$6 \quad M / M / 1$ type models

In this chapter we consider $M / M / 1$ type models, more commonly known as quasi birthdeath processes. We will present two methods for analyzing the equilibrium behavior of $M / M / 1$ type models: the matrix-geometric method and the spectral expansion method.

6.1 Model

We consider a Markov process, the state space of which consists of two parts: the boundary states $(0, j)$ where j ranges from 0 to n, and a semi infinite strip of states (i, j) where i ranges from 1 to ∞ and j from 0 to m. The states are ordered lexicographically, that is, $(0,0),(0,1), \ldots,(0, n),(1,0), \ldots,(1, m),(2,0), \ldots,(2, m), \ldots$. The set of boundary states $\{(0,0),(0,1), \ldots,(0, m)\}$ will be called level 0 , and the set of states $\{(i, 0),(i, 1), \ldots,(i, n)\}$, $i \geq 1$, will be called level i. Note that the number of states at level 0 may be different from the number of states at higher levels (and this is typically the case in many problems). A picture of the state space is given in figure 1 .

Figure 1: State space of $M / M / 1$ type model
We partition the state space according to these levels, and for this partitioning we assume that the generator Q is of the form

$$
Q=\left(\begin{array}{cccccc}
B_{00} & B_{01} & 0 & 0 & 0 & \ldots \\
B_{10} & B_{11} & A_{0} & 0 & 0 & \ldots \\
0 & A_{2} & A_{1} & A_{0} & 0 & \ldots \\
0 & 0 & A_{2} & A_{1} & A_{0} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right),
$$

where the matrix B_{00} is of dimension $(n+1) \times(n+1), B_{01}$ of dimension $(n+1) \times(m+1)$, B_{10} of dimension $(m+1) \times(n+1)$, and $B_{11}, A_{0}, A_{1}, A_{2}$ are square matrices of dimension $m+1$. Note that $A_{0}+A_{1}+A_{2}$ is a generator; it describes the behavior of the Markov process Q in the (vertical) j-direction only.

Example 6.1 For the problem in section 5.1 (machine with set-up times) we have that level 0 is $\{(0,0)\}$ and level i is the pair of states $\{(i, 0),(i, 1)\}$; so $n=0$ and $m=1$. Further, the matrices of transition rates are given by

$$
\begin{gathered}
B_{00}=(-\lambda), \quad B_{01}=\left(\begin{array}{ll}
-\lambda & 0
\end{array}\right), \quad B_{10}=\binom{0}{\mu} \\
A_{0}=\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right), \quad B_{11}=A_{1}=\left(\begin{array}{cc}
-(\lambda+\theta) & \theta \\
0 & -(\lambda+\mu)
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & \mu
\end{array}\right) .
\end{gathered}
$$

Note that

$$
A_{0}+A_{1}+A_{2}=\left(\begin{array}{cc}
-\theta & \theta \\
0 & 0
\end{array}\right)
$$

so state 1 is an absorbing state.
Example 6.2 For the example in section 5.2 (unreliable machine) level i is the set of states $\{(i, 0),(i, 1)\}, i \geq 0$ (so $n=m=1$). The transition matrices are given by

$$
\begin{gathered}
B_{00}=\left(\begin{array}{cc}
-(\lambda+\theta) & \theta \\
\eta & -(\lambda+\eta)
\end{array}\right), \\
A_{0}=B_{01}=\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
-(\lambda+\theta) & \theta \\
\eta & -(\lambda+\mu+\eta)
\end{array}\right), \quad A_{2}=B_{10}=\left(\begin{array}{ll}
0 & 0 \\
0 & \mu
\end{array}\right),
\end{gathered}
$$

and the generator $A_{0}+A_{1}+A_{2}$ is equal to

$$
A_{0}+A_{1}+A_{2}=\left(\begin{array}{cc}
-\theta & \theta \\
\eta & -\eta
\end{array}\right)
$$

From here on we will assume that the Markov process Q is irreducible and that the generator $A_{0}+A_{1}+A_{2}$ has exactly one communicating class. Concerning the stability of Q we state the following result.

Theorem 6.3 The Markov process Q is ergodic (stable) if and only if

$$
\begin{equation*}
\pi A_{0} e<\pi A_{2} e \tag{1}
\end{equation*}
$$

where e is the column vector of ones and $\pi=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{m}\right)$ is the equilibrium distribution of the Markov process with generator $A_{0}+A_{1}+A_{2}$; so

$$
\pi\left(A_{0}+A_{1}+A_{2}\right)=0, \quad \pi e=1
$$

Condition (1) has an appealing intuitive interpretation. The term $\pi A_{0} e$ is the mean $d r i f t$ from level i to level $i+1$, and $\pi A_{2} e$ is the mean drift from level $i+1$ to level i; clearly the process is stable if the drift to the left is greater than the drift to the right (cf. the $M / M / 1$ model where the drift to the right is λ and the drift to the left μ). Condition (1) is known as Neuts' mean drift condition. For a rigorous proof of theorem 6.3 we refer the reader to [4].

Example 6.4 For the example in section 5.2 (unreliable machine) condition (1) reduces to

$$
\left(\pi_{0}+\pi_{1}\right) \lambda<\pi_{1} \mu
$$

where $\pi=\left(\pi_{0}, \pi_{1}\right)$ is the equilibrium distribution of

$$
A_{0}+A_{1}+A_{2}=\left(\begin{array}{cc}
-\theta & \theta \\
\eta & -\eta
\end{array}\right)
$$

Hence,

$$
\pi_{0}=\frac{\eta}{\theta+\eta}, \quad \pi_{1}=\frac{\theta}{\theta+\eta}
$$

and thus the stability condition becomes (cf. (15) in section 5.2)

$$
\frac{\lambda}{\mu}<\pi_{1}=\frac{\theta}{\theta+\eta}=\rho_{U}
$$

In the sequel we will assume that the Markov process Q is ergodic. Thus the equilibrium probabilities $p(i, j)$ exist. In the following sections we will present methods to find these probabilities.

6.2 The matrix-geometric method

For an elegant treatment of matrix-geometric solutions the reader is referred to [4, 2]. In this section we just state some of the main results.

Provided the Markov process Q is ergodic, the equilibrium probability vectors p_{i} are given by the matrix-geometric form

$$
\begin{equation*}
p_{i}=(p(i, 0), p(i, 1), \ldots, p(i, m))=p_{1} R^{i-1}, \quad i=1,2, \ldots, \tag{2}
\end{equation*}
$$

where the matrix R is the minimal nonnegative solution of the matrix-quadratic equation

$$
\begin{equation*}
A_{0}+R A_{1}+R^{2} A_{2}=0 \tag{3}
\end{equation*}
$$

That is, any other nonnegative solution \tilde{R} of the above matrix equation satisfies $R \leq \tilde{R}$. The matrix R, usually called the rate matrix of the markov process Q, has spectral radius less than one (so $I-R$ is invertable). Note that from the matrix-geometric form (2) for p_{i} it easily follows that R should satisfy (3); substitution of (2) into the equilibrium equations

$$
p_{i-1} A_{0}+p_{i} A_{1}+p_{i+1} A_{2}=0
$$

yields

$$
p_{i-1}\left(A_{0}+R A_{1}+R^{2} A_{2}\right)=0
$$

which, since $p_{i-1}>0$, implies (3).

The equilibrium equations for the probability vectors p_{0} and p_{1} are given by

$$
\begin{align*}
p_{0} B_{00}+p_{1} B_{10} & =0 \tag{4}\\
p_{0} B_{01}+p_{1} B_{11}+p_{2} A_{2} & =0 \tag{5}
\end{align*}
$$

Hence, substituting $p_{2}=p_{1} R$ we get the following boundary equations for p_{0} and p_{1},

$$
\begin{array}{r}
p_{0} B_{00}+p_{1} B_{10}=0 \\
p_{0} B_{01}+p_{1} B_{11}+p_{1} R A_{2}=0
\end{array}
$$

To uniquely determine p_{0} and p_{1} we further need the normalization equation

$$
1=\sum_{i=0}^{\infty} p_{i} e=p_{0} e+p_{1}\left(I+R+R^{2}+\cdots\right) e=p_{0} e+p_{1}(I-R)^{-1}
$$

For the computation of the matrix R we may rewrite (3) in the form

$$
R=-\left(A_{0}+R^{2} A_{2}\right) A_{1}^{-1}
$$

note that A_{1} is indeed invertable, since A_{1} is a transient generator. The above (fixed point) equation may be solved by successive substitutions, so

$$
\begin{equation*}
R_{k+1}=-\left(A_{0}+R_{k}^{2} A_{2}\right) A_{1}^{-1}, \quad k=0,1,2, \ldots \tag{6}
\end{equation*}
$$

starting with $R_{0}=0$. It can be shown that, as k tends to infinity,

$$
R_{k} \uparrow R
$$

This is a very simple scheme for the computation of R; in the literature more sophisticated and efficient schemes have been developed, see, e.g., [1, 2].

The rate matrix R also has an interesting (and useful) probabilistic interpretation. The element $R_{j k}$ is the expected time spent in state $(i+1, k)$ before the first return to level i, expressed in time unit $-1 /\left(A_{1}\right)_{j j}$, given the initial state (i, j). Note that $-1 /\left(A_{1}\right)_{j j}$ is the expected sojourn time in state (i, j) with $i>1$. From the interpretation of R we may directly conclude that zero rows in A_{0} correspond to zero rows in R.

Remark 6.5 The matrix-geometric analysis for (discrete-time) Markov chains is very similar. Suppose the transition probability matrix P is of the form

$$
P=\left(\begin{array}{cccccc}
B_{00} & B_{01} & 0 & 0 & 0 & \ldots \\
B_{10} & B_{11} & A_{0} & 0 & 0 & \ldots \\
0 & A_{2} & A_{1} & A_{0} & 0 & \ldots \\
0 & 0 & A_{2} & A_{1} & A_{0} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

where $B_{00}, B_{01}, B_{10}, B_{11}, A_{0}, A_{1}$ and A_{2} are now matrices with transition probabilities (instead of transition rates). The Markov chain P is ergodic if and only if drift condition (1) holds, where π is the equilibrium distribution of the Markov chain with transition probability matrix $A_{0}+A_{1}+A_{2}$. Further, if P is ergodic, then the probability vectors p_{i} have the form (2), where R is the minimal nonnegative solution of

$$
A_{0}+R A_{1}+R^{2} A_{2}=R
$$

The matrix element $R_{j k}$ can now be interpreted as the expected number of visits to state $(i+1, k)$ before the first return to level i, given the initial state (i, j).

6.3 Explicit solutions for the rate matrix

In this section we briefly describe two cases in which the rate matrix R can be determined explicitly; for more details the reader is referred to [5]. Let us first assume that A_{2} is of the form

$$
\begin{equation*}
A_{2}=v \cdot \alpha \tag{7}
\end{equation*}
$$

where v is column vector and α a row vector of dimension $m+1$, with $\alpha e=1$, so

$$
v=\left(\begin{array}{c}
v_{0} \\
\vdots \\
v_{m}
\end{array}\right), \quad \alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right), \quad \alpha e=1
$$

This means that all rows of A_{2} are the same, except for scaling. Thus, when the process Q jumps from level i to level $i-1$, the probability of jumping to state $(i-1, j)$ is independent of the starting state at level i. We will investigate its consequences for R.

Substitution of (7) into the equilibrium equations for $p_{i}, i>1$, yields

$$
\begin{equation*}
p_{i-1} A_{0}+p_{i} A_{1}+p_{i+1} v \alpha=0 \tag{8}
\end{equation*}
$$

To eliminate p_{i+1} from this equation we derive a relation between p_{i} and p_{i+1} by equating the flow between level i and level $i+1$, i.e.,

$$
\begin{equation*}
p_{i} A_{0} e=p_{i+1} A_{2} e=p_{i+1} v \alpha e=p_{i+1} v \tag{9}
\end{equation*}
$$

Hence, by substituting (9) into (8), we obtain

$$
p_{i-1} A_{0}+p_{i} A_{1}+p_{i} A_{0} e \alpha=0
$$

which can be rewritten as

$$
p_{i}=p_{i-1} R, \quad i>1
$$

where

$$
R=-A_{0}\left(A_{1}+A_{0} e \alpha\right)^{-1}
$$

Note that the matrix $A_{1}+A_{0} e \alpha$ is invertable, since it is a transient generator.

The other case in which we can solve R explicitly is when A_{0} is of the form

$$
A_{0}=w \cdot \beta
$$

where w is column vector and β a row vector of dimension $m+1$, with $\beta e=1$, so

$$
w=\left(\begin{array}{c}
w_{0} \\
\vdots \\
w_{m}
\end{array}\right), \quad \beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{m}\right), \quad \beta e=1
$$

This means that all rows of A_{0} are the same, except for scaling. Thus, when the process Q jumps from level i to level $i+1$, the probability of jumping to state $(i+1, j)$ is independent of the starting state at level i. Below we investigate the implications of this special form of A_{0}.

From the recursive scheme (6) we obtain

$$
R_{0}=0, \quad R_{1}=-A_{0} A_{1}^{-1}=-w \beta A_{1}^{-1}=w \cdot a_{1},
$$

with $a_{1}=-\beta A_{1}^{-1}$. Repeating the iteration shows that all R_{k} 's are of the form

$$
R_{k}=w \cdot a_{k}
$$

where a_{k} is a row vector of dimension $m+1$. Since $R_{k} \uparrow R$ as $k \rightarrow \infty$, we can conclude that also R is of the form

$$
R=w \cdot a,
$$

for some row vector $a \geq 0$. Hence,

$$
R^{i}=(a w)^{i-1} R=\eta^{i-1} R,
$$

where $\eta=a w$. Clearly η is the spectral radius of R. Now the matrix-geometric form of the probability vectors p_{i} reduces to

$$
p_{i}=p_{1} R^{i-1}=\eta^{i-2} p_{1} R=\eta^{i-2} p_{2}, \quad i>1 .
$$

Note that η can be characterized as the unique root in $(0,1)$ of the determinantal equation

$$
\operatorname{det}\left(A_{0}+\eta A_{1}+\eta^{2} A_{2}\right)=0
$$

which may be computed by straightforward bisection.

6.4 Spectral expansion method

In this section we describe the spectral expansion method; for more details the reader is referred to [3].

The basic idea of the method is to first try to find basis solutions of the form

$$
\begin{equation*}
p_{i}=y x^{i-1}, \quad i=1,2, \ldots, \tag{10}
\end{equation*}
$$

where $y=(y(0), y(1), \ldots, y(m)) \neq 0$ and $|x|<1$, satisfying the equilibrium equations for the levels $i>1$, i.e.,

$$
\begin{equation*}
p_{i-1} A_{0}+p_{i} A_{1}+p_{i+1} A_{2}=0 . \tag{11}
\end{equation*}
$$

We require that $|x|<1$, since we want to be able to normalize the solution of (11). Then the basis solutions will be linearly combined so as to also satisfy the equilibrium equations for the boundary states (i.e., levels 0 and 1).

Substitution of (10) into (11) and dividing by common powers of x yields

$$
\begin{equation*}
y\left(A_{0}+x A_{1}+x^{2} A_{2}\right)=0 \tag{12}
\end{equation*}
$$

These equations have a non-null solution for y if

$$
\begin{equation*}
\operatorname{det}\left(A_{0}+x A_{1}+x^{2} A_{2}\right)=0 \tag{13}
\end{equation*}
$$

Hence, the desired values of x are the roots x with $|x|<1$ of the determinantal equation (13). Equation (13) is a polynomial equation of degree $2(m+1)$. Hence it has $2(m+1)$ (possibly complex) roots. Provided the Markov process Q is ergodic, there exist exactly $m+1$ roots x with $|x|<1$ (where each root is counted according to its multiplicity); this number will appear to be exactly enough to satisfy the boundary equations. Let us assume that these $m+1$ roots are different, and label them as $x_{0}, x_{1}, \ldots, x_{m}$. Let y_{j} be a non-null solution of (12) with $x=x_{j}, j=0,1, \ldots, m$. We then set

$$
\begin{equation*}
p_{i}=\sum_{j=0}^{m} c_{j} y_{j} x^{i-1}, \quad i=1,2, \ldots \tag{14}
\end{equation*}
$$

Expression (14) is usually referred to as the spectral expansion of the equilibrium probability vectors p_{i}. The coefficients c_{j} of this expansion have to be determined yet. Note that, since the equilibrium equations are linear, the expansion (14) satisfies the equilibrium equations for the levels $i>1$ for any choice of the coefficients $c_{0}, c_{1}, \ldots, c_{m}$.

Substituting the spectral expansion for p_{1} and p_{2} into (4)-(5) we get the following set of equations for the coefficients c_{0}, \ldots, c_{m} and the vector p_{0},

$$
\begin{aligned}
p_{0} B_{00}+\sum_{j=0}^{m} c_{j} y_{j} B_{10} & =0, \\
p_{0} B_{01}+\sum_{j=0}^{m} c_{j} y_{j} B_{11}+\sum_{j=0}^{m} c_{j} y_{j} x_{j} A_{2} & =0
\end{aligned}
$$

Together with the normalization equation

$$
1=p_{0} e+\sum_{j=0}^{m} c_{j} y_{j} e \frac{1}{1-x_{j}}
$$

this set of equations uniquely determines p_{0} and c_{0}, \ldots, c_{m}.

Remark 6.6 The roots $x_{0}, x_{1}, \ldots, x_{m}$ do not have to be different. If we assume that, when a root x occurs k times, it is possible to find k linearly independent solutions of (12), then the analysis proceeds in exactly the same way. In case there are less than k independent solutions, we would also have to consider more complicated basis solutions of the form $y i x^{i-1}$ (or even with higher powers of i).

Remark 6.7 The relation between the matrix-geometric representation (2) and the spectral expansion (14) for the equilibrium probability vectors p_{i} is clear: the roots $x_{0}, x_{1}, \ldots, x_{m}$ are the eigenvalues of R with corresponding left eigenvectors $y_{0}, y_{1}, \ldots, y_{m}$.

References

[1] G. Latouche and V. Ramaswami, A logarithmic reduction algorithm for quasi-birth-death processes. J. Appl. Prob., 30 (1993), pp. 650-674.
[2] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM, 1999
[3] I. Mitrani and D. Mitra, A spectral expansion method for random walks on semiinfinite strips, in: R. Beauwens and P. de Groen (eds.), Iterative methods in linear algebra, North-Holland, Amsterdam (1992), 141-149.
[4] M.F. Neuts, Matrix-geometric solutions in stochastic models. The John Hopkins University Press, Baltimore, 1981.
[5] V. Ramaswami and G. Latouche, A general class of Markov processes with explicit matrix-geometric solutions. OR Spektrum, 8 (1986), pp. 209-218.

