
14 Closed production networks

In the previous chapter we developed and analyzed stochastic models for production net-
works with a free inflow of jobs. In this chapter we will study production networks for
which the nature of the input process is different: there is only new input when a finished
job leaves the network. For example, one may think of a production system where jobs
(e.g., parts) are transported through the system on pallets. Typically, the number of pallets
available is limited, since pallets are expensive. When processing is completely finished, a
job is transported to the Load/Unload (LU) station, where the job is removed from the
pallet, and a new job (e.g., raw part) is immediately attached to the pallet and released in
the network. In doing so, the number of circulating jobs (or pallets) in the network remains
constant over time. Networks with a fixed population are called closed networks. One of
the important design issues in closed production networks is to determine the population
size (e.g., number of pallets) required to meet a certain target throughput.

In the following section we start with a simple closed queueing network model, with
only single-server exponential stations and one job type (see also [2]).

14.1 Exponential closed single-server queueing network model

We consider a production system consisting of M work stations, numbered 1, 2, . . . ,M ; see
figure 1. Each work station has a single machine. The production system is processing one
type of jobs. The number of circulating jobs is N .
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Figure 1: Exponential closed single-server queueing network model with M work stations
and N circulating jobs

The processing times at work station m are exponentially distributed with mean 1/µm,
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and the processing order is FCFS. The routing of jobs through is system is Markovian: after
visiting work station m, a job moves to station n with probability pmn (so

∑M
n=1 pmn = 1).

Let P denote the matrix of routing probabilities pmn. We assume that P is irreducible (so
a job can reach from each station any other station in one or more transitions).

This model is known as a closed Jackson network; see, e.g., [3]. It is called closed,
because the population size remains constant over time. Note that here stability is not an
issue; we do not have to worry about the population size possibly growing to infinity.

Since the processing times are assumed to be exponential and the routing is Markovian,
this network can be described by a Markov process with states k = (k1, k2, . . . , kM) where
km denotes the number of jobs in work station m. The possible states are the ones for
which k ≥ 0 and

M∑
m=1

km = N.

Hence the state space is finite; however, the number of states is equal to(
N +M − 1

M − 1

)
,

so it may be very big for already moderate values of N and M . Let p(k) denote the equi-
librium probability of state k. Below we will derive an explicit form for these probabilities.

By equating the flow out and into state k we get

p(k)
M∑

m=1

µmε(km) =
M∑

n=1

M∑
m=1

p(k + en − em)µnpnmε(km). (1)

As solution we are going to try the form

p(k) = Cxk1
1 x

k2
2 · · ·x

kM
M .

Substitution of this form into the balance equation (1) and dividing by common powers
yields (after rearranging terms)

M∑
m=1

(
µm −

M∑
n=1

xn

xm

µnpnm

)
ε(km) = 0.

The left-hand side is a sum of functions ε(km). This sum only vanishes for all k if the
coefficients of all ε(km) vanish, so the xm’s should satisfy

xmµm =
M∑

n=1

xnµnpnm, m = 1, 2, . . . ,M.

If we set vm = xmµm, then

vm =
M∑

n=1

vnpnm, m = 1, 2, . . . ,M.

2



Clearly vm can be interpreted as the relative visiting frequency or relative arrival rate to
work station m. The above set of equations does not have a unique solution, and therefore
we have to add a normalization equation, such as v1 = 1. This equation is natural if the
network has a LU station, numbered station 1; then vm denotes the mean number of times
a job has to visit work station m before returning to the LU station.

So xm is given by

xm =
vm

µm

, m = 1, . . . ,M,

and thus we find that

p(k) = C

(
v1

µ1

)k1
(
v2

µ2

)k2

· · ·
(
vM

µM

)kM

,

where C follows from normalization. Summarizing, the conclusion is that

p(k) = Cp1(k1)p2(k2) · · · pM(kM), k ≥ 0,
M∑

m=1

km = N, (2)

where

pm(km) =

(
vm

µm

)km

.

Solution (2) is a product form solution. Note that pm(·) is closely related to the queue
length distribution of the M/M/1 system with (absolute) arrival rate vm and service rate
µm. An important difference with the solution for open exponential networks is that in a
closed network the queue lengths at the work stations are dependent. Another difference is
that it is not so easy to compute the normalizing constant C. Simply adding the products(

v1

µ1

)k1
(
v2

µ2

)k2

· · ·
(
vM

µM

)kM

over all possible states k will lead to numerical complications when the state space is
large (such as overflow or underflow problems). However, efficient and numerically stable
algorithms for the computation of the normalizing constant have been developed; see, e.g.,
Buzen’s convolution algorithm [1, 5]. This algorithm is briefly explained below.

Define C(m,n) as

C(m,n) =
∑

k1, . . . , km ≥ 0∑m
i=1 ki = n

(
v1

µ1

)k1
(
v2

µ2

)k2

· · ·
(
vm

µm

)km

. (3)

Clearly, the normalizing constant C for the network with M stations and N circulating
jobs is equal to 1/C(M,N). To compute C(M,N), note that, by distinguishing the cases
km = 0 and km > 0 in the sum of (3), the following relation immediately follows

C(m,n) = C(m− 1, n) +
vm

µm

C(m,n− 1). (4)
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Hence, together with the initial conditions

C(0, n) = 0, n = 1, . . . , N, C(m, 0) = 1, m = 1, . . . ,M,

the constant C(M,N) can be recursively computed from (4).

14.2 Exponential closed multi-server queueing network model

We are now going to extend the results of the previous section for single-server stations
to multi- and infinite-server stations. Let us assume that work station m has cm identical
parallel machines (possibly cm =∞). By direct substitution into the balance equations it
may be verified that the simultaneous queue length probabilities p(k) again have a product
form solution, i.e.,

p(k) = Cp1(k1)p2(k2) · · · pM(kM), k ≥ 0,
M∑

m=1

km = N, (5)

where

pm(km) =


1

km!

(
vm

µm

)km

km ≤ cm − 1;

1

cm!ckm−cm
m

(
vm

µm

)km

km ≥ cm.

Note that pm(·) is closely related to the queue length distribution of the M/M/cm system
with arrival rate vm and service rate µm (in fact, the only difference is the normalizing
constant).

So far we only considered the detailed queue length probabilities p(k). In principle,
these probabilities can be used to compute mean performance characteristics such as mean
queue lengths and mean production lead times. In the next section we will develop an
efficient recursive scheme for the computation of mean performance characteristics. It
is not (directly) based on the state probabilities p(k), but it is uses Little’s law and an
extension of the PASTA property to closed queueing networks; this approach is usually
referred to as Mean Value Analysis (MVA), see, e.g., [6].

14.3 Mean value analysis for exponential closed networks

Mean value analysis is based on the Arrival Theorem for exponential closed networks. For
networks with one job type this theorem states that an arbitrary job moving from one
station to another sees the system in equilibrium corresponding to a population with one
job less (later we will also formulate this result for networks with multiple job types).
Below we will prove the Arrival Theorem for the exponential single-server network (cm = 1
for all stations m).

Let S(N) denote the state space of a network with N circulating jobs, i.e.,

S(N) = {k = (k1, . . . , kM)|k1, . . . , kM ≥ 0,
M∑
i=1

ki = N}.
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Then, by (2), the number of jumps per time unit that see the network in state k ∈ S(N−1)
(a jumping job does not see himself) is equal to

M∑
m=1

p(k + em)µm = Cp1(k1) · · · pM(kM)
M∑

m=1

vm,

where the normalizing constant C is given by

C =
1

C(M,N)
.

Similarly, the total number of jumps per time unit is equal to

∑
k∈S(N−1)

M∑
m=1

p(k + em)µm =
∑

k∈S(N−1)

Cp1(k1) · · · pM(kM)
M∑

m=1

vm.

The fraction of jumps that see the network in state k ∈ S(N − 1) is the ratio of the above
two rates, and thus, it is equal to

p1(k1) · · · pM(kM)
∑M

m=1 vm∑
k∈S(N−1) p1(k1) · · · pM(kM)

∑M
m=1 vm

=
p1(k1) · · · pM(kM)

C(M,N − 1)
,

which is exactly the probability that the network with N − 1 circulating jobs is in state k.
Now we will first explain the mean value approach for a single-server network. Let us

introduce some notation; all quantities below depend on the population size k.

E(Sm(k)) = mean production lead time at work station m;

E(Lm(k)) = mean number of jobs in work station m;

Λm(k) = throughput of work station m, in a network with population k.

Based on the Arrival Theorem, a job arriving at station m in a network with population k,
will find on average E(Lm(k− 1)) jobs in station m. The mean (residual) processing time
of each job in station m is 1/µm (also for the one in process). Hence, the mean production
lead time is

E(Sm(k)) = (E(Lm(k − 1)) + 1)
1

µm

, m = 1, 2, . . . ,M. (6)

The mean cycle time E(C(k)) of a job is

E(C(k)) =
M∑

n=1

vnE(Sn(k)).

Hence, the mean number of times per time unit that a job passes station m is equal to
vm/E(C(k)), and thus the throughput of station m is k · vm/E(C(k)), since there are k
circulating jobs. So we have

Λm(k) =
kvm∑M

n=1 vnE(Sn(k))
, m = 1, 2, . . . ,M. (7)
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Finally, by Little’s law

E(Lm(k)) = Λm(k)E(Sm(k)), m = 1, 2, . . . ,M. (8)

The relations (6)-(8) can be used to recursively compute the means E(Sm(k)), Λm(k) and
E(Lm(k)) for populations from k = 0 up to k = N . Initially we have

E(Lm(0)) = 0, m = 1, 2, . . . ,M.

Now we consider the multi-server case. It is also possible to develop an exact mean value
analysis for multi-server networks, although the resulting algorithm is more complicated
than the one above. The reason is that marginal queue length distributions are needed for
the computation of the probabilities of waiting (cf. [7]). Instead we develop an efficient
and accurate approximative mean value approach.

Recall that for an M/M/c system with arrival rate λ and service rate µ we have

E(S) = ΠW ·
1

cµ
+

(
E(L)− λ

µ

)
· 1

cµ
+

1

µ
,

where ΠW is the probability of waiting, or by PASTA, the probability that all servers are
busy. So

ΠW =

1

c!

(
λ

µ

)c

(
1− λ

cµ

)
c−1∑
i=0

1

i!

(
λ

µ

)i

+
1

c!

(
λ

µ

)c .

For workstation m we may write

E(Sm(k)) = Πm(k − 1) · 1

cmµm

+

(
E(Lm(k − 1))− Λm(k − 1)

µm

)
· 1

cmµm

+
1

µm

, (9)

where Πm(k−1) is the probability that all machines in workstation m are busy, in a network
with population k − 1. Instead of trying to compute Πm(k − 1) exactly, we approximate
this probability by the probability ΠW that all servers are busy in an M/M/cm system
with arrival rate Λm(k − 1) and service rate µm. Hence,

Πm(k − 1) ≈

1

cm!

(
Λm(k − 1)

µm

)cm

(
1− Λm(k − 1)

cmµm

)
cm−1∑
i=0

1

i!

(
Λm(k − 1)

µm

)i

+
1

cm!

(
Λm(k − 1)

µm

)cm
. (10)

For cm =∞, relation (9) simplifies to

E(Sm(k)) =
1

µm

. (11)

Summarizing, in an exponential multi-server network we can compute approximations for
E(Sm(k)), Λm(k), Πm(k) and E(Lm(k)) by using the recursive relations (7)-(11). The
computational complexity of this scheme is (roughly) the same as the one for the single-
server network.
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14.4 Incorporation of material handling

As we discussed in the previous chapter transportation delays can be modelled by infinite
(or ample) server stations. Here the situation is even a bit simpler. Let Tmn denote the
mean transportation time from station m to station n. The only thing we have to change
in the mean value scheme is the computation of the mean cycle time E(C(k)). The mean
total transportation delay in a cycle has to be added to the mean cycle time. So we get

E(C(k)) =
M∑

n=1

vnE(Sn(k)) +
M∑

n=1

M∑
l=1

vnpnlTnl,

and thus

Λm(k) =
kvm

E(C(k))
=

kvm

M∑
n=1

vnE(Sn(k)) +
M∑

n=1

M∑
l=1

vnpnlTnl

.

14.5 General closed multi-server queueing network model

In this section we consider the situation where the processing times have a general dis-
tribution. Let E(Bm) and E(Rm) denote the mean processing time and mean residual
processing time in work station m. Also the routing may be non-Markovian (but for ex-
ample, fixed); only the relative visiting frequencies vm matter. Below we will present an
approximative mean value analysis for this general network.

The only relations we have to modify are relation (6) for a single-server station and
relation (9) for a multi-server station. Let us first consider a single-server work station.
Then we can mimic the arrival relation for the M/G/1 queue, yielding

E(Sm(k)) = ρm(k − 1)E(Rm) + (Lm(k − 1)− ρm(k − 1)) · E(Bm) + E(Bm),

where ρm(k − 1) is the occupation rate of station m in a network with population k − 1,
i.e.,

ρm(k − 1) = Λm(k − 1) · E(Bm).

In case of a multi-server work station we modify (9) into

E(Sm(k)) = Πm(k − 1) · E(Rm)

cm
+ (E(Lm(k − 1))− Λm(k − 1)E(Bm)) · E(Bm)

cm
+E(Bm).

Example 14.1 Let us consider the production system in figure 2.
Station 1 is the Load/Unload (LU) station and there are 10 circulating pallets. The

mean processing times and the squared coefficients of variation of the processing times are
listed in table 1.

The throughput of this system is the number of parts released from the LU station
per time unit, i.e., it is equal to Λ1(10). The approximate mean value analysis predicts a
throughput of 0.736 parts per time unit; simulation yields a throughput of 0.743 ± 0.003
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Figure 2: Closed production system with 4 stations and 10 circulating pallets

Station E(Bm) c2Bm

1 1.25 0.25
2 1.25 0.50
3 2.00 0.33
4 1.60 1.00

Table 1: Processing characteristics

parts per time unit (0.003 is the width of the 95% confidence interval). In table 2 we
compare the results for the mean production lead times.

We may conclude that the results produced by the approximate mean value analysis
are quite accurate, definitely from a practical point of view. Further observe that the
throughput is predicted more accurately than the mean production lead times (typically
due to cancellation of errors).

Example 14.2 Let us consider a production system with C machines and N pallets.
For processing jobs they have to be equipped with tools. The number of operations to
be performed is M ; each operation requires a specific tool set. Label these tool sets
1, 2, . . . ,M . Tool set m has rm copies, and they can be assigned to cm (cm ≤ rm) machines,
such that all these cm machines are functionally identical. The relative workload to be
handled by tool set m is vmE(Bm), which is known in advance. We want to assign tool
sets to machines such that the throughput TH(c1, c2, . . . , cm) is maximized. Hence, the
optimization problem is:

maxTH(c1, c2, . . . , cm)

subject to
M∑

m=1

cm ≤ C,

1 ≤ cm ≤ rm, m = 1, 2, . . . ,M.

A heuristic solution for this optimization problem may be found by subsequently allocat-
ing tool sets to machines; the tool set allocated to the next machine is the one yielding
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Station E(Sm(10))
amva sim

1 4.417 4.890 ± 0.106
2 5.050 4.760 ± 0.169
3 4.181 3.860 ± 0.068
4 4.086 3.790 ± 0.118

Table 2: Comparison of results produced by the approximate mean value analysis (amva)
and simulation (sim)

maximum increase in throughput.

14.6 Closed network model with multiple visits to work stations

Now we look at the situation where jobs can make several visits to the same work station,
each visit involving a different type of operation, and thus a different processing time.

Let nm be the number of distinct types of operations at work station m and let vmr be
the mean number of visits to work station m for a type r operation, 1 ≤ r ≤ nm. The mean
processing time for a type r operation at work station m is denoted by E(Bmr); the mean
residual processing time is E(Rmr). In each work station there is exactly one machine.

To formulate approximate mean value relations we first introduce some notation.

E(Smr(k)) = mean production lead time at work station m

for a job receiving a type r operation;

Λmr(k) = arrival rate at station m of jobs for

their type r operation;

E(Lmr(k)) = mean number of jobs at station m (waiting or in service)

for their type r operation, in a network with population k.

For the mean production lead time we get

E(Smr(k)) =
nm∑
s=1

ρms(k−1)E(Rms)+
nm∑
s=1

(E(Lms(k−1))−ρms(k−1))E(Bms)+E(Bmr), (12)

where ρms(k − 1) denotes the occupation rate for type s operations in work station m, so

ρms(k − 1) = Λms(k − 1)E(Bms).

For the throughput and mean number of jobs we have

Λmr(k) =
kvmr

M∑
n=1

nm∑
s=1

vnsE(Sns(k))

, (13)

E(Lmr(k)) = Λmr(k)E(Smr(k)), (14)
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for all m and r. Hence, the means E(Smr(k)), Λmr(k) and E(Lmr(k)) can be computed
recursively from (12)-(14) for populations starting from k = 0 up to k = N .

14.7 Closed queueing network model with multiple job types

We consider a production system consisting of M work stations, numbered 1, 2, . . . ,M .
The number of machines in workstation m is cm. The production system is processing R
types of jobs, labeled 1, 2, . . . , R; typically, the number of job types may be very large. The
number of circulating type r jobs is fixed and equal to Nr, r = 1, 2, . . . , R. The processing
times at work station m are exponentially distributed with mean 1/µm (so they are job-type
independent), and the processing order is FCFS. The routing of jobs through is system is
Markovian: after visiting work station m, a type r job moves to station n with probability
pr

mn (so
∑M

n=1 p
r
mn = 1). Thus each job type has its own routing. Let P r denote the matrix

of routing probabilities pr
mn; we assume that P r is irreducible (so a type r job can reach

from each station any other station in one or more transitions).
The state description of the multiple job-type system is more complicated than the

single-job type system. The state vector is k = (k1, k2, . . . , kM) where subvector km de-
scribes the (aggregate) situation at work station m; that is, km = (km1, km2, . . . , kmR) with
kmr indicating the number of type r jobs in work station m. Note that the stochastic
process with states k is not a Markov process; to predict the future at time t we actually
have to know the exact order of jobs at each work station (not only their number), since
the routing is job-type dependent.

Let vmr be the relative visiting frequency of type r jobs to work station m. For each
job type r, the frequencies v1r, v2r, . . . , vMr satisfy the set of equations

vmr =
M∑

n=1

vnrp
r
nm, m = 1, 2, . . . ,M.

Together with a normalization equation such as v1r = 1, this set of equations has a unique
solution. It can be shown that the equilibrium probabilities p(k) have a product form
solution. That is,

p(k) = Cp1(k1)p2(k2) · · · pM(kM), kr ≥ 0,
M∑

m=1

kmr = Nr, r = 1, . . . , R,

where, if cm = 1,

pm(km) =
(km1 + km2 + · · ·+ kmR)!

km1!km2! · · · kmR!

(
vm1

µm

)km1
(
vm2

µm

)km2

· · ·
(
vmR

µm

)kmR

and if cm > 1, we have to multiply this product with the extra factor

1

vm(1)vm(2) · · · vm(km1 + km2 + · · ·+ kmR)
,
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where vm(i) = min(i, cm).
Although mathematically elegant, this product form solution is not practical for the

computation of mean performance characteristics. But based on this solution it can be
shown that the following generalization of the Arrival Theorem holds: an arbitrary type r
job moving from one station to another sees the system in equilibrium corresponding to a
population with one job of his own type less. Using this theorem and Little’s law we can
formulate a recursive scheme to efficiently compute mean performance characteristics.

14.8 Mean value analysis for closed networks with multiple job
types

We present an exact mean value analysis for single-server exponential networks with multi-
ple job types. The derivation of approximate mean value schemes for multi-server general
networks proceeds along the same lines as for networks with one job type.

Let N = (N1, N2, . . . , NR) denote the population vector and define

E(Smr(N)) = mean production lead time at work station m for a type r job;

Λmr(N) = arrival rate at station m of type r jobs;

E(Lmr(N)) = mean number of type r jobs at station m (waiting or in service,)

in a network with population vector N .

By virtue of the Arrival Theorem we have

E(Smr(N)) =

(
r∑

s=1

E(Lms(N − er)) + 1

)
1

µm

, m = 1, 2, . . . ,M, r = 1, 2, . . . , R,

(15)
and application of Little’s law yields

Λmr(N) =
Nrvmr

M∑
n=1

vnrE(Snr(N))

, (16)

E(Lmr(N)) = Λmr(N)E(Smr(N)). (17)

The relations (15)-(17) can be used to recursively compute the means, starting with a
population vector k = 0 up to k = N . The number of recursion steps, however, is equal to

R∏
r=1

(1 +Nr),

and this number explodes when the number of job types becomes large.
The recursion in (15), which is due to the Arrival Theorem, can be avoided by formu-

lating approximate fixed point equations; see [8].
As approximation we assume that an arriving type r job sees the system in equilibrium

with a population N (instead of N − er). Thus the mean number of jobs seen on arrival
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is the mean number in a system including himself. But of course, the job does not have
to wait for himself. Therefore, to avoid self queueing, the mean number E(Lmr(N)) is
multiplied with (Nr − 1)/Nr. This results in

E(Smr(N)) =
∑
s 6=r

E(Lms(N))
1

µm

+
Nr − 1

Nr

E(Lmr(N))
1

µm

+
1

µm

, (18)

m = 1, 2, . . . ,M, r = 1, 2, . . . , R.

The relations (16)-(18) form a set of 3MR fixed point equations for 3MR unknowns, namely
the means E(Smr(N)), Λmr(N) and E(Lmr(N)). The solution may be found by successive
substitutions. In practice successive substitutions converges fast. In theory, however,
convergence and uniqueness of the solution of (16)-(18) is still an open problem. The
accuracy of the approximate mean value analysis is typically 5− 10% for the throughputs
Λmr(N), and 15− 30% for the means E(Smr(N)) and E(Lmr(N)).
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