4 Transient analysis of Markov processes

In this chapter we develop methods of computing the transient distribution of a Markov process.

Let us consider an irreducible Markov process with finite state space $\{0,1, \ldots, N\}$ and generator Q with elements $q_{i j}, i, j=0,1, \ldots, N$. The random variable $X(t)$ denotes the state at time $t, t \geq 0$. Then we want to compute the transition probabilities

$$
p_{i j}(t)=P(X(t)=j \mid X(0)=i)
$$

for each i and j. Once these probabilities are known, we can compute the distribution at time t, given the initial distribution, according to

$$
P(X(t)=j)=\sum_{i=1}^{N} P(X(0)=i) p_{i j}(t), \quad j=0,1, \ldots, N
$$

4.1 Differential equations

It is easily verified that for $t \geq 0$ the probabilities $p_{i j}(t)$ satisfy the differential equations

$$
\frac{d}{d t} p_{i j}(t)=\sum_{k=1}^{N} p_{i k}(t) q_{k j}
$$

or in matrix notation

$$
\frac{d}{d t} P(t)=P(t) Q
$$

where $P(t)$ is the matrix of transition probabilities $p_{i j}(t)$. The above differential equations are refered to as the Kolmogorov's Forward Equations (Clearly, there are also Backward Equations). The solution of this system of differential equations is given by

$$
P(t)=\sum_{n=0}^{\infty} \frac{Q^{n}}{n!} t^{n}=e^{Q t}, \quad t \geq 0
$$

Direct use of the infinite sum of powers of Q to compute $P(t)$ may be ineffcient, since Q contains both positive and negative elements. An alternative is to reduce the infinite sum to a finite one by using the spectral decomposition of Q. Let $\lambda_{i}, 1 \leq i \leq N$, be the N eigenvalues of Q, assumed to be distinct, and let y_{i} and x_{i} be the orthonormal left and right eigenvectors corresponding to λ_{i}. Further, let Λ be the diagonal matrix of eigenvalues and X and Y the matrices of eigenvectors. Then we have

$$
Q=Y \Lambda X
$$

and thus

$$
P(t)=e^{Q t}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{Q^{n}}{n!} t^{n} \\
& =\sum_{n=0}^{\infty} \frac{Y \Lambda^{n} X}{n!} t^{n} \\
& =Y e^{\Lambda t} X
\end{aligned}
$$

where $e^{\Lambda t}$ is just the diagonal matrix with elements $e^{\lambda_{i} t}$. The difficulty with the above solution is that it requires the computation of eigenvalues and eigenvectors. In the next section we present a numerically stable solution based on uniformization.

4.2 Uniformization

To establish that the sojourn time in each state is exponential with the same mean, we introduce fictitious transitions. Let Δ satisfy

$$
0<\Delta \leq \min _{i} \frac{1}{-q_{i i}}
$$

In state $i, 0 \leq i \leq N$, we now introduce a transition from state i to itself with rate $q_{i i}+1 / \Delta$. This implies that the total outgoing rate from state i is $1 / \Delta$, which does not depend on i ! Hence, transitions take place according to a Poisson process with rate $1 / \Delta$, and the probability to make a transition from state i to j is given by

$$
p_{i j}=\Delta q_{i j}+\delta_{i j}, \quad 1 \leq i, j \leq N
$$

If we denote the matrix of transition probabilities by P and condition on the number of transitions in $(0, t)$, we immediately obtain

$$
\begin{equation*}
P(t)=\sum_{n=0}^{\infty} e^{-t / \Delta} \frac{(t / \Delta)^{n}}{n!} P^{n} \tag{1}
\end{equation*}
$$

Since this representation requires addition and multiplication of nonnegative numbers only, it is suitable for numerical calculations, where we approximate the infinite sum by using the first K terms. A good rule of thumb for choosing K is

$$
K=\max \{20, t / \Delta+5 \cdot \sqrt{t / \Delta}\}
$$

For a more elaborated algorithm we refer to [1]. It further makes sense to take the largest possible value of Δ (Why?), so

$$
\Delta=\min _{i} \frac{1}{-q_{i i}}
$$

4.3 Occupancy times

In this section we concentrate on the occupancy time of a given state, i.e., the expected time in that state during the interval $(0, T)$.

Let $m_{i j}(T)$ denote the expected amount of time spent in state j during the interval $(0, T)$, staring in state i. Then we have

$$
m_{i j}(T)=\int_{t=0}^{T} p_{i j}(t) d t
$$

or in matrix notation,

$$
M(T)=\int_{t=0}^{T} P(t) d t
$$

where $M(T)$ is the matrix with elements $m_{i j}(T)$. Substitution of (1) leads to

$$
M(T)=\sum_{n=0}^{\infty} \int_{t=0}^{T} e^{-t / \Delta} \frac{(t / \Delta)^{n}}{n!} d t P^{n}
$$

By partial integration we get

$$
\int_{t=0}^{T} e^{-t / \Delta} \frac{(t / \Delta)^{n}}{n!} d t=\Delta\left(1-\sum_{k=0}^{n} e^{-t / \Delta} \frac{(T / \Delta)^{k}}{k!}\right)=\Delta P(Y>n)
$$

where Y is a Poisson random variable with mean T / Δ. Hence, we finally obtain

$$
M(T)=\Delta \sum_{n=0}^{\infty} P(Y>n) P^{n}
$$

The above representation provides a stable method for the computation of $M(T)$; for more details see [1].

4.4 Exercises

ExERCISE 1.

Consider a machine shop consisting of N identical machines and M repair men $(M \leq N)$. The up times of the machines are exponential with mean $1 / \mu$. When a machine fails, it is repaired by a repair man. The repair times are exponential with mean $1 / \lambda$.
(i) Model the repair shop as a Markov process.

Suppose $N=4, M=2$, the mean up time is 3 days and the mean repair time is 2 hours. At 8:00 a.m. all machines are operating.
(ii) What is the expected number of working machines at 5:00 p.m.?
(iii) What is the expected amount of time all machines are working from 8:00 a.m. till 5:00 p.m.?

References

[1] V.G. Kulkarni, Modeling, analysis, design, and control of stochastic systems, Springer, New York, 1999.

