
1 Basic concepts from probability theory

This chapter is devoted to some basic concepts from probability theory.

1.1 Random variable

Random variables are denoted by capitals, X, Y , etc. The expected value or mean of X is
denoted by E(X) and its variance by σ2(X) where σ(X) is the standard deviation of X.

An important quantity is the coefficient of variation of the positive random variable X
defined as

cX =
σ(X)

E(X)
.

The coefficient of variation is a (dimensionless) measure of the variability of the random
variable X.

1.2 Generating function

Let X be a nonnegative discrete random variable with P (X = n) = p(n), n = 0, 1, 2, . . ..
Then the generating function PX(z) of X is defined as

PX(z) = E(zX) =
∞∑

n=0

p(n)zn.

Note that |PX(z)| ≤ 1 for all |z| ≤ 1. Further

PX(0) = p(0), PX(1) = 1, P ′
X(1) = E(X),

and, more general,
P

(k)
X (1) = E(X(X − 1) · · · (X − k + 1)),

where the superscript (k) denotes the kth derivative. For the generating function of the
sum Z = X + Y of two independent discrete random variables X and Y , it holds that

PZ(z) = PX(z) · PY (z).

When Z is with probability q equal to X and with probability 1− q equal to Y , then

PZ(z) = qPX(z) + (1− q)PY (z).

1.3 Laplace-Stieltjes transform

The Laplace-Stieltjes transform X̃(s) of a nonnegative random variable X with distribution
function F (·), is defined as

X̃(s) = E(e−sX) =
∫ ∞

x=0
e−sxdF (x), s ≥ 0.
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When the random variable X has a density f(·), then the transform simplifies to

X̃(s) =
∫ ∞

x=0
e−sxf(x)dx, s ≥ 0.

Note that |X̃(s)| ≤ 1 for all s ≥ 0. Further

X̃(0) = 1, X̃ ′(0) = −E(X), X̃(k)(0) = (−1)kE(Xk).

For the transform of the sum Z = X + Y of two independent random variables X and Y ,
it holds that

Z̃(s) = X̃(s) · Ỹ (s).

When Z is with probability q equal to X and with probability 1− q equal to Y , then

Z̃(s) = qX̃(s) + (1− q)Ỹ (s).

1.4 Useful probability distributions

This section discusses a number of important distributions which have been found useful
for describing random variables in many applications.

1.4.1 Geometric distribution

A geometric random variable X with parameter p has probability distribution

P (X = n) = (1− p)pn, n = 0, 1, 2, . . .

For this distribution we have

PX(z) =
1− p

1− pz
, E(X) =

p

1− p
, σ2(X) =

p

(1− p)2
, c2

X =
1

p
.

1.4.2 Poisson distribution

A Poisson random variable X with parameter µ has probability distribution

P (X = n) =
µn

n!
e−µ, n = 0, 1, 2, . . .

For the Poisson distribution it holds that

PX(z) = e−µ(1−z), E(X) = σ2(X) = µ, c2
X =

1

µ
.
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1.4.3 Exponential distribution

The density of an exponential distribution with parameter µ is given by

f(t) = µe−µt, t > 0.

The distribution function equals

F (t) = 1− e−µt, t ≥ 0.

For this distribution we have

X̃(s) =
µ

µ + s
, E(X) =

1

µ
, σ2(X) =

1

µ2
, cX = 1.

An important property of an exponential random variable X with parameter µ is the
memoryless property. This property states that for all x ≥ 0 and t ≥ 0,

P (X > x + t|X > t) = P (X > x) = e−µx.

So the remaining lifetime of X, given that X is still alive at time t, is again exponentially
distributed with the same mean 1/µ. We often use the memoryless property in the form

P (X < t + ∆t|X > t) = 1− e−µ∆t = µ∆t + o(∆t), (∆t → 0), (1)

where o(∆t), (∆t → 0), is a shorthand notation for a function, g(∆t) say, for which
g(∆t)/∆t tends to 0 when ∆t → 0 (see e.g. [1]).

If X1, . . . , Xn are independent exponential random variables with parameters µ1, . . . , µn

respectively, then min(X1, . . . , Xn) is again an exponential random variable with parameter
µ1 + · · ·+µn and the probability that Xi is the smallest one is given by µi/(µ1 + · · ·+µn),
i = 1, . . . , n.

1.4.4 Erlang distribution

A random variable X has an Erlang-k (k = 1, 2, . . .) distribution with mean k/µ if X
is the sum of k independent random variables X1, . . . , Xk having a common exponential
distribution with mean 1/µ. The common notation is Ek(µ) or briefly Ek. The density of
an Ek(µ) distribution is given by

f(t) = µ
(µt)k−1

(k − 1)!
e−µt, t > 0.

The distribution function equals

F (t) = 1−
k−1∑
j=0

(µt)j

j!
e−µt, t ≥ 0.
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Figure 1: Phase diagram for the Erlang-k distribution with scale parameter µ
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Figure 2: The density of the Erlang-k distribution with mean 1 for various values of k

The parameter µ is called the scale parameter, k is the shape parameter. A phase diagram
of the Ek distribution is shown in figure 1.

In figure 2 we display the density of the Erlang-k distribution with mean 1 (so µ = k)
for various values of k.

The mean, variance and squared coefficient of variation are equal to

E(X) =
k

µ
, σ2(X) =

k

µ2
, c2

X =
1

k
.

The Laplace-Stieltjes transform is given by

X̃(s) =

(
µ

µ + s

)k

.

A convenient distribution arises when we mix an Ek−1 and Ek distribution with the
same scale parameters. The notation used is Ek−1,k. A random variable X has an Ek−1,k(µ)
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distribution, if X is with probability p (resp. 1−p) the sum of k−1 (resp. k) independent
exponentials with common mean 1/µ. The density of this distribution has the form

f(t) = pµ
(µt)k−2

(k − 2)!
e−µt + (1− p)µ

(µt)k−1

(k − 1)!
e−µt, t > 0,

where 0 ≤ p ≤ 1. As p runs from 1 to 0, the squared coefficient of variation of the
mixed Erlang distribution varies from 1/(k − 1) to 1/k. It will appear (later on) that this
distribution is useful for fitting a distribution if only the first two moments of a random
variable are known.

1.4.5 Hyperexponential distribution

A random variable X is hyperexponentially distributed if X is with probability pi, i =
1, . . . , k an exponential random variable Xi with mean 1/µi. For this random variable we
use the notation Hk(p1, . . . , pk; µ1, . . . , µk), or simply Hk. The density is given by

f(t) =
k∑

i=1

piµie
−µit, t > 0,

and the mean is equal to

E(X) =
k∑

i=1

pi

µi

.

The Laplace-Stieltjes transform satisfies

X̃(s) =
k∑

i=1

piµi

µi + s
.

The coefficient of variation cX of this distribution is always greater than or equal to 1.
A phase diagram of the Hk distribution is shown in figure 3.
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Figure 3: Phase diagram for the hyperexponential distribution
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1.4.6 Phase-type distribution

The preceding distributions are all special cases of the phase-type distribution. The notation
is PH. This distribution is characterized by a Markov chain with states 1, . . . , k (the so-
called phases) and a transition probability matrix P which is transient. This means that
P n tends to zero as n tends to infinity. In words, eventually you will always leave the
Markov chain. The residence time in state i is exponentially distributed with mean 1/µi,
and the Markov chain is entered with probability pi in state i, i = 1, . . . , k. Then the
random variable X has a phase-type distribution if X is the total residence time in the
preceding Markov chain, i.e. X is the total time elapsing from start in the Markov chain
till departure from the Markov chain.

We mention two important classes of phase-type distributions which are dense in the
class of all non-negative distribution functions. This is meant in the sense that for any
non-negative distribution function F (·) a sequence of phase-type distributions can be found
which pointwise converges at the points of continuity of F (·). The denseness of the two
classes makes them very useful as a practical modelling tool. A proof of the denseness can
be found in [6, 7]. The first class is the class of Coxian distributions, notation Ck, and
the other class consists of mixtures of Erlang distributions with the same scale parameters.
The phase representations of these two classes are shown in the figures 4 and 5.

1 2 k

µ1 µ2 µk

p 1 p 2 pk −1

1 − p 1 1 − p 2 1 − pk −1

Figure 4: Phase diagram for the Coxian distribution

A random variable X has a Coxian distribution of order k if it has to go through up to
at most k exponential phases. The mean length of phase n is 1/µn, n = 1, . . . , k. It starts
in phase 1. After phase n it comes to an end with probability 1− pn and it enters the next
phase with probability pn. Obviously pk = 0. For the Coxian-2 distribution it holds that
the squared coefficient of variation is greater than or equal to 0.5.

A random variable X has a mixed Erlang distribution of order k if it is with probability
pn the sum of n exponentials with the same mean 1/µ, n = 1, . . . , k.

1.5 Fitting distributions

In practice it often occurs that the only information of random variables that is available
is their mean and standard deviation, or if one is lucky, some real data. To obtain an
approximating distribution it is common to fit a phase-type distribution on the mean,
E(X), and the coefficient of variation, cX , of a given positive random variable X, by using
the following simple approach.
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Figure 5: Phase diagram for the mixed Erlang distribution

In case 0 < cX < 1 one fits an Ek−1,k distribution (see subsection 1.4.4). More specifi-
cally, if

1

k
≤ c2

X ≤ 1

k − 1
,

for certain k = 2, 3, . . ., then the approximating distribution is with probability p (resp.
1 − p) the sum of k − 1 (resp. k) independent exponentials with common mean 1/µ. By
choosing (see e.g. [8])

p =
1

1 + c2
X

[kc2
X − {k(1 + c2

X)− k2c2
X}1/2], µ =

k − p

E(X)
,

the Ek−1,k distribution matches E(X) and cX .
In case cX ≥ 1 one fits a H2(p1, p2; µ1, µ2) distribution. The hyperexponential distribu-

tion however is not uniquely determined by its first two moments. In applications, the H2

distribution with balanced means is often used. This means that the normalization

p1

µ1

=
p2

µ2

is used. The parameters of the H2 distribution with balanced means and fitting E(X) and
cX (≥ 1) are given by

p1 =
1

2

1 +

√√√√c2
X − 1

c2
X + 1

 , p2 = 1− p1,

µ1 =
2p1

E(X)
, µ1 =

2p2

E(X)
.
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In case c2
X ≥ 0.5 one can also use a Coxian-2 distribution for a two-moment fit. The

following set is suggested by [4],

µ1 = 2/E(X), p1 = 0.5/c2
X , µ2 = µ1p1.

It also possible to make a more sophisticated use of phase-type distributions by, e.g.,
trying to match the first three (or even more) moments of X or to approximate the shape
of X (see e.g. [9, 2, 3]).

Phase-type distributions may of course also naturally arise in practical applications.
For example, if the processing of a job involves performing several tasks, where each task
takes an exponential amount of time, then the processing time can be described by an
Erlang distribution.

1.6 Poisson process

Let N(t) be the number of arrivals in [0, t] for a Poisson process with rate λ, i.e. the time
between successive arrivals is exponentially distributed with parameter λ and independent
of the past. Then N(t) has a Poisson distribution with parameter λt, so

P (N(t) = k) =
(λt)k

k!
e−λt, k = 0, 1, 2, . . .

The mean, variance and coefficient of variation of N(t) are equal to (see subsection 1.4.2)

E(N(t)) = λt, σ2(N(t)) = λt, c2
N(t) =

1

λt
.

From (1) it is easily verified that

P (arrival in (t, t + ∆t]) = λ∆t + o(∆t), (∆t → 0).

Hence, for small ∆t,
P (arrival in (t, t + ∆t]) ≈ λ∆t. (2)

So in each small time interval of length ∆t the occurence of an arrival is equally likely. In
other words, Poisson arrivals occur completely random in time. In figure 6 we show a real-
ization of a Poisson process and an arrival process with Erlang-10 interarrival times. Both
processes have rate 1. The figure illustrates that Erlang arrivals are much more equally
spread out over time than Poisson arrivals.

The Poisson process is an extremely useful process for modelling purposes in many
practical applications, such as, e.g. to model arrival processes for queueing models or
demand processes for inventory systems. It is empirically found that in many circumstances
the arising stochastic processes can be well approximated by a Poisson process.

Next we mention two important properties of a Poisson process (see e.g. [5]).
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Figure 6: A realization of Poisson arrivals and Erlang-10 arrivals, both with rate 1

(i) Merging.
Suppose that N1(t) and N2(t) are two independent Poisson processes with respective
rates λ1 and λ2. Then the sum N1(t) + N2(t) of the two processes is again a Poisson
process with rate λ1 + λ2.

(ii) Splitting.
Suppose that N(t) is a Poisson process with rate λ and that each arrival is marked
with probability p independent of all other arrivals. Let N1(t) and N2(t) denote
respectively the number of marked and unmarked arrivals in [0, t]. Then N1(t) and
N2(t) are both Poisson processes with respective rates λp and λ(1 − p). And these
two processes are independent.

So Poisson processes remain Poisson processes under merging and splitting.
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