.3 Power method

The most popular iterative method, which exploits the sparsity of P , is the power method
(see, e.g., [7]). This method is described in Figure 1.

Power method

Choose an initial vector p(0) ≥ 0, p(0) 6= 0, and compute for n = 0, 1, . . .

p(n+1) = p(n)P, (2)

until p(n+1) − p(n) is sufficiently small.

Figure 1: Power method

The stopping criterion is based on the difference between p(n+1) and p(n). For example,
the stopping criterion can be taken to be

N∑
i=0

|p(n+1)
i − p

(n)
i | ≤ ε

N∑
i=0

|p(n)
i |,

where ε is some small positive number. When the method has converged, an approximation
of p is obtained by normalization of the final p(n). Note that, if p(0) is a probability distri-
bution, then p(n) is the probability distribution of the Markov chain P after n transitions
(given that the initial distribution is p(0)).

If P is aperiodic (which can always be achieved, see Exercise 2), then this method
converges geometrically. From Proposition 2.1 it follows that for some constant a > 0 and
nonnegative integer k < N ,

p(n) = p(0)P n = ap + O(nkρn
2 (P )), (n →∞).

Hence the rate of convergence is determined by the subradius of P .

Example 2.4
Consider the periodic Markov chain with transition probability matrix

P =

(
0 1
1 0

)
.

When we start with p(0) = (0, 1), then we obtain the alternating sequence

p(1) = (1, 0), p(2) = (0, 1), p(3) = (1, 0), . . .

So there is no convergence. But for the transformed matrix

P̃ =
1

2
I +

1

2
P =

(
1
2

1
2

1
2

1
2

)
,

we have convergence after one iteration.
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Example 2.5
Consider the Markov chain with transition probability matrix

P =

(
1
2

1
2

1
4

3
4

)
.

The eigenvalues of P are given by σ1 = 1 and σ2 = 1/4, with corresponding row eigenvectors
x1 = (1, 2) and x2 = (1,−1). When we start with the initial distribution

p(0) = (0, 1) =
1

3
x1 −

1

3
x2,

then for n = 0, 1, . . .

p(n) =
1

3
σn

1 x1 −
1

3
σn

2 x2 =
1

3
(1, 2)− 1

3

(
1

4

)n

(1,−1).

Hence p(n) converges geometrically fast to the equilibrium distribution p = (1/3, 2/3).

2.4 Gauss-Seidel variant of the Power method

The power method recursively computes the components of p(n+1) from

p
(n+1)
i =

N∑
j=0

p
(n)
j pji, i = 0, 1, . . . , N.

The Gauss-Seidel approach uses for the computation of p
(n+1)
i the new estimates p

(n+1)
j for

j ≤ i. Then the recursive scheme becomes

p
(n+1)
i =

i∑
j=0

p
(n+1)
j pji +

N∑
j=i+1

p
(n)
j pji, i = 0, 1, . . . , N.

In vector-matrix notation this reads

p(n+1) = p(n+1)PU + p(n)PL,

with PU the upper triangular matrix with the diagonal of P , and PL the lower diagonal
matrix without the diagonal of P . This can be rewritten as

p(n+1) = p(n)Pgs, (3)

with
Pgs = PL(I − PU)−1.

Note that the inverse of I −PU exists, since PU is a transient Markov chain. Since Pgs is a
non-negative matrix with spectral radius 1 (Verify!), the convergence properties of scheme
(3) can be analyzed along the same lines as scheme (2). The structure of Pgs, however,
may differ from the structure of P . Clearly, Pgs is never irreducible (the first row has only
zeros), and it may be periodic even if P is not.

In practice the convergence of the Gauss-Seidel scheme is usually much faster than the
Power method.
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Example 2.6
Consider the Markov chain in Example 2.5 again. The Gauss-Seidel scheme becomes

p
(n+1)
0 = p

(n+1)
0

1

2
+ p

(n)
1

1

4
,

p
(n+1)
1 = p

(n+1)
0

1

2
+ p

(n+1)
1

3

4
,

which can be rewritten as

p
(n+1)
0 = p

(n)
1

1

2
,

p
(n+1)
1 = p

(n)
1 .

Hence

Pgs =

(
0 0
1
2

1

)
.

Note that Pgs is not stochastic. Its eigenvalues are given by σ1 = 1 and σ2 = 0. When we
start with the initial distribution p(0) = (0, 1), then p(1) = (1/2, 1), p(2) = (1/2, 1), . . .. So
convergence is reached after one iteration.

Remark 2.7 Another variant of the Power method is the method of successive overrelax-
ation, see e.g. [6]. Here the components p

(n+1)
i are recursively computed from

p
(n+1)
i = (1− ω)p

(n)
i + ω

i−1∑
j=0

aijp
(n+1)
j +

N∑
j=i+1

aijp
(n)
j

 , i = 0, 1, . . . , N,

where
aij =

pji

1− pii

, i, j = 0, 1, . . . , N, j 6= i,

and ω is the relaxation factor. Usually 1 ≤ ω ≤ 2. The iteration method with ω = 1 is the
Gauss-Seidel method.

2.5 Iterative bounds

In this section we provide another iteration scheme which also produces bounds on the
equilibrium distribution. This scheme is obtained by reformulating (1) as a contraction
scheme (see [8]).

Define
vi =

pi

p0

, i = 0, 1, . . . , N.

Then v0 = 1 and (1) becomes

vi = p0i +
N∑

j=1

vjpji, i = 1, . . . , N. (4)
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Note that vi is the expected number of visits to state i between two successive visits to
state 0. Writing ri = p0i and qij = pji, equation (4) turns into

vi = ri +
N∑

j=1

qijvj, i = 1, . . . , N. (5)

This set of equations is contractive (cf. Exercise 3). To see this, note that since P is
irreducible, the system ultimately leaves the set of states {1, 2, . . . , N}, whence Qn → 0
and thus ρ(Q) < 1. Therefore the solution v can be approximated recursively by

v(n+1) = r + Qv(n), (6)

where v(n) and r are the N -column vectors with elements v
(n)
i and ri, i = 1, . . . , N . Once

v is known, p can be recovered via

pi =
vi∑N

j=0 vj

i = 0, 1, . . . , N,

and from lower and upper bounds on v,

vi ≤ vi ≤ vi, i = 0, 1, . . . , N,

bounds on p are determined via

vi∑N
j=0 vj

≤ pi ≤
vi∑N

j=0 vj

, i = 0, 1, . . . , N.

In the remainder of this section we will derive the bounds on v. It will be assumed
that Q is irreducible and aperiodic. The following two examples show that this is not an
immediate consequence of the assumption that P is irreducible and aperiodic.

Example 2.8
The matrix P defined by

P =

 0 1
2

1
2

1
2

1
2

0
1
4

0 3
4


is irreducible, but the corresponding Q,

Q =

(
1
2

0
0 3

4

)

is not irreducible.
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Example 2.9
The matrix P defined by

P =

 0 1
2

1
2

1
2

0 1
2

1
4

3
4

0


is aperiodic, but the corresponding Q,

Q =

(
0 3

4
1
2

0

)

is periodic.

For the difference between v(n+1) and v(n) it follows that

v(n+1) − v(n) = r + Qv(n) − r −Qv(n−1) = Q(v(n) − v(n−1)) = · · · = Qn(v(1) − v(0)).

Hence, when we take as initial vector v(0) = 0, then v(1) − v(0) = r ≥ 0, r 6= 0, and thus
v(n+1) − v(n) ≥ 0 for all n. Further, by Proposition (2.1),

v(n+1) − v(n) = aρn(Q)y∗ + O(nkρn
2 (Q)), (n →∞), (7)

where a is some positive constant and y∗ is the positive right-eigenvector corresponding to
the largest eigenvalue ρ(Q) of Q. So v(n+1)−v(n) > 0 for n sufficiently large (and of course,
once the difference is positive, it remains positive in all subsequent iterations).

Now define αn and βn by (if v(n) − v(n−1) > 0)

αn = min
i

v
(n+1)
i − v

(n)
i

v
(n)
i − v

(n−1)
i

, βn = max
i

v
(n+1)
i − v

(n)
i

v
(n)
i − v

(n−1)
i

.

The numbers αn and βn are monotonically converging lower- and upperbounds on ρ(Q),

αn ↑ ρ(Q), βn ↓ ρ(Q), (n →∞).

The monotonicity αn+1 ≥ αn follows from

v(n+2) − v(n+1) = Q(v(n+1) − v(n)) ≥ Qαn(v(n) − v(n−1)) = αn(v(n+1) − v(n)).

Similarly βn+1 ≤ βn and obviously αn ≤ βn. Further, relation (7) implies that

v
(n+2)
i − v

(n+1)
i

v
(n+1)
i − v

(n)
i

= ρ(Q) + O

(
nk

(
ρ2(Q)

ρ(Q)

)n)
, (n →∞), (8)

from which we can conclude that αn and βn converge to ρ(Q).
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So for n sufficiently large βn < 1. In this case we can derive the following upperbound
for v. Clearly

v = v(n+1) + (v(n+2) − v(n+1)) + (v(n+3) − v(n+2)) + · · ·

= v(n+1) +
∞∑

k=1

(v(n+k+1) − v(n+k)).

For k ≥ 1 we have, by using that βn+1 ≤ βn,

v(n+k+1) − v(n+k) ≤ βn+k(v
(n+k) − v(n+k−1))

≤ βn(v(n+k) − v(n+k−1))
...

≤ βk
n(v(n+1) − v(n)).

Hence,

v ≤ v(n+1) +
∞∑

k=1

βk
n(v(n+1) − v(n)) = v(n+1) +

βn

1− βn

(v(n+1) − v(n)).

Similarly we can derive the following lowerbound,

v ≥ v(n+1) +
αn

1− αn

(v(n+1) − v(n)).

These bounds are easy to implement: while executing scheme (6), αn and βn can be
computed and the bounds become better if αn and βn get closer to ρ(Q). From the relation
v − v(n+1) = Q(v − v(n)) we immediately see that v(n) converges to v with rate ρ(Q). But
the power of scheme (6) is not determined by the rate of convergence of v(n), but by the
rate of convergence of the bounds. From (8) it is readily verified that the difference between
the upper- and lowerbound converges to 0 with rate ρ2(Q). The contraction scheme with
bounds is summarized in Figure 2. The bounds used in this scheme can be computed as
soon as v(n) − v(n−1) is strictly positive and βn drops below 1.

Remark 2.10
The method (i.e., the number of iterations required) is sensitive to the choice of state 0.
Choosing state 0 as a likely state is strongly recommended.

Remark 2.11
Let P denote the transition probability matrix of a Markov chain, and let r be the reward
vector and β the discount factor. Then the total discounted reward vector vβ can be
determined by successive iterations,

v(n+1) = r + βPv(n), n = 0, 1, 2, . . . ,

and in each iteration,

v(n+1) +
β

1− β
min

i
(v

(n+1)
i − v

(n)
i )e ≤ v ≤ v(n+1) +

β

1− β
max

i
(v

(n+1)
i − v

(n)
i )e,

where e is the all one vector. The derivation of these bounds for vβ is very similar to the
one for v (Verify!).
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Iterative bounds

Set v(0) = 0 and compute for n = 0, 1, . . .

v(n+1) = r + Qv(n),

until v(n+1) − v(n+1) is sufficiently small, where

v(n+1) = v(n+1) +
βn

1− βn

(v(n+1) − v(n))

v(n+1) = v(n+1) +
αn

1− αn

(v(n+1) − v(n)).

Then lower- and upperbounds for the equilibrium distribution p are obtained from the last
v(n) and v(n) via

v
(n)
i∑N

j=0 v
(n)
j

≤ pi ≤
v

(n)
i∑N

j=0 v
(n)
j

, i = 0, 1, . . . , N,

where by convention v
(n)
0 = v

(n)
0 = 1.

Figure 2: Iterative bounds

2.6 Gauss-Seidel variant of the iterative bounds

The set of equations (5) can of course also be solved by Gauss-Seidel iteration. Then the
recursive scheme becomes

v
(n+1)
i = ri +

i∑
j=1

qijv
(n+1)
j +

N∑
j=i+1

qijv
(n)
j , i = 1, . . . , N.

In vector-matrix notation this reads as

v(n+1) = r + QLv(n+1) + QUv(n),

where QL is the lower triangular matrix with the diagonal, and QU the upper triangular
matrix without the diagonal of Q. This can be rewritten as

v(n+1) = rgs + Qgsv
(n), (9)

with rgs = (I −QL)−1r and Qgs = (I −QL)−1QU . From (9) we see that the Gauss-Seidel
variant can be analyzed along the same lines as scheme (5). Thus we may conclude that
the convergence behavior of Gauss-Seidel iteration is determined by the spectral radius and
even more by the subradius of Qgs. For the spectral radius we know that, if ρ(Q) < 1, then
ρ(Qgs) ≤ ρ(Q) (see, e.g., p. 70 in [7]). For the subradius the situation is more complicated:
the subradius of Qgs may be less, but also greater than the subradius of Q. In practice,
however, usually ρ2(Qgs) < ρ2(Q).
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2.7 Exercises

Exercise 1.
Consider a Markov chain with transition probability matrix P . Define

mn
j = min

i
(P n)ij, Mn

j = max
i

(P n)ij.

Prove that for all n,
mn

j ≤ mn+1
j ≤ Mn+1

j ≤ Mn
j .

Exercise 2.
Consider an irreducible Markov chain with transition probability matrix P . Define

P̃ = αI + (1− α)P,

where 0 < α < 1 and I denotes the identity matrix.

(i) Show that P̃ is aperiodic.

(ii) Show that P and P̃ have the same equilibrium distribution.

Exercise 3.
Let Q be an irreducible aperiodic non-negative matrix and let y∗ denote the positive right-
eigenvector corresponding to the maximal eigenvalue of Q (see Proposition 2.1). Define
the following norm,

‖x‖y∗ = max
i

|xi|
y∗i

.

(i) Show that for all x we have |xi| ≤ y∗i ‖x‖y∗ for each i.

(ii) Prove that ‖Qx‖y∗ ≤ ρ(Q)‖x‖y∗ for all vectors x.

Hence, if ρ(Q) < 1, then Q is a contraction.
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