Theoretical Driving Exams

At the centre for theoretical driving exams one wants to renew the process of taking theoretical driving exams as follows.

Each exam is done individually; the duration of an exam is on average 30 minutes, but at most 45 minutes. At the centre 20 candidates can do simultaneously exam. Candidates can make a reservation and pay in advance through the Internet. During the whole day exams can start every 30 minutes (from 8:15 until 16.15). But the planner decides in advance how many positions are available in every time slot of 30 minutes. An example is the following scheme:

Slot	Starting time	Capacity
1	$8: 15$	0
2	$8: 45$	20
3	$9: 15$	16
4	$9: 45$	16
5	$10: 15$	16
6	$10: 45$	16
7	$11: 15$	16
8	$11: 45$	16
9	$12: 15$	0
10	$12: 45$	0
11	$13: 15$	20
12	$13: 45$	16
13	$14: 15$	16
14	$14: 45$	16
15	$15: 15$	16
16	$15: 45$	16
17	$16: 15$	0

Every position that is made available by the planner will be booked (there is a waiting list of candidates). In practice candidates arrive on time; nearly all of them are present between 35 minutes and 5 minutes before the planned examination time. Candidates may start as soon as a position becomes available (thus possibly earlier than the planned time).

The question is: How many positions should the planner make available during every slot of the day? And, given the available slots, what is the probability that a candidate cannot start in time (i.e., the actual starting time is later than the planned one)? This probability should be very small, in any case less than 1%. And if this situation occurs, what are the mean and standard deviation of the waiting time after the planned starting time?

