
4 Transient analysis of Markov processes

In this chapter we develop methods of computing the transient distribution of a Markov
process.

Let us consider an irreducible Markov process with finite state space {0, 1, . . . , N} and
generator Q with elements qij, i, j = 0, 1, . . . , N . The random variable X(t) denotes the
state at time t, t ≥ 0. Then we want to compute the transition probabilities

pij(t) = P (X(t) = j|X(0) = i),

for each i and j. Once these probabilities are known, we can compute the distribution at
time t, given the initial distribution, according to

P (X(t) = j) =
N∑

i=1

P (X(0) = i)pij(t), j = 0, 1, . . . , N.

4.1 Differential equations

It is easily verified that for t ≥ 0 the probabilities pij(t) satisfy the differential equations

d

dt
pij(t) =

N∑
k=1

pik(t)qkj

or in matrix notation
d

dt
P (t) = P (t)Q,

where P (t) is the matrix of transition probabilities pij(t). The above differential equations
are refered to as the Kolmogorov’s Forward Equations (Clearly, there are also Backward
Equations). The solution of this system of differential equations is given by

P (t) =
∞∑

n=0

Qn

n!
tn = eQt, t ≥ 0.

Direct use of the infinite sum of powers of Q to compute P (t) may be ineffcient, since Q
contains both positive and negative elements. An alternative is to reduce the infinite sum
to a finite one by using the spectral decomposition of Q. Let λi, 1 ≤ i ≤ N , be the N
eigenvalues of Q, assumed to be distinct, and let yi and xi be the orthonormal left and
right eigenvectors corresponding to λi. Further, let Λ be the diagonal matrix of eigenvalues
and X and Y the matrices of eigenvectors. Then we have

Q = Y ΛX,

and thus

P (t) = eQt
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=
∞∑

n=0

Qn

n!
tn

=
∞∑

n=0

Y ΛnX

n!
tn

= Y eΛtX,

where eΛt is just the diagonal matrix with elements eλit. The difficulty with the above
solution is that it requires the computation of eigenvalues and eigenvectors. In the next
section we present a numerically stable solution based on uniformization.

4.2 Uniformization

To establish that the sojourn time in each state is exponential with the same mean, we
introduce fictitious transitions. Let ∆ satisfy

0 < ∆ ≤ min
i

1

−qii

.

In state i, 0 ≤ i ≤ N , we now introduce a transition from state i to itself with rate
qii + 1/∆. This implies that the total outgoing rate from state i is 1/∆, which does not
depend on i! Hence, transitions take place according to a Poisson process with rate 1/∆,
and the probability to make a transition from state i to j is given by

pij = ∆qij + δij, 1 ≤ i, j ≤ N.

If we denote the matrix of transition probabilities by P and condition on the number of
transitions in (0, t), we immediately obtain

P (t) =
∞∑

n=0

e−t/∆ (t/∆)n

n!
P n. (1)

Since this representation requires addition and multiplication of nonnegative numbers only,
it is suitable for numerical calculations, where we approximate the infinite sum by using
the first K terms. A good rule of thumb for choosing K is

K = max{20, t/∆ + 5 ·
√

t/∆}.

For a more elaborated algorithm we refer to [1]. It further makes sense to take the largest
possible value of ∆ (Why?), so

∆ = min
i

1

−qii

.
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4.3 Occupancy times

In this section we concentrate on the occupancy time of a given state, i.e., the expected
time in that state during the interval (0, T ).

Let mij(T ) denote the expected amount of time spent in state j during the interval
(0, T ), staring in state i. Then we have

mij(T ) =
∫ T

t=0
pij(t)dt,

or in matrix notation,

M(T ) =
∫ T

t=0
P (t)dt,

where M(T ) is the matrix with elements mij(T ). Substitution of (1) leads to

M(T ) =
∞∑

n=0

∫ T

t=0
e−t/∆ (t/∆)n

n!
dtP n.

By partial integration we get∫ T

t=0
e−t/∆ (t/∆)n

n!
dt = ∆

(
1 −

n∑
k=0

e−t/∆ (T/∆)k

k!

)
= ∆P (Y > n),

where Y is a Poisson random variable with mean T/∆. Hence, we finally obtain

M(T ) = ∆
∞∑

n=0

P (Y > n)P n.

The above representation provides a stable method for the computation of M(T ); for more
details see [1].

4.4 Exercises

Exercise 1.
Consider a machine shop consisting of N identical machines and M repair men (M ≤ N).
The up times of the machines are exponential with mean 1/µ. When a machine fails, it is
repaired by a repair man. The repair times are exponential with mean 1/λ.

(i) Model the repair shop as a Markov process.

Suppose N = 4, M = 2, the mean up time is 3 days and the mean repair time is 2 hours.
At 8:00 a.m. all machines are operating.

(ii) What is the expected number of working machines at 5:00 p.m.?

(iii) What is the expected amount of time all machines are working from 8:00 a.m. till
5:00 p.m.?

3



References

[1] V.G. Kulkarni, Modeling, analysis, design, and control of stochastic systems,
Springer, New York, 1999.

4


	Transient analysis of Markov processes
	Differential equations
	Uniformization
	Occupancy times




