
7 G/M/1 type models

In this chapter we consider G/M/1 type models, i.e., generalizations of the ordinary G/M/1
queue, and we state some of the main results; for a detailed exposition of the analysis of
G/M/1 type models the reader is referred to [1].

In the G/M/1 queue customers arrive one by one with interarrival times identically
and independently distributed according to an arbitrary distribution function FA(·). The
mean interarrival time is equal to 1/λ. The service times are exponentially distributed
with mean 1/µ. For stability we again require that the occupation rate ρ = λ/µ is less
than one. The standard approach to determine the waiting time characteristics is through
the Markov chain embedded on arrival instants. The state of this Markov chain can be
described by i, where i is the number of customers in the system just before an arrival. To
specify the transition probabilities of this Markov chain we first introduce the probabilities
an defined as the probability that exactly n customers are served during an interarrival
time (assuming there are at least n customers present at the start of the interarrival time).
By conditioning on the length of the interarrival time it follows that

an =

∫ ∞

t=0

(µt)n

n!
e−µtdFA(t), n = 0, 1, 2, . . .

Further let bn denote the probability that more than n customers are served during an
interarrival time, so

bn =
∑
k>n

ak.

Then the transition probability matrix P takes the form

P =



b0 a0 0 0 0 · · ·
b1 a1 a0 0 0 · · ·
b2 a2 a1 a0 0 · · ·
b3 a3 a2 a1 a0 · · ·
b4 a4 a3 a2 a1 · · ·
...

...
...

...
...


.

The equilibrium probabilities pi have a geometric form,

pi = (1− σ)σi, i = 0, 1, 2, . . . ,

where σ is the unique root in (0, 1) of the equation

σ = E(e−µ(1−σ)A);

the generic random variable A has distribution FA(·).
In the following section we introduce a model, in continuous time, with the same transi-

tion strucure as the G/M/1 queue. But in this model the simple state i is replaced by a set
of states (referred to as level i). Its equilbrium distribution will have a matrix-geometric
form (or a sum of geometric terms).

1



7.1 Model

We consider a Markov process, the state space of which consists of the boundary states
(0, j) where j ranges from 0 to n, and a semi infinite strip of states (i, j) where i ranges
from 1 to ∞ and j from 0 to m. The states are ordered lexicographically, that is,
(0, 0), (0, 1), . . . , (0, n), (1, 0), . . . , (1, m), (2, 0), . . . , (2, m), . . .. The set of boundary states
{(0, 0), (0, 1), . . . , (0, m)} will be called level 0, and the set of states {(i, 0), (i, 1), . . . , (i, n)},
i ≥ 1, will be called level i. We partition the state space according to these levels, and for
this partitioning we assume that the generator Q is of the form

Q =



B00 B01 0 0 0 · · ·
B10 B11 A0 0 0 · · ·
B20 A2 A1 A0 0 · · ·
B30 A3 A2 A1 A0 · · ·
B40 A4 A3 A2 A1 · · ·
...

...
...

...
...


,

where the matrix B00 is of dimension (n+1)× (n+1), B0,1 of dimension (n+1)× (m+1),
the matrices Bi0, i ≥ 1, of dimension (m + 1)× (n + 1), and B11 and Ai, i ≥ 0, are square
matrices of dimension m + 1. Let

A =
∞∑
i=0

Ai.

Note that A is a generator; it describes the behavior of the Markov process Q in the
(vertical) j-direction only. We assume that the Markov process Q is irreducible and that
the generator A has exactly one communicating class. For the stability of Q we have the
same result as theorem 6.3: the Markov process Q is ergodic if and only if

πA0e < π
∞∑
i=2

(i− 1)Aie,

where e is the column vector of ones and π = (π0, π1, . . . , πm) is the equilibrium distribution
of the Markov process with generator A; so

πA = 0, πe = 1.

In the sequel we will assume that the Markov process Q is ergodic. Thus the equilibrium
probabilities p(i, j) exist. In the following section we describe the matrix-geometric results,
which are very similar to the ones in section 6.2.

7.2 The matrix-geometric method

Provided the Markov process Q is ergodic, the equilibrium probability vectors pi are given
by the matrix-geometric form

pi = (p(i, 0), p(i, 1), . . . , p(i, m)) = p1R
i−1, i = 1, 2, . . . , (1)
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where the matrix R is the minimal nonnegative solution of the matrix equation

∞∑
i=0

RiAi = 0. (2)

The matrix R has spectral radius less than one (so I−R is invertable). Of course, from the
matrix-geometric representation (1) it easily follows that R should satisfy (2); substitution
of (1) into the equilibrium equations for the states at level i,

∞∑
k=0

pi−1+kAk = 0,

yields

pi−1

∞∑
k=0

RkAk = 0,

which, since pi−1 > 0, implies (2). The boundary equations for p0 and p1 are exactly the
same as for the M/M/1 type model, treated in section 6.2. Hence, in comparison with the
M/M/1 results, the only difference is that the matrix-quadratic equation for R is replaced
by equation (2); this of course complicates the computation of R. Equation (2) can be
rewritten as

R = −(A0 +
∞∑

k=2

RkAk)A
−1
1 .

To solve this equation we first have to truncate the infinite sum at K say, and then compute
an approximation for R by successive sustitutions, i.e.,

Rl+1 = −(A0 +
K∑

k=2

Rk
l Ak)A

−1
1 , l = 0, 1, 2, . . .

starting with R0 = 0. The larger K, the better the resulting approximation for R, but also
the higher the computational effort to compute this approximation.

We finally mention that the rate matrix R has the same probabilistic interpretation as
described in section 6.2.

7.3 Spectral expansion method

Along the same lines as in section 6.3 it can be shown that the equilbrium probability
vectors pi can be expressed as

pi =
m∑

j=0

cjyjx
i−1, i = 1, 2, . . .
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where x0, x1, . . . , xm are the roots inside the unit circle of

det(
∞∑

k=0

xkAk) = 0. (3)

The vector yj, j = 0, 1, . . . ,m, is a nonnul solution of

y

∞∑
k=0

xkAk = 0.

The difficulties, however, with this approach are (i) to prove that equation (3) has indeed
m + 1 (different) roots x with |x| < 1, and (ii) the computation of these roots. In the next
chapter we will consider a special class of G/M/1 models, for which these difficulties can
be resolved.
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